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A long-standing problem in quantum-orbit theory has been exactly which solutions of the saddle-point
equations to include in the decomposition of the ionization or harmonic-generation amplitude. Up to now,
solutions corresponding to a negative travel time have always been discarded. For the case of an elliptically
polarized driving laser field, we show that certain solutions with a negative travel time are relevant and have to be
included, in addition to the customary orbits with positive travel times, in order to achieve good agreement with
the result of a numerical evaluation. In fact, these solutions are responsible for a pronounced qualitative effect
in the high-order above-threshold ionization amplitude: a feature with the shape of a coffee bean split along the
direction of the major polarization axis, which dominates the velocity map especially for long wavelength. We
also discuss the electron trajectories in complex space and time that correspond to these orbits.
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Quantum orbits have become a powerful tool for the
analysis of strong-field processes such as high-order har-
monic generation (HHG) and (high-order) above-threshold
ionization [(H)ATI]. Formally, they are derived by a steepest-
descent evaluation of the corresponding emission or ioniza-
tion amplitudes, which yields complex times of ionization,
recombination, or rescattering, respectively, for the responsi-
ble electron and for the trajectories in between these times
[1,2]; for reviews, see [3,4]. Quantum orbits are complex due
to the electron’s emergence in the continuum via tunneling.
Intuitively, the real parts of the orbits depict the electronic
trajectories underlying the process, and they largely agree
with those of the simple-man model [3,5,6]. A stationary-
phase evaluation of an expansion of Feynman’s path integral
in terms of the binding potential leads to the same quantum
orbits [7,8].

Quantum-orbit theory has been instrumental for the anal-
ysis of the plateaus of HHG and HATI by identifying the
responsible orbits and, via their phases, determining their
interference [9]. Normally, very few orbits contribute and
their interference dominates the spectrum (recall the short and
the long orbit of HHG, whose manipulation is crucial for
the design of high-harmonic sources [10,11]), but occasion-
ally the constructive interference of a large number of orbits
may generate strong enhancements of certain spectral regions
[12,13]. For few-cycle pulses, quantum-orbit analysis allows
one to extract the value of the carrier-envelope phase from
the HATI spectrum [14,15]. At the lower end of the plateaus
and for ATI in the region of direct electrons, more and more
orbits are required for a satisfactory description of the data
[16]. Yet, most of the conspicuous features observed for low
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energies, such as the low-energy structures (LES) [17,18] on
the field-polarization axis and various structures off this axis
(V structure, fork, etc.) [19–22], can be traced back to certain
quantum orbits. However, the approximation of the spectra
by quantum-orbit contributions has not been as good as it is
for higher electron energies. Moreover, finding all pertinent
quantum orbits is not an easy task, especially for fields other
than the standard linearly polarized field.

In this Letter, we consider a monochromatic elliptically
polarized field and report on certain quantum orbits that so
far have been largely overlooked or ignored. These are orbits
with their travel times (rescattering minus ionization times)
so short that they are mostly or entirely confined to the in-
side of the tunneling barrier [23]. The imaginary parts of the
travel times may be large and their real parts may even be
negative. The large imaginary parts impede a straightforward
intuitive physical interpretation. The negative travel time is
not as counterintuitive as it may appear as long as the orbit
is restricted to the inside of the tunneling barrier as is the
case. In fact, the electrons are temporarily “captured” inside
the potential barrier as this will follow from the complex-time
quantum-orbit formalism which we will introduce. We will
see that inclusion of these orbits dramatically improves the
quality of the quantum-orbit approximation. Equally impor-
tantly, it yields qualitatively different structures in the velocity
map of the rescattered electrons for elliptically polarized
fields. In the present case, this is a structure in the angle-
resolved momentum distribution of the rescattered electrons
with a shape reminiscent of a coffee bean with the two halves
oriented along the major axis of the polarization ellipse.

These orbits have also been discussed and utilized in
[24,25] for linear polarization where negative travel times
do not occur. The emphasis was on an estimate of the tun-
neling time delay; hence the orbits were not systematically
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embedded into the framework of quantum-orbit theory. The
latter is able to reproduce solutions of the time-dependent
Schrödinger equation with remarkably high precision, at least
for short-range binding potentials, but only if all relevant or-
bits are taken into account. The orbits to be discussed here are
especially important in the difficult region of comparatively
low electron energy where the Coulomb potential is very
important [26,27]. It should be mentioned that quantum orbits
account for the Coulomb potential only via the initial-state
wave function and in the act of rescattering. This limitation
has been in the focus of intense recent research [28–31]; for
a review, see [32]. However, the existence of the solutions,
discussed in this Letter, is not affected; they will only be
modified by the Coulomb potential.

In earlier works for a linearly polarized monochromatic
field, we introduced a classification of the pertinent orbits
as backscattering orbits characterized by the multi-index
(α, β, m) [33] and forward-scattering orbits characterized by
(ν, μ) [34]. For more complex fields, this classification has
to be extended [35]. In the present contribution, we consider
HATI by an elliptically polarized monochromatic field. Here,
we trace the aforementioned coffee-bean structure to an orbit
to be denoted by (1, 1, 0)∗, which is responsible for this ef-
fect, as will be explained below. This structure is particularly
pronounced for longer wavelengths.

We illustrate the effect by the detachment of an electron off
an F− ion by an elliptically polarized field with the intensity
1.3 × 1013 W/cm2 at mid-IR wavelengths up to 5500 nm. For
details of the modeling, see [36].

The differential ionization rate for detection of an electron
with the momentum p and with absorption of n photons
from the laser field is given by [4,35]

∑�
M=−� wpEi�M (n),

where Ei = −Ip is the binding energy and we average
over the magnetic quantum number M because the ground
state of the F− ion has the orbital quantum number
� = 1. Within our improved strong-field approximation the
rate is given by wpEi�M (n) ≈ 2π p|T dir

pEi�M (n) + T res
pEi�M (n)|2,

with the energy-conservation condition nω = Ep − Ei + Up,
where Up = ∫ T

0 dt A2(t )/(2T ) is the ponderomotive energy,
T = 2π/ω the period, and ω the fundamental frequency of
the laser field. We use the dipole approximation and the
length gauge with the electric-field vector E(t ) = −dA(t )/dt .
The rescattering T -matrix element is proportional to (we use
atomic units)

∫ T

0

dt

T
eiSp(t )

∫ ∞

0
dτ

(
2π

iτ

)3/2

〈p|V (r)|kst (t, t0)〉

×〈kst (t, t0) + A(t0)|r · E(t0)|ψEi�M〉eiSkst Ei (t,t0 ). (1)

The integral is over the rescattering time t and the
travel time τ (t0 = t − τ is the ionization time),
kst (t, t0) = − 1

t−t0

∫ t
t0

dt ′A(t ′) is the stationary electron
momentum, SqE (t, t0) ≡ Sq(t0) − Et0 − Sq(t ), dSq(t )/dt =
[q + A(t )]2/2, and |q〉 is a plane-wave ket vector such that
〈r|q〉 = (2π )−3/2 exp(iq · r). Notice that as written down
this integral extends over positive travel times τ . The matrix
elements in (1) are obtained in analytical form, while the
double integral is calculated numerically.

FIG. 1. Logarithm of the differential detachment rate (a)–(c) and
the elliptic-dichroism parameter (d) of an F− ion (Ip = 3.4 eV),
presented in false colors in the photoelectron momentum plane, for
ionization by an elliptically polarized field with ε = 0.3 and intensity
1.3 × 1013 W/cm2. The wavelength is (a) 1800 nm, (b) 3100 nm,
and (c),(d) 5500 nm. The ellipses of the corresponding vector poten-
tials are depicted in each panel. Only the rescattered electrons are
included.

We consider the field

E(t ) = E0(êx sin ωt − êyε cos ωt )/
√

1 + ε2, (2)

which is elliptically polarized in the xy plane. The elec-
tron is emitted at the angle θ with respect to the x axis so
that cos θ = p̂ · êx and tan θ = py/px. In Fig. 1 we present
the photoelectron momentum distribution for HATI of an
F− ion by a field with the ellipticity ε = 0.3 for three dif-
ferent wavelengths, calculated by numerical evaluation of
the double integral (1). We see that the rate satisfies the in-
version symmetry w(p, ε) = w(−p, ε), as it should [38,39].
The high-energy parts of the spectra have the characteristic
shape of a slightly distorted and rotated figure eight and a
multiplateau structure is visible. It is more pronounced for
the longer wavelength of 5500 nm [Fig. 1(c)] where three
plateaus are clearly visible, in accordance with the explanation
in terms of three dominant pairs of orbits [40], (α, β, m) =
{(±1,−1, 0), (±1, 1, 1), (±1,−1, 1)}. However, it is the cen-
tral part of the spectrum that is most interesting. It changes
dramatically with increasing wavelength. For 3100 nm, and
even more for 5500 nm, it forms an enhanced region of ellipti-
cal shape, which is centered about the vector-potential ellipse
−A(t ). For comparison with experimental data or solutions
of the time-dependent Schrödinger equation or Monte Carlo
trajectory simulations, it must be kept in mind that the direct
electrons also contribute to the central part [41].

The symmetry w(p, ε) = w(−p, ε), i.e., w(θ, ε) =
w(θ + π, ε), is valid for the exact ionization rate [38,39].
Symmetry with respect to a change of sign of the ellipticity
is also exact: w(θ,−ε) = w(π − θ, ε) = w(−θ, ε).
The elliptic-dichroism parameter δ(p, ε) ≡ [w(p, ε) −
w(p,−ε)]/[w(p, ε) + w(p,−ε)], which is zero for the
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FIG. 2. Differential detachment rate of F− ions as a function of
the photoelectron energy in units of Up for emission in the direction
of the linearly polarized field having the intensity 1.3 × 1013 W/cm2

and the wavelength 3100 nm. Only the rescattered electrons are
included and the results are obtained by numerical integration (black
dotted line with circles), by the uniform approximation with 20
backscattering orbits (red solid line), and by using the saddle-point
method for particular orbits (α, β, m) and (ν, μ) as indicated.

direct electrons, allows one to assess the contribution of
the rescattered electrons to a given final-state momentum
p. From Fig. 1(d) we see that δ(p, ε) obeys the twofold
symmetry (θ ↔ θ + π ), and changes its sign for θ → −θ

and θ → π − θ , which is in accordance with the relation
δ(p,−ε) = −δ(p, ε). The parameter δ(p, ε) is especially
large for momenta where only rescattered electrons
contribute. For smaller momenta, around and inside the
vector-potential ellipse −A(t ), it is smaller and depends
less rapidly on the momentum due to the smoothness of the
coffee-bean structure.

The integral (1) can also be calculated using the saddle-
point method, which leads to the stationarity conditions that
the derivatives of the exponential with respect to the times t0
and t of the action Sp(t ) + SkstEi (t, t0) be equal to zero. These
conditions correspond to energy conservation at the times t0
and t :

1
2 [kst + A(t0)]2 = Ei,

1
2 [kst + A(t )]2 = 1

2 [p + A(t )]2.

(3)

The solutions of this system, which depend on the final
momentum p, are the complex times t0s and ts, where, ac-
cording to the aforementioned classification, the index s is
s ∈ (α, β, m) ∪ (ν, μ) [33,34]. In the saddle-point approxi-
mation, we have T res

pEi�M (n) ≈ ∑
s AseiSs , where As and Ss are,

respectively, the subintegral factor and the action in (1), cal-
culated at the saddle point s. Which solutions to include into
the sum over s and which ones to discard is a central issue of
this Letter.

To illustrate the application of the quantum-orbit formal-
ism, in Fig. 2 we present the differential ionization rate for
a linearly polarized field and for electron emission in the
polarization direction. We see that the result obtained us-
ing the uniform approximation with 20 backscattering orbits

(α, β, m) (red solid line) is in excellent agreement with the
numerically calculated rate (black dotted line with circles)
for the plateau and the cutoff region of the spectrum. The
cutoff is at 10Up and its position corresponds to the inter-
section of the contributions of the (α, β, m) = (±1,−1, 0)
orbits [42]. In the energy region below 3Up, the 20 (α, β, m)
solutions in the uniform approximation fail to reproduce
the numerically calculated spectrum. In this region, the
forward-scattered solution (ν, μ) = (1, 0) and the solutions
(α, β, m) = (±1, 1, 0) are dominant.

For a linearly polarized field, it can easily be checked that
if (t0s, ts) is a solution of (3), then (T − t∗

0s, T − t∗
s ) is another

solution with the same imaginary parts of the ionization and
rescattering times. In past work, this solution was ignored
since the corresponding travel time Re [T − t∗

s − (T − t∗
0s)] =

Re (t∗
0s − t∗

s ) is negative. As mentioned above, for elliptical
polarization the responsible symmetry is violated; hence, if
(t0s, ts) is a solution then, in general, (T − t∗

0s, T − t∗
s ) is not.

However, we expect that a different solution exists, which, for
small ellipticity, is close to the former. We denote this solution
by an asterisk: (α, β, m)∗. Now, the rates corresponding to
these solutions are different, so that the ellipticity introduces
a bifurcation of the rate. We conjecture that the contributions
of both the solutions (α, β, m) and (α, β, m)∗ should be taken
into account.

A rigorous justification will be extremely difficult. The
corresponding problem is complicated even in the direct-
ionization case where there is only one integral over the
ionization time, the contour of which has to be rerouted into
the complex plane so as to reach (or bypass) the saddle
points [43]. In two dimensions, where the integral over the
times t0 and t has to be deformed from the original real half
plane (−∞ < t0 < t and −∞ < t < ∞ or t ∈ [0, T ] for a
T -periodic field) into four-dimensional complex space, this
appears to be prohibitively complicated. There is no reason
that would forbid that a saddle point with a travel time having
a slightly negative real part and large imaginary part be in-
cluded as a relevant complex saddle point. In contrast, for real
saddle points the extension of the corresponding stationary-
phase approximation from one to two dimensions is rather
straightforward; see, e.g., Ref. [44].

Let us then support our statement that the bifurcation of
the solution (1,1,0) is responsible for the coffee-bean structure
in the photoelectron momentum distribution. Figure 3 shows
how the contributions of the solutions (1,1,0) and (1,1,0)∗
change and diverge from one another with increasing ellip-
ticity. For ε = 0 they are equal, while already for ε = 0.1 the
contribution of the solution (1,1,0)∗ has become much larger
than the one of (1,1,0) by about two orders of magnitude.
With the ellipticity further increasing this difference becomes
larger still and for ε = 0.3 the (1,1,0) contribution has become
negligible, while the contribution of the orbit (1,1,0)∗ is dom-
inant and its maximum has shifted to higher energies. Having
in mind that the contributions of the other orbits decrease
with increasing ellipticity, we conclude that if the ellipticity is
larger than some critical value (which is rather low) the contri-
bution of the orbit (1,1,0)∗ is dominant. In Fig. 3(d) we show
the corresponding saddle-point times t0 and t . In all cases,
Im t0 > 0 so that all these solutions contribute. Moreover, the
imaginary parts of the times t0 and t for the solution (1,1,0)
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FIG. 3. (a),(b) Logarithm of the differential ionization rate, pre-
sented in false colors in the photoelectron momentum plane, for the
parameters of Fig. 1 and the wavelength 3100 nm. Only one saddle-
point solution [(a) (α, β, m) = (1, 1, 0); (b) (α, β, m) = (1, 1, 0)∗]
is taken into account. (c) The differential ionization rate for electron
emission in the direction θ = 30◦ as a function of the photoelectron
energy, for four different values of the ellipticity and the other param-
eters being the same as in (a),(b). The contributions of the solutions
(1,1,0) and (1,1,0)∗ are presented separately. (d) Saddle-point solu-
tions for the ionization and rescattering times t0 and t presented in
the complex-time plane, for the parameters of (c). The energy Ep

changes from 0 to 5Up along each curve in the direction of larger
imaginary parts.

increase with increasing ellipticity so that the corresponding
ionization rate decreases. The situation is opposite for the
solution (1,1,0)∗: the imaginary parts decrease with increasing
ellipticity. This explains the dominance of the contribution
of the solution (1,1,0)∗ with increasing ellipticity, as can be
seen in the middle panel. Figures 3(a) and 3(b) exhibit the
momentum distributions for both solutions. It is clear that the
solution (1,1,0)∗ is responsible for the coffee-bean structure.

Quantum-orbit theory allows for a physical interpretation
in terms of complex trajectories that are solutions of the
classical Newton equation r̈(t ) = −E(t ) for an electron in
the presence of only the laser field. The quantum process
of strong-field ionization starts by tunneling at the com-
plex ionization time t0s and the complex electron trajectory
departs from the origin, r(t0s) = 0, with the velocity kst +
A(t0s). At the complex rescattering time ts, the electron re-
turns to and rescatters off the core at the origin, r(ts) = 0,
whereafter it has the velocity p + A(ts). Quantum orbits are
usually defined as complex trajectories as functions of the
real time tR [15]: rs,−(tR) ≡ (tR − t0s)kst + ∫ tR

t0s
A(t ′)dt ′ before

rescattering (Re t0s � tR � Re ts) and rs,+(tR) ≡ (tR − ts)p +∫ tR
ts

A(t ′)dt ′ thereafter (tR � Re ts). The corresponding elec-
tron trajectories are defined as the real parts of rs(tR). The
solutions of the saddle-point equations for the rescattering
time ts usually are approximately real so that, according to
the condition rs(ts) = 0, the real part of the quantum orbit
at the time tR = Re ts is approximately equal to zero, i.e., the
electron rescatters almost exactly at the origin, rs,−(Re ts) ≈
rs,+(Re ts) ≈ 0. However, for the orbit (1,1,0)∗, due to the
large imaginary part of the rescattering time ts, there is a
large discontinuity (jump) in the curve Re rs(tR) at tR =
Re ts, i.e., Re rs,−(Re ts) �= Re rs,+(Re ts). So, the classical
three-step-model interpretation of the quantum orbits fails.
Mathematically, however, the orbit (1,1,0)∗ is a valid solution
of the saddle-point equations. By our conjecture, it must be
included and, indeed, it turns out to be necessary to reproduce
the exact numerical solution for the HATI spectrum.

To have continuous orbits, complex-time quantum orbits
can be introduced, where time proceeds along a path in the
complex plane, as has been done in Sec. IV C in [16] and in
[30]. We calculate Re rs(tC ) for the complex time tC , which
follows the curves

C1 = {Re tC = Re t0s, Im tC from Im t0s to Im ts},
C2 = {Re tC from Re t0s to Re ts, Im tC = Im ts},
C3 = {Re tC = Re ts, Im tC from Im ts to 0},
C4 = {Re tC > Re ts, Im tC = 0}. (4)

The trajectories along the curves C1 and C2 are Re rs,−(tC ),
while along the curves C3 and C4 they are Re rs,+(tC ). The
curves are chosen such that the electron trajectory along the
union of all curves be continuous and that the aforementioned
jump be absent. This is achieved by choosing the curves
C2 and C3 such that the electron is at the origin at the end
of the curve C2 and at the beginning of the curve C3, i.e.,
rC2

s,−(ts) = rC3
s,+(ts) = 0. The electron’s path in the complex

time plane after departing from the origin at the time t0s

is depicted in Fig. 4(a) and the corresponding trajectory in
Fig. 4(b). Along each segment Ci, either the real or the imagi-
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FIG. 4. (a) Complex-time curves defined by (4) for the orbit
(1, 1, 0)∗. (b) Real part of the orbits for the complex time which
follows the curve shown in (a). The field has the ellipticity ε = 0.3,
wavelength 3100 nm, and the intensity 1.3 × 1013 W/cm2. The elec-
tron with the energy Ep = 0.7Up is emitted in the direction θ = 30◦.
Its energy in units of Ip is also denoted.

nary part of the time is constant, as prescribed by (4). Clearly,
along the segment C2 “time proceeds backwards,” while the
electron returns to the origin on its way to the act of rescat-
tering. Instead of talking about rescattering, we can say that
the “liberated” electron is virtually captured and “bouncing”
inside the atomic potential barrier until it is finally “born”
at the time (Re ts, 0). Finally, for real times Re tC > Re ts,
the freed electron moves to the detector along the trajectory
that corresponds to the curve C4. The electron velocity be-
fore rescattering is drs,−(tC )/dtC = kst + A(tC ), while after
the rescattering it is drs,+(tC )/dtC = p + A(tC ). The corre-
sponding electron energies are Re [drs,±(tC )/dtC]2/2. The
interpretation is the following. The electron starts at the
origin with the energy −Ip and moves along the curve C1

(dotted line). Its energy changes from −Ip to some small
positive value and then decreases up to −0.5Ip. Then the
electron continues along the curve C2 (solid red line) along
which its energy changes from −0.5Ip to −0.75Ip. It returns

and rescatters off the core at the origin (this corresponds
to the under-the-tunneling-barrier recollision [24]). But the
imaginary part of the time is still large (contrary to usual
rescattering) and we have another virtual motion (dashed
green curve C3). At the start of the curve C4 the energy is
positive, Im tC = 0, and the electron is free.

Concluding, for a laser field with elliptical polarization, we
found as legitimate solutions of the saddle-point equations ad-
ditional quantum orbits with negative travel times and large
imaginary parts, which are necessary for a good approxima-
tion of the corresponding integral over the ionization and the
travel time. These orbits generate a peculiar structure in the
velocity map of the rescattered electrons, which is reminiscent
of a coffee bean. Since the rescattering matrix element in (1)
contains the short-range potential, we expect that the coffee-
bean structure (its width and shape) reflects the characteristics
of this local potential [45]. We are planning to explore this
in our future work. We expect that such structures are even
more noticeable in the momentum distribution of the elliptic
dichroism parameter [see Fig. 1(d); this parameter is zero for
the direct electrons]. If successful, this method can be ex-
tended to more complex systems to study, for example, shape
resonances in rescattering from molecular targets [49]. It is
likely that corresponding orbits also exist for other nonstan-
dard driving fields, such as bicircular fields or orthogonally
polarized two-color fields, and may also generate characteris-
tic structures in the velocity map. Our work also shows that
whenever the imaginary parts of the saddle-point times that
characterize a strong-field process are large, a formalism with
complex quantum orbits should be used. In this case the inter-
pretation of the results is not as simple as when the imaginary
part of the rescattering time is small, where the process can
be well described using classical physics. This may be related
to the quantum dynamics with complex classical trajectories,
a recently introduced method, which also has been applied to
strong-field physics [50].
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Higher Education and Youth, Canton Sarajevo, Bosnia and
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tion.
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