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Realizing universal topological quantum computers requires the manipulation of non-Abelian topological
orders in a physical system, which presents great challenges. Conversely, the rapid development in circuit-based
quantum computing offers a reliable quantum simulation approach to study these topological orders. The
preliminary problem is how to identify distinct topological orders. Here, we develop a framework based on
the quantum scattering circuit to directly and efficiently measure the modular transformation matrix, which is
widely deemed as the fingerprint of a given topological order. The information of the modular transformation
matrix is encoded in the probe qubit, and the readout merely requires single-qubit Pauli measurements. We
further implement the scheme in a nuclear magnetic resonance quantum simulator to emulate the string-net
model, where an Abelian Z2 toric code and a non-Abelian Fibonacci order emerge. In particular, the latter
is predicted to be the simplest candidate for universal topological quantum computers. The two topological
orders are unambiguously distinguished by the experimentally measured modular transformation matrices. As
an experimental demonstration of a non-Abelian topological order with efficient readout, our work may open
avenues toward investigating topological orders in circuit-based quantum simulators.
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Introduction. Beyond the Landau-Ginzburg symmetry-
breaking paradigm, topological orders (TOs) describe differ-
ent phases of matter with the same symmetry [1–7]. Such a
TO system is immune to local perturbations and is thus a can-
didate for topological quantum computation (TQC) [8–11].
There are abundant phenomena in TOs, including degener-
ate ground states and quasiparticle excitations. Degenerate
ground states can be used for quantum memories [12,13], and
quasiparticle excitations can be used for quantum computation
[8,9,14]. A non-Abelian TO provides an extraordinary route to
build a fault-tolerant quantum computer; however, its physical
realization remains a great challenge. One of the most promis-
ing candidates, Majorana fermions, has been overshadowed
due to recent academic debates about its experimental evi-
dence [15,16]. So, at this stage where moderate-scale quantum
simulators are available, it is worth studying topological fea-
tures of TO models using circuit-based quantum simulation.
To achieve such goals, the prerequisite is to efficiently dis-
tinguish diverse TOs in experiment, which is the aim of this
work.
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The primary feature of a TO is the topology-protected
ground-state degeneracy (GSD) [3,17,18]. Excited states and
the corresponding quasiparticles (anyons) can be obtained by
applying string operators on these degenerate ground states.
Furthermore, the dynamics of anyons, including self-braiding
and double-braiding, can be realized by applying string oper-
ators on the excited states [19]. The self-braiding dynamics,
represented by self-statistical phase factors, is recorded by the
T matrix. Meanwhile, the double-braiding dynamics, repre-
sented by mutual-statistical phase factors, is recorded by the
S matrix [20,21]. The T and S matrices are called modular
transformation matrices (MTMs). Since T and S matrices for
each TO are unique, MTMs are widely deemed as the finger-
prints of TOs, and hence, their measurements are important
for TO characterization. In general, MTMs can be measured
in a discrete model from ground-state wave-function over-
lap after appropriate transformations on the lattice, which
is widely applied in numerical simulations to identify topo-
logical orders [22–26]. Moreover, these quantities can be
related to complex experimental observables which can be
extracted by quantum state tomography (QST). A problem
arises: How do we measure the MTMs of a given TO in an
efficient way? Here, efficiency means that the experimental
cost for measurement should be polynomial with the growth
of qubits, thus excluding the QST method. As simulating TOs
inevitably handles degenerate ground states, QST is indeed a
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straightforward way for extracting the information, but it is
not efficient [27].

In this work, we design a quantum scattering circuit to
perform efficient measurement of MTMs, where matrix el-
ements are directly extracted. The model to be emulated is
chosen as the string-net model on the minimal honeycomb
lattice proposed by Levin and Wen [28], and the experimental
platform is the nuclear magnetic resonance (NMR) quantum
simulator. This model has two distinct TOs with the same
GSD: The Abelian Z2 toric code and the non-Abelian doubled
Fibonacci order [17,18,28,29]. Owing to the applications in
TQC, simulating TOs is a long-term goal in various physical
systems [19,27,30–38], while significant progress has been
made this year in a 25-qubit superconducting system to simu-
late the toric code [39]. Apart from these previous experiments
that focus on Abelian anyonic statistics [19,27,30–35], we
experimentally study both the Abelian and non-Abelian TOs,
and we identify them by measuring the combined MTM ST −1

[23]. As the fingerprint of a particular TO in the string-net
model, ST −1 is directly measured via the ancilla-assisted
scattering quantum circuit—an efficient method compared to
QST [40,41]. The measured matrices for the Abelian and
non-Abelian TOs are fundamentally different, while both of
them have over 97% fidelity. So, the Abelian and non-Abelian
TOs have been experimentally identified in a reliable and
efficient way.

String-net model. A string-net model is defined on the
honeycomb lattice, specified by its string types, fusion rules,
and Hamiltonian [28,42]. The general form of the Hamilto-
nian is H = −∑

v Av − ∑
p Bp, where Av is the star operator

for each vertex v, and Bp is the plaquette operator for each
plaquette p, as shown in Fig. 1(a). All the operators Av

and Bp commute with each other, rendering this model ex-
actly solvable [9]. The minimal structure of this string-net
model can be obtained by shrinking the honeycomb lattice
onto a torus, with merely three strings, two vertices, and
one plaquette [see Fig. 1(b)]. The three strings determine
the Hamiltonian to be eight-dimensional, while it has three
distinct forms because of the three possible sets of fusion
rules [43]. Accordingly, there are three distinct TOs in this
model.

The three TOs are the Z2 toric code, the doubled semion
order, and the doubled Fibonacci order, respectively. The for-
mer two are Abelian, and the last one is non-Abelian, which is
a potential candidate for universal TQC. These TOs cannot be
simply distinguished by their GSD, as it is always fourfold.
Nevertheless, the T and S matrices for each TO are unique,
offering a potential approach to realize their identifications.
Here, as the primary difference between the two Abelian
orders is just the anyon type (fermionic with statistics −1 or
semionic with statistics i), we only consider the Z2 toric code
in the remainder of this work.

The T and S matrices are described by the self- and mutual-
statistical theorems, respectively. In the Z2 toric code, there
are four species of anyons: 1, e, m, and ε. The first three
are bosons, while the ε quasiparticle is a fermion [44,45].
Therefore, when circling the four anyons around themselves,
the self-statistical phase factors would constitute the T matrix:
T = Diag{1, 1, 1,−1}. When moving an anyon around the
others, novel phase factors like −1 will be obtained. These
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FIG. 1. (a) String-net model on a honeycomb lattice. Av and Bp

are the vertex (yellow) and plaquette (blue) operators, respectively.
The unit cell of the minimal string-net model with periodic boundary
conditions is shown by the green region, which consists of three
strings labeled by 1, 2, and 3. This unit cell is equivalent to the torus
structure in panel (b). The combined MTM ST −1 can be realized
by rotating the unit cell counterclockwise by π/3 to the red region.
It is obvious that the rotation cyclically permutes the three strings
by 1 → 2 → 3 → 1. (b) Minimal structure of the string-net model
on a torus. (c) T and S matrices for the toric code and the doubled
Fibonacci order. ϕ = (1 + √

5)/2 is the golden ratio.

mutual-statistical phase factors produce the S matrix, with the
form in Fig. 1(c).

For the doubled Fibonacci order, the self-statistics is more
nontrivial. There are also four types of anyons: 1, τ , τ , and
ττ . For τ and τ , the self-statistics is exotic because nontrivial
phase factors, ei(4π/5) or e−i(4π/5), will be observed. The T
matrix is thus T = Diag{1, ei(4π/5), e−i(4π/5), 1}. The anyon τ

is called the Fibonacci anyon because the dimension of the
Hilbert space of n τ ’s grows as the Fibonacci sequence with
n. The S matrix generated from mutual statistics is shown
in Fig. 1(c), where ϕ = (1 + √

5)/2 is the golden ratio. To
realize universal TQC, the Hilbert space of two Fibonacci
anyons is two-dimensional and, hence, can be encoded as a
logical qubit. Moreover, the non-Abelian braiding dynamics
in this model is capable of generating universal quantum
gates [43].

Identification protocol. As illustrated above, the sole way
to identify TOs of the string-net model is by measuring their
corresponding MTMs. It requires one to apply the modu-
lar transformation on the fourfold degenerate ground states
and change the ground-state basis. However, for the case of
honeycomb lattice on the torus, S and T matrices cannot be
measured simultaneously. Cincio and Vidal show that a π/3
rotation of the lattice about the axis perpendicular to the lattice
surface leads to a combined modular transformation ST −1,
which can be used to identify TOs as well [23]. The π/3
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FIG. 2. (a) Quantum scattering circuit for identifying TOs. The
combined MTM ST −1 can be obtained by measuring 〈σz〉 and 〈σy〉
of the probe qubit. The initial state is |0000〉, and the function of
each operator is described in the main text. The operator U = WjMT

marked by blue is the target that needs to be scattered. (b) Molecule
structure of the 13C-iodotrifluoroethylene, where one 13C (gray, Q1)
and three 19F’s (green, Q2 to Q4) form a four-qubit system. The table
lists the parameters of chemical shifts (diagonal, Hz), J-coupling
strengths (off diagonal, Hz), and T2 relaxation times.

rotation for this honeycomb structure is equivalent to a cyclic
permutation among the three strings (1 → 2 → 3 → 1), as
shown in Fig. 1(a). This permutation can be realized by an
operator MT consisting of two SWAP gates for 1 ↔ 2 and
2 ↔ 3, making it executable by quantum circuits.

The quantum circuit for measuring the ST −1 matrix is
shown in Fig. 2(a). It contains one probe qubit Q1 for detection
and three system qubits (Q2 to Q4) to emulate the string-net
model. Let us start from the system qubits, which are initial-
ized to |000〉. For a given TO model, the first step is to prepare
its four degenerate ground states. This degeneracy prohibits
the usage of traditional adiabatic passages, but one can employ
the random preparation of the linearly independent ground
states approach [35], labeled by UASP. From |000〉, the system
is prepared into a particular ground state by UASP, and a
subsequent string operator Wi (1 � i � 4) is applied to evolve
this ground state to all four degenerate ground states |φi〉 in
the original basis. The ST −1 modular transformation, marked
by MT in Fig. 2(a), changes the ground-state basis by |ψi〉 =
MT |φi〉. Here, MT is a concatenation of two SWAP gates. The
final block Wj (1 � j � 4) is similar to Wi, which traverses
|ψi〉 to all four ground states |ψ j〉 in the new basis.

The ST −1 matrix is reconstructed by inner products of the
ground states before and after the basis change. Explicitly,
each element in the ST −1 matrix is a complex number, calcu-
lated by ST −1

i j = 〈φi|ψ j〉, where 1 � i, j � 4. By combining
MT and Wj as U = WjMT , we can rewrite the matrix element
as

ST −1
i j = 〈φi|ψ j〉 = 〈φi|U |φi〉 = Tr(U |φi〉〈φi|). (1)

Here, |φi〉 and |ψ j〉 are the fourfold degenerate ground states
in the original and new bases, respectively.

The measurement of Tr(Uρ), where ρ = |φi〉〈φi|, can
be efficiently realized using the quantum scattering circuit
[41]. The scattering circuit, as an analog to the classical
scattering experiment, plays an important role in many al-
gorithms [40,41,46–51]. It can be adapted as a tomographer
by extracting information on the operator U with a known
state ρ, or as a spectrometer by learning the state ρ with
some specific U ’s. As shown in Fig. 2(a), we first initialize
the probe qubit Q1 to |0〉 and apply a Hadamard gate to create
its equal-superposition state. The two controlled operations do
nothing if the probe is in |0〉, but apply the labeled unitary op-
erator if the probe is in |1〉. After applying another Hadamard
gate on the probe, its two Pauli observables have remarkable
properties:

〈σz〉 = Re[Tr(Uρ)], 〈σy〉 = − Im[Tr(Uρ)]. (2)

So we can measure ST −1 via Eqs. (1) and (2) without QST
and acquire the fingerprints of the TO efficiently.

Experiment. We perform the quantum simulation of the
Abelian Z2 toric code and the non-Abelian doubled Fibonacci
order using a four-qubit NMR quantum simulator. The exper-
iments are carried out on a Bruker 600 MHz spectrometer.
The processor is the ensemble of 13C-iodotrifluoroethylene
dissolved in d-chloroform [52–54] [see Fig. 2(b)]. The three
19F spins are the system qubits (Q2 to Q4), and the 13C spin is
the probe in the scattering circuit. The corresponding Hamil-
tonian of this system is

HNMR = −
4∑

i=1

ωi

2
σ z

i +
4∑

i< j,=1

πJi, j

2
σ z

i σ z
j , (3)

where ωi/2π is the Larmor frequency of the ith spin, and
Ji j is the scalar coupling between the ith and jth spins. The
parameters are listed in Fig. 2(b).

The processor is firstly initialized to |0000〉 by the spatial
average pseudopure state-preparation technique with experi-
mental fidelity over 0.99 [43]. The subsequent UASP on the
system qubits represents a random quantum adiabatic passage,
which in principle contains massive single-qubit and two-
qubit gates. In experiment, as |φ1〉 = (|000〉 + |011〉)/

√
2 is

a joint ground state for both the toric code and the doubled Fi-
bonacci order, we adopt the regular state-preparation approach
in simulating anyonic statistics [43], that is, by implementing
a Hadamard gate on Q3 and a CNOT34 gate (Q3 as the control
and Q4 as the target) to prepare it. Meanwhile, the probe qubit
Q1 is prepared to (|0〉 + |1〉)/

√
2 by a 1-ms shaped pulse

of π/2 rotation about the y axis, which is embedded in the
state-preparation pulse during optimization [55,56].

The form of the loop operator Wi, j depends on the
corresponding TO. For the Z2 toric code, the operator is
simply comprised of single-qubit rotations. For the doubled
Fibonacci order, the form is highly complex; see the Sup-
plemental Material [43]. In experiment, we utilize optimized
pulses of the same length, 20 ms, to realize these loop op-
erators, so that the decoherence errors for the two cases
are comparable. The combined modular transformation MT ,
which is actually a concatenation of two controlled-SWAP

gates, has an extremely long sequence. So we optimize the
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FIG. 3. NMR spectra of the probe qubit Q1 for identifying (a) the
toric code and (b) the doubled Fibonacci order. The experimental
spectra are shown in blue, while the simulated ones are shown in
insets. Here, for each model, a diagonal element ST −1

11 and an off-
diagonal element ST −1

14 are shown. The real and imaginary parts
correspond to the measurement of 〈σz〉 and 〈σy〉, respectively.

sequence via a compiler program and achieve a packed pulse
of 25 ms [43]. The last step is to apply another 1-ms Hadamard
gate on the probe qubit. The total length of the quantum
circuit is 90 ms, which is less than 4% of the T2 relaxation
time.

As shown in Eq. (1), each element in the ST −1 matrix
corresponds to the expectation values 〈σz〉 for the real part
and 〈σy〉 for the imaginary part, of the probe qubit. In exper-
iment, 〈σy〉 can be directly measured from the NMR spectra,
while 〈σz〉 needs to be rotated to the transverse plane by a
π/2 selective pulse before measurement. A least-square fitting
program is used to extract the values from the spectra. Since
the measurement is only performed on the probe qubit with
simple operations, the errors in this readout stage is nearly
ignorable. In Fig. 3, we plot the experimental NMR spectra
for measuring the diagonal element ST −1

11 and the off-diagonal
element ST −1

14 . The simulated spectra (insets) are also pre-
sented for comparison. It is clear that the simulations are in
excellent accordance with the experimental results, indicating
the accuracy of this scheme in TO identifications.

By repeatedly implementing the quantum scattering circuit
in Fig. 2(a) with all loop operators Wi, j , we obtain the entire
MTM ST −1. The experimental results for the Z2 toric code
and the doubled Fibonacci order are shown in Fig. 4. The
results indicate that the matrices for these two TOs are widely
dissimilar, manifesting that the two TOs are highly distinct. To
quantitatively evaluate their overlap, we compute the p-norm

(a)

(b)

Toric (real) Toric (imag)

Fibonacci (real) Fibonacci (imag)

FIG. 4. Experimental ST −1 matrices for (a) the toric code and
(b) the doubled Fibonacci order. The colored bars are the experimen-
tal results, and the outlines are the theoretical predictions.

deviation matrix by

Cp = max{||(M1 − M2)�x||p : �x ∈ R4, ||�x|| = 1}, (4)

where M1 and M2 are the matrices to be distinguished,
and a special case of p = 2 corresponds to the Euclidean
distance. In experiment, the normalized Euclidean distance
between the ST −1 matrices of the two TOs is 0.981, which
is very close to their theoretical distance 0.979. In addition,
we also calculate the average fidelity between the MTMs of
the two TOs by F̄ (�,U ) = ∫ 〈ψ |U†�(|ψ〉〈ψ |)U |ψ〉dμ(ψ ),
where dμ(ψ ) is an average over random unitaries according
to the Harr measure [57], and � and U are experimental
MTMs to be distinguished. The experimental average fidelity
is 0.355 (theoretical value 0.387). Both results demonstrate
that the Abelian and non-Abelian TOs have been unambigu-
ously distinguished by their MTM ST −1.

To quantify the noise levels, we calculate the average
fidelity between the theoretical and experimental ST −1 ma-
trices for each TO. The fidelity is 97.40% ± 0.78% for the
toric code and 98.11% ± 0.47% for the doubled Fibonacci
order. The error is around 2%, which mainly originates from
the decoherence and imprecision of the real pulses. Assuming
that the environment is Markovian and the dephasing noise
is independent for different qubits, we numerically simulate
the error propagation by solving the master equation. The
simulation is in a sequence of two steps: Evolving the system
by e−iH�t and subsequently dephasing for �t , where H is
the total Hamiltonian including the internal Hamiltonian in
Eq. (3) and the control Hamiltonian of the shaped pulse,
and �t is chosen to match the pulse discretization [43]. The
average experimental error in terms of the average fidelity is
2.10% (toric code) and 1.68% (doubled Fibonacci order). The
simulated noise levels matches well with the experimental
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results. The remaining minor discrepancies after accounting
for these simulated errors should be attributed to the fitting
errors when processing the data of spectra.

Discussion. As a very promising scheme of quantum com-
puting, TQC requires the engineering of Hamiltonians with
many-body interactions. However, the notorious difficulties
in engineering such Hamiltonians compel most of the pre-
liminary experiments to utilize a state-preparation approach
[19,30–33]. Exotic properties of anyons, such as the fractional
statistics or path independence, have been demonstrated in
diverse quantum systems. These experiments account for the
Abelian toric code only. However, universal TQC requires
the manipulation of non-Abelian TOs, where the simplest
candidate is the doubled Fibonacci order in the string-net
model. Before this work, there is no general framework to
efficiently identify TOs. We introduce a quantum scatter-
ing circuit to resolve this issue, in which only single-Pauli
measurements on a probe qubit are needed. As each matrix
element can be directly measured, this approach provides
an efficient route to reconstruct the MTMs and thus enables
a polynomial scaling with the GSD. To show its general-
ity, we perform 17-qubit numerical simulations to emulate
the toric code model in square lattices, where S and T
matrices are independently measured using the scattering

circuit [43]. Our experimental demonstration is carried out
on a mature platform for quantum simulation tasks. Both
the Abelian and non-Abelian TOs have been emulated and
distinguished in a highly precise way. We anticipate our ap-
proach and corresponding experiments to trigger a wave of
experimental studies in non-Abelian TOs under state-of-the-
art techniques.
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