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Taking the temperature of a pure quantum state
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Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics
research. The observation of thermalization in completely isolated quantum systems, such as cold-atom quantum
simulators, implies that a temperature can be assigned even to individual, pure quantum states. Here, we propose
a scheme to measure the temperature of such pure states through quantum interference. Our proposal involves
interferometry of an auxiliary qubit probe, which is prepared in a superposition state and subsequently decoheres
due to weak coupling with a closed, thermalized many-body system. Using only a few basic assumptions about
chaotic quantum systems, namely, the eigenstate thermalization hypothesis and the emergence of hydrodynamics
at long times, we show that the qubit undergoes pure exponential decoherence at a rate that depends on the
temperature of its surroundings. We verify our predictions by numerical experiments on a quantum spin chain
that thermalizes after absorbing energy from a periodic drive. Our Letter provides a general method to measure
the temperature of isolated, strongly interacting systems under minimal assumptions.
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I. INTRODUCTION

Advances in our understanding of thermodynamic con-
cepts have always been inspired by the technologies of the
time, from steam engines in the 19th century to ultracold-atom
simulators in the 21st. Irrespective of the historical era, the
importance of measuring temperature cannot be overstated. In
1798, the American military man and scientist, Count Rum-
ford, noticed that he could generate heat from friction while
boring cannons in the arsenal of the Bavarian army he was
tasked with reorganizing. Rumford reported the systematic
temperature increase of the water in which the cannon barrels
were immersed [1], challenging the prevailing caloric theory
of heat and inspiring Joule to perform the decisive experi-
ments that established energy conservation as the first law
of a new thermodynamic theory. In his famous paddle-bucket
experiment, Joule measured the mechanical equivalent of heat
by observing the temperature change induced by stirring fluid
in a thermally isolated container [2]. Here, we show that
recasting Joule’s experiment as a fully quantum-mechanical
process leads to a general scheme to measure the tempera-
ture of an isolated quantum many-body system. Our proposal
relies on entangling the system with an auxiliary qubit that
undergoes decoherence with a temperature-dependent rate.
This thermometer scale is defined entirely through quantum
interference and allows the measurement of temperature for
generic systems in pure quantum states.

*mark.mitchison@tcd.ie
†gooldj@tcd.ie

In the last two decades, experimental progress in cold-atom
physics has enabled coherent quantum dynamics to persist
over extraordinary timescales: long enough to observe iso-
lated many-body systems thermalize without coupling to any
external bath [3–7]. The emergence of thermodynamics in this
context is elegantly explained by the eigenstate thermalization
hypothesis (ETH) [8–10]. The ETH posits that, in a suffi-
ciently complex and chaotic system, each energy eigenstate
encodes the properties of the equilibrium ensemble. As a
result, local observables in a far-from-equilibrium scenario
eventually thermalize under unitary evolution [11]. The fi-
nal temperature is set by the energy density of the initial
condition, which may be effectively a pure quantum state.
Thermal fluctuations thus arise locally because of quantum
entanglement between different parts of the system [12,13]
rather than by any classical statistical mixing. This begs the
question: can the temperature of a pure state also be measured
in a completely quantum-mechanical way?

Our pure-state thermometry scheme, depicted in Fig. 1,
draws inspiration from Joule’s pioneering experiment, for
which thermal isolation was vital. We consider the extreme
case of an isolated quantum system such as an ultracold
atomic gas. Work is performed by changing some external
constraint, thus driving the system out of equilibrium in anal-
ogy to Joule’s paddles. The driving force is then removed
and the system relaxes under unitary evolution. Local ob-
servables thermalize to a temperature governed by the work
performed, i.e., the mechanical equivalent of heat. Joule’s
apparatus included an in situ thermometer to measure the
temperature change of the insulated fluid. In our setup, this
role is played by an auxiliary qubit that becomes entangled
with the many-body system. Assuming only the ETH and the
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FIG. 1. Illustration of an experiment where work is performed
on a thermally isolated system—such as (a) a bucket of water or
(b) an ultracold atomic gas—thus driving it into a nonequilibrium
state. After the external force is removed, collisions between particles
lead to irreversible thermalization at a temperature determined by the
energy density of the initial state, even though in panel (b) the global
evolution is unitary and the system is described by a pure quantum
state. The final temperature can be inferred by entangling the system
to a qubit probe and measuring the resulting decoherence rate.

equations of diffusive hydrodynamics, we show that the qubit
undergoes pure exponential decoherence at a temperature-
dependent rate that can be interferometrically measured
[14–16], providing a uniquely quantum thermometer for pure
states.

Our Letter contributes to a growing body of litera-
ture seeking to establish the fundamental quantum limits
of thermometry [17]. The traditional approach—used in
Joule’s measurements, for example—is to let the thermometer
exchange energy with its surroundings and wait for equilibra-
tion. Unfortunately, this becomes challenging to implement
at low temperature, where a precise thermometer needs small
energy scales and correspondingly long thermalization times
[18]. These drawbacks can be avoided by inferring tempera-
ture from the nonequilibrium dynamics of a probe, assuming a
reliable model of the process is available [19–28]. In particu-
lar, Refs. [24–26] have shown that pure decoherence dynamics
can encode temperature with a precision that is completely
independent of the probe’s energy. However, these proposals
require the thermal system to be described by the canonical
ensemble, as appropriate for an open system coupled to a heat
reservoir. In contrast, our protocol offers a general solution
to the problem of thermometry for isolated quantum systems,
without the inherent limitations of small thermal probes that
equilibrate with the system.

II. SPIN-CHAIN EXAMPLE

The quantum equivalent of Joule’s paddle bucket is best
illustrated by a specific example, although our scheme is
general. Figure 2 details an in silico experiment where a
thermally isolated many-body system is heated by periodic
driving [29–31]. We simulate an archetypal model of a quan-
tum chaotic system: a Heisenberg spin- 1

2 chain [32,33] with
Hamiltonian (h̄ = kB = 1)

Ĥ = J
L∑

j=1

(σ̂ x
j σ̂

x
j+1 + σ̂

y
j σ̂

y
j+1 + �σ̂ z

j σ̂
z
j+1) + h

∑
j odd

σ̂ z
j , (1)

FIG. 2. Unitary heating of a quantum spin- 1
2 chain. (a) Mean

energy Ē = 〈ψ (tprep)|Ĥ |ψ (tprep)〉 of the chain as a function
of the preparation time tprep under local driving, Ĥ (t ) = Ĥ +
a sin(ω0t )σ̂ z

j0
, applied to one site, j0. Inset: Energy fluctuations,

�E 2 = 〈ψ (tprep)|(Ĥ − Ē )2|ψ (tprep)〉, vs system size at fixed tem-
perature T (Ē ) = 10J . (b) Energy distribution of the prepared state,
|ψ (E )|2 = ∑

n | 〈En|ψ (tprep)〉 |2δ(E − En), where Ĥ |En〉 = En |En〉.
(c) Equilibration of the local magnetization after the drive is switched
off. Solid lines show the dynamics of 〈σ̂ z

j0
〉, with Ē increasing from

the bottom to the top line. Dashed lines show the corresponding
microcanonical average. (d) Time-averaged local magnetization after
equilibration (black dots, obtained by time averaging over an interval
δt � 20J−1) compared with the microcanonical average (blue line).
(e) Autocorrelation function C(t + τ, t ) of the local operator Â =∑

j u j σ̂
z
j , where uj ∝ e−( j− j0 )2

is a Gaussian profile (
∑

j u j = 1).
Lines show the real (blue/upper line) and imaginary (red/lower line)
parts of C(t + τ, t ) for t − tprep = 100J−1, while squares indicate
near-identical values for t − tprep = 110J−1. (f) Inverse temperature
estimated by fitting the low-frequency noise and response functions
to the FDT χ̃ ′′(ω)/S̃(ω) = tanh(βω/2) (black dots) and the cor-
responding microcanonical prediction (blue line). Parameters: � =
0.55J , h = J , ω0 = 8J , a = 2J .

where σ̂
x,y,z
j are Pauli operators pertaining to lattice site j.

The exchange coupling J and anisotropy J�, respectively,
describe the kinetic and interaction energy of conserved spin
excitations, while h is a staggered magnetic field that breaks
integrability [34]. By exploiting Runge-Kutta methods for
time evolution [35–38] and the kernel polynomial method to
evaluate thermal and spectral properties [39,40], our simula-
tions probe thermalization dynamics at system sizes beyond
those accessible to exact diagonalization. Numerical methods
are described in the Supplemental Material [41].

At time t = 0, the chain is prepared in its ground state with
energy E0. An oscillatory field is then applied locally, pump-
ing energy steadily into the system until the drive is switched
off at time tprep [Fig. 2(a)]. This procedure generates a class
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of nonequilibrium pure states whose average energy Ē can be
selected by tuning the preparation time. These states have a
structured energy distribution featuring sharp peaks spaced by
the drive frequency [Fig. 2(b)]. Importantly, the correspond-
ing energy fluctuations �E are subextensive, meaning that
�E/(Ē − E0) decreases with system size [Fig. 2(a) inset].

After the drive is switched off, the system evolves
autonomously and local observables relax to equilibrium
[Fig. 2(c)], exhibiting small fluctuations around a value that
is close to the prediction of the microcanonical ensemble
[Fig. 2(d)]. This ensemble is characterized by a single param-
eter: the average energy, Ē , with the corresponding inverse
temperature T −1 ≡ β = β(Ē ) given by the fundamental def-
inition β(E ) = dS/dE , where S(E ) is the microcanonical
entropy. Similar thermal behavior is observed in correlation
functions like C(t ′, t ) = 〈Â(t ′)Â(t )〉 − 〈Â(t ′)〉 〈Â(t )〉, with Â
a local observable, which become approximately stationary
at long times, i.e., C(t + τ, t ) ≈ C(τ ) [Fig. 2(e)]. Con-
ventionally, one writes C(τ ) in terms of the symmetrized
noise function S(τ ) = Re [C(τ )] and the dissipative response
function χ ′′(τ ) = i Im [C(τ )]. After relaxation, their Fourier
transforms are related by the fluctuation-dissipation theo-
rem (FDT), S̃(ω) = coth(βω/2)χ̃ ′′(ω), as expected in thermal
equilibrium [Fig. 2(f)].

The thermalization of these “paddle-bucket” preparations
is striking in light of the highly nonequilibrium energy dis-
tribution displayed in Fig. 2(b). Nevertheless, this behavior is
completely generic and fully explained by the ETH, which
can be formulated as an ansatz for the matrix elements of an
arbitrary local observable, Â, in the energy eigenbasis [48],
i.e., Amn = 〈Em|Â|En〉, where Ĥ |En〉 = En |En〉. The ansatz
reads as

Amn =
{

A(En) + O(D−1/2), m = n,

e−S(Emn )/2 f (Emn, ωmn)Rmn + O(D−1), m �= n,

(2)

where A(En) and f (Emn, ωmn) are smooth functions of their ar-
guments, Emn = 1

2 (Em + En) and ωmn = Em − En, while Rmn

is a Hermitian matrix of random numbers with zero mean
and unit variance, and D is the Hilbert-space dimension. See
Fig. 3 for an example and Ref. [41] for further details. As is
well known [11], the ETH (2) implies that any highly excited
state with subextensive energy fluctuations will thermalize
under unitary dynamics. More precisely, the expectation value

of a local observable converges to its time average 〈Â〉 =∑
n | 〈En|ψ〉 |2Ann = A(Ē ) + O(�E2/Ē2

∗ ), with A(Ē ) equal
to the microcanonical average at inverse temperature β(Ē ),
while the spectral function f (Ē , ω) determines the noise and
response functions (up to subextensive corrections) as [11,34]

S̃(ω) = 2π cosh(βω/2)| f (Ē , ω)|2, (3)

χ̃ ′′(ω) = 2π sinh(βω/2)| f (Ē , ω)|2, (4)

immediately implying the FDT. Although these features of
the ETH have long been understood, the low-frequency
behavior of the spectral function has only recently been iden-
tified as a sensitive indicator of quantum many-body chaos
[49,50]. For a generic observable in a nonintegrable system,
f (E , 0) is nonzero and may vary significantly with temper-

FIG. 3. Eigenstate thermalization in the staggered-field Heisen-
berg spin chain [see Fig. 2 caption for details]. (a) Diagonal matrix
elements of the local operator Â concentrate around a smooth func-
tion (black line) of the energy density, εn = (En − Emin )/(Emax −
Emin ). Inset: Variance of diagonal elements evaluated within the
central 10% of the spectrum for different system sizes, showing
the scaling var[Ann] ∼ D−1 (dashed red line). (b) Low-frequency
spectral function for L = 18 and three different temperatures. Inset:
Off-diagonal elements near T = 5J (gray points, only 1% of ele-
ments shown) and a running average of |Amn| (black line).

ature [Fig. 3(b)]. This observation forms the basis of our
thermometry scheme.

III. THERMOMETRY PROTOCOL

Our thermometer comprises a qubit with energy eigen-
states |↑〉 and |↓〉, coupled to the system by an interaction
of the form Ĥint = |↑〉 〈↑| ⊗ gÂ for some local observable
Â and coupling constant g. This kind of interaction—which
can be engineered, for example, using Feshbach resonances
in ultracold gases [15]—conserves the qubit’s energy and
ensures that it does not participate in the dynamics while
in its ground state |↓〉. Suppose that at time t0, the thermal
system of interest is in the pure state |ψ (t0)〉 = |ψ0〉. The
protocol begins by exciting the qubit into a superposition
|+〉 = 1√

2
(|↑〉 + |↓〉) with a π/2 pulse, preparing the joint

product state |�(t0)〉 = |+〉 |ψ0〉. In a frame rotating at the
qubit precession frequency, the Schrödinger evolution is then
|�(t )〉 = 1√

2
(e−iĤ (t−t0 ) |↓〉 |ψ0〉 + e−i(Ĥ+gÂ)(t−t0 ) |↑〉 |ψ0〉).

Entanglement develops between the probe and the system,
leading to a loss of distinguishability quantified by the fidelity
between many-body system states:

|v(t )|2 = | 〈ψ0|eiĤ (t−t0 )e−i(Ĥ+gÂ)(t−t0 )|ψ0〉 |2. (5)

The resulting decrease in interference contrast is reflected
in the off-diagonal elements of the qubit density matrix,
ρ̂q(t ) = Trsys |�(t )〉 〈�(t )|, which decay in time according to
〈↓ |ρ̂q(t )| ↑〉 = 1

2v(t ). This decoherence is finally probed by
applying a second π/2 pulse with a phase θ relative to the first
one, then measuring the excited-state probability of the qubit,
P↑ = 1

2 {1 + Re [eiθv(t )]}. The time-dependent overlap v(t ) is
thus reconstructed by varying θ .

IV. PRECISION AT WEAK COUPLING

To assess the temperature dependence of the interfer-
ence contrast, we focus on the weak-coupling regime and
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FIG. 4. Decoherence of a qubit with coupling g = 0.2J to a
spin-chain environment prepared in a pure thermal state as shown
in Fig. 2. (a) The fidelity and (b) the entanglement entropy for
three different temperatures. Solid lines show an exact calculation of
Eq. (5), while the dashed lines show the weak-coupling approxima-
tion |v(t )|2 = e−γ (t−t0 ), with γ = g2S̃(0) extracted from dynamical
calculations of C(τ ). We take t0 − tprep = 100J−1 for Ē = −4J, −8J
and t0 − tprep = 200J−1 for Ē = −16J . In panel (a), Ē increases from
the top to the bottom line and vice versa in panel (b). (c) Temper-
ature dependence of the asymptotic decoherence rate, γ = g2S̃(0),
with the energy dependence as an inset. (d) QFI (black dots) and
Fisher information for a measurement in the qubit eigenbasis (red
triangles), computed within the weak-coupling approximation as a
function of temperature. Both quantities are evaluated at the time t∗

where the QFI is maximized, i.e., F Q
T = F Q

T (t∗) ≡ maxt F Q
T (t ) and

F ‖
T = F ‖

T (t∗).

approximate the fidelity (5) by a cumulant expansion to sec-
ond order in g [41]. We obtain |v(t )|2 = e−�(t ), where

�(t ) = 4g2
∫

dω

2π
S̃(ω)

sin2[ω(t − t0)/2]

ω2
. (6)

At weak coupling, the largest effects are seen for t − t0 � τc,
where τc is the characteristic timescale for the correlation
function C(τ ) to decay to zero. The integral in Eq. (6) is
then dominated by the contribution near ω = 0, which im-
plies pure exponential decoherence, |v(t )|2 ∼ e−γ (t−t0 ), with
an asymptotic decay rate γ = g2S̃(0) ∝ | f (Ē , 0)|2. We nu-
merically confirm this behavior in Fig. 4(a), which shows the
fidelity for a probe coupled to a spin chain heated by the
procedure of Fig. 2. Even for moderate coupling strengths, we
observe near-perfect exponential decay with a temperature-
dependent rate in close agreement with the weak-coupling
prediction. The decoherence is associated with a growth in
the entanglement entropy S[ρ̂q] = −Tr[ρ̂q ln ρ̂q], which sat-
urates to the temperature-independent value S[ρ̂q] → ln 2
characterizing a maximally entangled state [Fig. 4(b)]. This
distinguishes our nonequilibrium protocol from a thermal-
ization process. In Fig. 4(c), the temperature dependence of
the decoherence rate is analyzed in more detail. We find
that γ depends almost linearly on energy density [Fig. 4(c)
inset], which translates into a nonlinear variation with tem-
perature [Fig. 4(c) main panel] that is greatest at low
temperatures.

We quantify the temperature information that can be
extracted from our protocol using the quantum Fisher infor-
mation (QFI). Consider a temperature estimate constructed
from M independent measurements in a given basis, μ, on
identical qubit preparations. For large M, the statistical er-
ror of any unbiased estimate is asymptotically bounded by
�T 2 � 1/MF μ

T � 1/MF Q
T . Here, F μ

T is the Fisher informa-
tion for the chosen basis while the QFI, F Q

T = maxμ F μ
T , is

the maximum over all measurements and thus describes the
ultimate uncertainty limit imposed by quantum mechanics
[51]. The temperature can be inferred from the exponential
decay of |v(t )| by measuring in the eigenbasis of ρ̂q(t ), i.e.,
by applying a final π/2 pulse with phase θ = − arg v(t ) [41].
Figure 4(d) shows the corresponding Fisher information, F ‖

T ,
in the weak-coupling limit. Since F ‖

T ≈ F Q
T , we conclude that

the decoherence rate captures almost all temperature informa-
tion available from the probe in this example. For instance,
we obtain the value T 2F ‖

T ≈ 0.2 at temperature T = 5J , im-
plying that M = 500 measurements could suffice to achieve
a precision of �T/T � 10%. Note that a single ultracold gas
sample may host thousands of independent impurities [15].
We emphasize that the achievable precision is independent of
the qubit’s energy gap, unlike a thermalized probe whose QFI
depends exponentially on this gap at low temperature [18].

V. HYDRODYNAMIC DECOHERENCE

Our results show that the temperature of an isolated sys-
tem can be measured using the most primitive features of
quantum dynamics, namely, unitarily evolving wave func-
tions and entanglement between subsystems. The scale of our
thermometer is defined not through the energetic fluctuations
of some statistical mixture, but by the rate of entanglement
growth in a quantum decoherence process [52]. While this
rate should generally increase with temperature, the precise
dependence is system and observable specific. Nevertheless,
since a generic system should display hydrodynamic behav-
ior at long times [57], we can obtain a general form for
γ (T ) assuming that the probe couples to diffusive modes of
a conserved density. In d = 3 spatial dimensions, we obtain
[41]

γ = 2ḡ2χ0T

D
, (7)

where D is the diffusion coefficient, χ0 is the thermody-
namic susceptibility to long-wavelength density perturbations,
and ḡ is a renormalized coupling that depends only on the
probe’s spatial profile. According to Eq. (7), the qubit’s de-
coherence rate provides an ideal, linear thermometer scale
within any temperature range where D and χ0 are approx-
imately constant, and allows for accurate thermometry in
general whenever D and χ0 are known as a function of
temperature.

In low-dimensional systems—such as our spin-chain
example—similar hydrodynamic arguments predict nonex-
ponential decoherence at intermediate times, �(t ) ∼ t3/2 for
d = 1 and �(t ) ∼ t ln t for d = 2, which crosses over to
pure exponential decay, �(t ) ∼ γ t , when t � τc [41]. The
asymptotic decoherence rate γ depends on temperature as
in Eq. (7), but both γ and τc grow with the system size for
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d < 3 [41]. However, τc is too small to clearly distinguish
the crossover at system sizes accessible in our simulations,
where only the long-time exponential decay is observed. This
interesting competition of timescales calls for further research
to characterize how Markovian dynamics [48,58,59] and ther-
modynamics [60,61] emerge for open quantum systems in
chaotic environments.

VI. CONCLUSION

Accurate, in situ thermometry of isolated quantum sys-
tems is an outstanding problem in cold-atom physics, where
strong, short-ranged correlations confound destructive global
measurement techniques such as time-of-flight imaging. Con-
versely, a small quantum probe facilitates local, minimally
destructive temperature measurements, in principle [27,62].
Our proposal to infer temperature from decoherence dynamics
does not require thermalization of the qubit or fine tuning of
its energy levels, and is applicable to generic many-body sys-
tems in arbitrary states with subextensive energy fluctuations.
This opens a pathway for the toolbox of quantum-enhanced

thermometry [17] to probe the ultimate limit of an isolated
system in a pure quantum state.
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