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Quantum droplet of a two-component Bose gas in an optical lattice near the Mott insulator transition
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We theoretically study dynamical formation of a quantum droplet in a two-component Bose-Hubbard system
with an external trap potential. Specifically, the superfluid in the central region surrounded by the Mott insulator
with double filling forms a quantum droplet, which is self-bound thanks to the discontinuous nature of the
quantum phase transition between the two phases. We show how to induce the characteristic behavior of the
droplet through the control of the trap potential by using the time-dependent Gutzwiller simulations in a two-
dimensional system. The static and dynamical properties of the droplet can be described qualitatively by the
effective Ginzburg-Landau field theory with cubic-quintic nonlinearities where the attractive cubic nonlinearity
emerges, although all the bare interparticle interactions are repulsive.
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In the past few years, there has been tremendous interest
in studying the properties of quantum droplets in ultracold
gases [1–3]. The droplet state is sustained by the energy
competition between the well-tuned mean-field interactions
and the intrinsic quantum fluctuations [4]. Experimentally,
a lot of efforts have been underway to reveal the proper-
ties of the quantum droplets [5–14]. Although the previous
experimental studies on quantum droplets have addressed
only systems in continuum, recent theoretical studies have
found droplet phases in a lattice system, which is specifically
two-component Bose gases in an optical lattice (OL) with
the repulsive intracomponent and attractive intercomponent
interactions [15,16]. Ultracold atomic gases in an OL are
nowadays standard platforms to implement versatile quantum
simulators of quantum many-body systems [17,18]. The con-
trollability of the system parameters from a weakly interacting
regime to a strongly interacting one enables us to explore
various states of matter.

In this Letter, we propose an alternative mechanism to
realize a quantum droplet in a two-component Bose-Hubbard
(BH) system in which both intra- and intercomponent inter-
actions are repulsive. The Bose-Bose mixture in an OL is
experimentally accessible [19,20]. The previous theoretical
studies have considered the ground-state phase diagrams of
the two-component BH model, predicting the existence of
several phases and phase transitions; especially, there is the
discontinuous (first-order) phase transition between the Mott
insulator (MI) and the superfluid (SF) phase near the tip of
the Mott lobe in the spatial d dimension with d � 2 [21–26].
Also, nonequilibrium dynamics subject to the two-component
BH model has been studied to reveal the impact of the inter-
atomic interactions on dynamical behavior [27–31].

Our dynamical simulations based on the Gutzwiller ap-
proximation show that the two-component Bose gas in a
combined OL and trap potential can accommodate a localized
structure of the SF component, provided by the discontinuous

nature of the SF-MI transition. It is well known that when
the interaction dominates over the kinetic energy, the density
distribution of BH systems with a parabolic trap forms an in-
homogeneous wedding-cake structure [32]. We find that when
the transition between the central SF and the surrounding MI
is of the first order, the central SF does not expand even
after the trap around it is locally turned off, behaving as a
self-bound droplet. We explain the mechanism of the self-
binding from a viewpoint of the effective Ginzburg-Landau
(GL) theory where the SF-order parameter around the tran-
sition point can be described qualitatively by the effective
GL equation with the attractive-cubic and repulsive-quintic
nonlinearity. This type of nonlinear equation can support the
solution of a self-bound droplet [33–35]. Since the effective
attraction is induced by the fourth-order perturbation process
of the hoppings from the atomic limit, the droplet formation
originates purely from quantum nature. Using the effective
theory, we study stationary density profiles and collective
excitations of the droplet, which are key features in the ex-
perimental observation.

We consider the BH Hamiltonian for the two-component
Bose gases in a two-dimensional square OL and a trap poten-
tial, which is given by

Ĥ =
∑

α=1,2

[
− Jα

∑
〈i, j〉

(â†
α, j âα,i + â†

α,iâα, j ) −
∑

j

μα, j n̂α, j

+Uα

2

∑
j

n̂α, j (n̂α, j − 1)

]
+ U12

∑
j

n̂1, j n̂2, j (1)

with the component index α = 1, 2 and the site index j =
( jx, jy). Here, 〈i, j〉 represents the nearest-neighbor sites, Jα

represents the hopping coefficient, μα, j represents the local
chemical potential, and Uα and U12 represents the intra-
component on-site interaction and the intercomponent one,
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respectively. The operators âα, j (â†
α, j ) and n̂α, j ≡ â†

α, j âα, j are
the annihilation (creation) operators and the number operator
at site j, respectively.

We assume below the symmetric choice of the parameters,
namely, J1 = J2 ≡ J , μ j,1 = μ j,2 ≡ μ j , and U1 = U2 ≡ U >

0. For example, when we choose the two hyperfine states
of the 87Rb atom, |F = 2, mF = −1〉 and |1, 1〉 as the two
components, in a standard optical lattice the equal hoppings
hold and the equal intracomponent interactions approximately
do (U1/U2 � 0.95 [36]). By assuming further that the trap
potential is equal for the two components, the equal local
chemical potentials approximately imply the equal numbers
of particles. The parameter U12 can be controlled with use of
a magnetic Feshbach resonance [37–39].

We calculate the ground-state and time-dependent dynam-
ics of the system obeying Eq. (1) through the Gutzwiller ap-
proximation for the many-body wave function [23,27,30,32].
The Gutzwiller variational wave function is given by

|�G(t )〉 =
∏

j

∑
n1,n2=0

f ( j)
n1,n2

(t ) |n1, n2〉 j , (2)

where |n1, n2〉 j represents the Fock state associated with the
particle numbers for the two components at site j. The prob-
ability amplitude f ( j)

n1,n2 satisfies the normalization condition∑
n1,n2

| f ( j)
n1,n2 |2 = 1. Under the variational principle, the min-

imization of 〈�G| Ĥ − ih̄ d
dt |�G〉 with respect to f ( j)∗

n1,n2 gives

the time-dependent equations for f ( j)
n1,n2 as

ih̄
df ( j)
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dt

=
∑

α=1,2

[
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2
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]
f ( j)
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n1−1,n2
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1,i

√
n1, j + 1 f ( j)
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−J
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i∈N ( j)

(
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√
n2, j f ( j)

n1,n2−1 + �∗
2,i

√
n2, j + 1 f ( j)

n1,n2+1

)
+U12n1, jn2, j f ( j)

n1,n2
. (3)

Here, N ( j) represents the nearest-neighbor sites of site j. The
SF-order parameter for each component is written by �1, j =∑

n1,n2
f ( j)∗
n1−1,n2

√
n1 f ( j)

n1,n2 and �2, j = ∑
n1,n2

f ( j)∗
n1,n2−1

√
n2 f ( j)

n1,n2 .
In the following, real-time dynamics are simulated by solving
Eq. (3) with the Crank-Nicholson scheme, whereas the initial
ground state is obtained by the imaginary time propagation of
Eq. (3). The mean-field phase diagram of the ground state in
the homogeneous system is obtained in Refs. [23,24], showing
rich phase structures depending on the values of U12/U . In
this Letter, we confine ourselves to U12/U = 0.9; the phase
diagram on the (zJ/U )-(μ/U ) plane is shown in Fig. 1(a),
where z = 4 is the coordinate number. The mean-field result
is in qualitative agreement with the quantum Monte Carlo
result [25]. There appear the two tricritical points (TCPs) for
0.68 < U12/U < 1 upon the boundary between the SF and the
MI with double filling factors. In Fig. 1(b), the condensate
density ρ = ∑

α |�α|2 obtained from Eq. (3) is plotted for
several values of zJ/U as a function of the chemical potential

FIG. 1. Panel (a) shows the ground-state phase diagram on the
zJ/U -μ/U plane obtained by the Gutzwiller analysis of the BH
model Eq. (1) [23,24]. The solid and dashed curves between SF and
MI represent the first- and second-order transitions, respectively. The
vertical dashed lines show the radial dependence of the equilibrium
phase in the bottom panels of (d), determined by the local chemical
potential. Panel (b) shows the equilibrium condensate density ρ =∑

α |�α|2 for several values of zJ/U as a function of the chemical
potential μ measured from the transition point μc. For μ < μc the SF
state is metastable. In (c), we show how to change the trap potential
for inducing characteristic behavior of a droplet formed by the SF
in the central region of the trap. Panels (d) show the time evolution
of the cross section of the SF density along the x axis starting from
the initial states of the bottom panels in which the profiles of the
total particle density n1 + n2 (red solid curve) and the SF density
ρ (blue dashed curve) are shown. The parameters are U12/U =
0.9, k̃ = 0.001, and (zJ/U, μ/U, R) = (0.14, 1.56, 21) for (d-1) and
(0.05, 1.85, 35) for (d-2). Here, μ is chosen as μ = μc + 0.05U The
vertical dashed-dot lines show the radius jx = ±R of the flat potential
area. Panel (e) shows the time evolution of the condensate density at
the center for several values of zJ/U . The horizontal thin lines show
the gap � of the condensate density at the transition points for the
corresponding zJ/U , obtained in (b).

measured from the transition point, which is determined at the
crossing point of the energy 〈�G|Ĥ |�G〉 of the MI and that of
the SF. At the transition point, the condensate density at the
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ground state shows a jump, denoted as �, a clear signature of
the first-order transition.

Next, we introduce the trap potential Vj . In the local-
density approximation, the chemical potential consists of the
global value μ and the parabolic trap Vj as μ j = μ − Vj =
μ − k(a0 j)2/2 with the spring constant k, the lattice con-
stant a0, and j2 = j2

x + j2
y . Then, the equilibrium number

distribution constitutes a wedding-cake structure depending
on the global value of μ. We choose μ/U such that the SF
is positioned at the central region of the trap and the MI
with n = 2 surrounds the SF. The Thomas-Fermi radius of the
density profile is given by a0| j| = √

2μ/k. The bottom panel
of Fig. 1(d-1) shows the equilibrium profiles of the particle
number n and the SF density ρ when the phase boundary
between the central SF and the surrounding MI with n = 2
associates with the first-order transition. In contrast, that of
Fig. 1(d-2) shows the case when the phase boundary corre-
sponds to the second-order transition.

In the former case, the central SF can possess a charac-
teristics of a droplet in the sense that the localized structure
is dynamically kept even after the trap potential is turned
off. To demonstrate this, we slowly change the potential Vj

under the protocol shown in Fig. 1(c) so as to flatten the area
j2a2

0 � R2. Here, the radius R of the flat area is determined
at the position sufficiently inside the n = 2 MI domain. The
time sequence of the trap potential for j2a2

0 � R2 is set as
Vj = δε(t )(V (0)

j − ε0) + ε0, where V (0)
j = k(a0 j)2/2 and we

change the time-dependent parameter as δε(t ) = 1 → 0 lin-
early within the interval t = [0, T = 1000h̄/U ]. In the flat
area, for t > T the chemical potential takes a constant μ − ε0,
which is set to be the value inside the n = 2 MI region.
This local manipulation of the trap is necessary since the SF
droplet is sustained only in the presence of the surrounding
MI domain. Such local control of the external potential can be
achieved with recent experimental techniques, e.g., using the
digital micromirror device [40].

We calculate the real-time dynamics of the SF component
using the time-dependent Gutzwiller approximation. The top
panel of Fig. 1(d-1) represents the time evolution of ρ start-
ing from the initial state of the bottom panel (zJ/U = 0.14),
where we choose R = 21a0. Even though the confining po-
tential is flat, the central SF component does not expand.
We also show the time evolution of ρ at the central site in
Fig. 1(e). After Ut/h̄ = 1000, the central density makes an
oscillation around a certain steady value. This steady value is
almost coincident with the jump � of the condensate density
at the first-order transition point. We confirmed that this lo-
calized structure appears when the central SF is surrounded
by the n = 2 MI through the first-order transition line. When
the simulation starts from the bottom panel of Fig. 1(d-2)
(zJ/U = 0.05), on the other hand, the SF density expands and
reaches to the edge of the flat region; the density makes an
interference pattern due to the reflection from the potential
edge.

The appearance of the localized structure can be inter-
preted as the nature of the phase transition. For the first-order
transition, the condensate density cannot continuously change
down to zero at the SF-MI boundary. Thus, the monotonic
expansion of the central density is prohibited so that the mean
density cannot decrease below the gap �. To understand these

FIG. 2. (a) The GL parameters along the first-order transition
line between the SF and the n = 2 MI as a function of μ/U for
U12/U = 0.9. The solid short dashed and long dashed curves rep-
resent u+/(ad

0U ), w+/(a2d
0 U ), and K , respectively (Here, d = 2).

The densely dotted curve represents r0/U , whose vertical axis is the
right side. (b) One of the fourth-order processes that contribute to the
negativity of u+.

properties more clearly, we employ the effective sixth-order
GL action expanded by the SF-order parameter �α [25,26].
Assuming the symmetric form �1 = �2 = � for simplicity,
we get the cubic-quintic GL equation,

ih̄K
∂�

∂t
=

[
− h̄2

2m
∇2 − r0 + u+|�|2 + w+|�|4

]
�. (4)

Since we confine ourselves to the low-energy dynamics of the
quantum droplet, we take only the first-order time derivative in
the GL action. The effective mass is given by m = h̄2/(2Ja2

0).
Although the GL parameters have the spatial dependence
since μ j depends on the position in a trap, we approximate
them by the values upon the transition line between the n = 2
MI and the SF. The GL parameters (K, r0, u+,w+) along the
first-order transition line is shown in Fig. 2(a). The negative
r0 ensures that the free energy around the MI phase takes a
minimum.

According to the GL theory, the emergence of the first-
order transition requires u+ < 0, which is satisfied in a regime
where the central SF forms the droplet as seen in Fig. 2(a).
The negativity of u+ can be understood by the fourth-order
perturbation processes [41] in which the hopping terms are
regarded as the perturbation. One of the perturbation pro-
cesses is shown in Fig. 2(b). When U ∼ U12, the energy of
|1, 1〉 is nearly equal to that of the intermediate state |2, 0〉 or
|0, 2〉. Then, these processes give rise to an enhanced negative
contribution of the coupling constant in front of |�1|2|�2|2,
which results in the attractive cubic nonlinearity in Eq. (4).
Indeed, the first-order transition emerges only when U ∼ U12

(more precisely when 0.68 < U/U12 < 1) according to the
Gutzwiller analysis [23,24].

The negative u+ also provides clear evidence of the exis-
tence of a self-bound droplet. First, let us see the stationary
solution of Eq. (4) by assuming the isotropy of the solu-
tion �(r) = ψ (r). The solutions can be obtained through the
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FIG. 3. Comparison between the Gutzwiller calculation and the
GL analysis. In (a), the red, blue, and green curves (from top to
bottom) represent the stationary profiles of the condensate density
ρ = 2|ψ |2 by solving Eq. (4) for the GL parameters correspond-
ing to (zJ/U, μ/U ) = (0.14,1.51), (0.12,1.61), and (0.11.1.64),
respectively. The profiles obtained from the dynamical Gutzwiller
simulation are also shown by circles, triangles, and squares for
the same parameters. Panel (b) shows the eigenfrequencies of the
collective excitations with the quantum numbers (n, l ) = (1, 0), ob-
tained by solving the Bogoliubov–de Gennes (BdG) equation for
Nρ (2U/zJ ) ≡ N ′ = 100 (long dashed), 200 (short dashed), 500 (dot-
ted) and 1000 (solid). The circles represent the results by the
Gutzwiller simulations where the frequency is extracted from the
power spectrum of the oscillation in Fig. 1(e) and the attached num-
ber represents N ′.

imaginary time propagation of Eq. (4) with the fixed norm∫
d2r|ψ |2 ≡ Nρ , where r0 reads the chemical potential of the

condensate. For u+ < 0 we can get localized solutions even
in a free space [33–35]. With increasing Nρ , the solution
exhibits a “flattop” shape, which is typical of the droplet
structure [3,4]. When the droplet size is much larger than
the length scale lw ≡ h̄/

√
mw+n2

0 , where n0 is the density at
the flat region of the droplet, the derivative term (1/r)∂r in the
Laplacian can be neglected. Then, the droplet solution with
the radius Rd at which the density becomes a half of that of
the center can be written by [26]

ψ2 = n0

2

[
1 − tanh

(√
2

3

r − Rd

lw

)]
. (5)

Here, n0 is given by the jump �GL = −3u+/(4w+) of the SF
density at the first-order transition point. The numerical solu-
tion of Eq. (4) can be well approximated by Eq. (5), the central
density being slightly exceeded from the above estimation
2n0 [41]. In Fig. 3(a), we plot the typical stationary solutions
of Eq. (4) as well as the profile of the condensate density
obtained from the Gutwiller simulations in Fig. 1, averaged
for 3000 � Ut/h̄ � 5000. Here, the norm of ψ is determined
to reproduce the condensate number Nρ within the droplet of
|�G〉 [41]. The profiles of the Gutzwiller calculations are well
described by the GL results as the parameters approach to

the TCP. This is naturally understood that the GL expansion
is quantitatively validated for a smaller values of a jump of
the SF-order parameter at the transition point. Nevertheless,
the overall qualitative feature of the quantum droplet is well
captured by the GL solutions. For example, the central density
of the Gutzwiller calculation is determined by the density
jump � shown in Fig. 1(b), whose property has been clearly
seen in Fig. 1(e).

The small oscillation seen in Fig. 1(e) is related to the
collective modes of the quantum droplet [42–44] induced
by the temporal change in the potential. We calculate the
frequencies of the collective excitations by the BdG anal-
ysis in which we expand the order parameter as �(r, t ) =
[�(r) + δ�(r, t )]e−ir0t/h̄ with δ�(r, t ) = ∑

n[un(r)eilθ−iωt −
v∗

n (r)e−ilθ+iωt ] and solve the eigenvalue equations. Figure 3(b)
shows the excitation frequencies with (n, l ) = (1, 0), i.e.,
breathing mode, along the first-order transition line as a func-
tion of zJ/U . The frequency is decreased from the tip of the
Mott lobe (zJ/U � 0.155) to the TCP (zJ/U � 0.096), being
insensitive to the norm for Nρ (2U/zJ ) > 200. We also plot
the oscillation frequencies, obtained from the main peak of
the power spectrum, of the central density in the Gutzwiller
simulations [Fig. 1(e)]. The plots are reasonably coincident
with the frequencies of the BdG analysis since excitations
with l = 0 cannot be induced in our potential protocol. We
note that since a number of modes with n � 2 are lying above
the n = 1 mode with small energy gaps especially near the
TCP, multiple modes are excited simultaneously. Although the
GL approximation should become better near the TCP, it is
difficult to make a quantitative comparison of the BdG anal-
ysis since a pure breathing oscillation with a small amplitude
cannot occur there.

To summarize, we have shown that a suitable manipula-
tion of an external trap leads to the formation of a quantum
droplet of the SF phase surrounded by the n = 2 MI in a
two-component BH system. The underlying mechanism of
the droplet formation is the effective attraction between the
intercomponent SF-order parameters, which originates from
the fact that the fourth-order process of the perturbative ex-
pansion is enhanced for U12 ∼ U , even though the on-site
interactions are all repulsive. We showed through the time-
dependent Gutzwiller analysis that the localized structure of
the SF phase can be kept even after the external trap is locally
flattened. The static and dynamical properties of the droplet
can be described qualitatively by the effective GL theory with
the cubic-quintic nonlinearity.
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