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Interferometric control of nanorotor alignment
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The intrinsically nonlinear rotation dynamics of rigid bodies offer unprecedented ways to exploit their
quantum motion. In this Letter, we devise a rotational analog of Mach-Zehnder interferometry, which allows
steering symmetric rotors from fully aligned to completely antialigned. The scheme uses a superposition of four
distinct orientations, emerging at the eighth of the quantum revival time, whose interference can be controlled
by a weak laser pulse. We develop a semiclassical model of the effect and demonstrate that it persists even in

presence of imperfections and decoherence.
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Introduction. It is a major aim in the field of optomechanics
[1,2] to control the motion of levitated nanoparticles at the
quantum limit [3], as required for fundamental tests and for
precision sensing [4-7]. Levitated objects have been used in
their classical state of motion to search for physics beyond
the standard model [8,9] and to demonstrate force sensitivities
at the zeptonewton level [10,11]. The recent achievement of
cooling the center-of-mass motion of a nanosphere to the
ground state [12—14] heralds a new era by mastering the
quantum dynamics of internally warm solid objects composed
of millions of atoms.

Levitated nanoparticles rotate, adding an intrinsically
nonlinear twist to their center-of-mass dynamics. To date,
experiments with rotating particles still operate in the clas-
sical domain; they spin nanorotors with ultrahigh precision
[15,16] and at ultrahigh frequencies [16-18], and demon-
strate precession [19,20], radiation-torque heating [21], and
record-breaking torque sensitivities [22]. First experimental
implementations of rotational cooling [20,21,23] suggest that
the quantum regime is within reach [24-26] and that even the
trapped ground state of the full translational and rotational
motion can be prepared [27].

Quantum rotations of molecules and nanoparticles provide
unprecedented ways for quantum-enhanced torque sensing
and for testing quantum physics [28]. However, it is still an
open problem how to steer nanoparticle alignment in free
flight, as needed for future sensing and metrology appli-
cations. In this Letter, we solve this problem by devising
a Mach-Zehnder-type interference scheme operating in the
curved and closed manifold of rigid body orientations. The
ability to achieve such control over massive objects will
enable unforeseen possibilities for orientation-resolved spec-
troscopy, rotation state-resolved collision and reaction studies,
spatially resolved torque and rotation sensing, and quantum
superposition tests [28,29].

The rotational analog of Mach-Zehnder interferometry
is based on the phenomenon of orientational quantum re-
vivals, which occur in free rotors as a direct consequence of
angular momentum quantization. Specifically, the quadratic
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dependence of the rotational energies on the total angu-
lar momentum quantum number leads to the recurrence of
the initial state [30] at a characteristic revival time Ty,
which may be much longer than the wave packet dis-
persion time. Such revivals have been predicted [31,32]
and observed [33-36] in the alignment of small molecules.
Rotational quantum effects have also been proposed for
controlling planar and linear rotations of molecules [37],
polarizability metrology [38], macroscopic quantum super-
position tests [39], and observing the quantum tennis-racket
effect [40].

Here we show how the three-dimensional (3D) alignment
of freely rotating nanoparticles can be controlled by applying
a short torque pulse at T;, /8. It allows tuning the alignment
with respect to the initial orientation of the particle from
fully aligned to completely antialigned, even in the generic
case of torques not differing for inverted orientations. This
rotational interference scheme makes use of superpositions of
well-localized orientational wave packets emerging briefly at
fractional revival times. This generalizes coherent rotational
control schemes for linear molecules [37] and condensed atom
clouds [41] to massive nanoparticles, exhibiting genuine non-
commutative 3D rotations. We show that our scheme works
even with millions of rotation states involved, for realistic
particle asymmetries, and in the presence of environmental
decoherence.

Interference scheme. We first consider symmetric rotors
to explain the rotational interference scheme in terms of a
semiclassical eight-state model. The free Hamiltonian H =
J2/21 + (1/21. — 1/21)J? involves the square J? of the an-
gular momentum vector and its body-fixed component J.,
with I, and / the moments of inertia around and orthogonal
to the rotor symmetry axis ¢ [42]. In the free symmet-
ric rotor eigenbasis |jmk) (with |m|, |k| < j the quantum
numbers for J, and J., and j € Ny the total angular momen-
tum quantum number), the time evolution operator takes the
form U(t) = ). e TG HDHU/I= DR Teee | ik ( jmk|, with
Tiey = 21 /h. Taking the direction of initial alignment as
the space-fixed z axis implies that the angular momentum
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representation of the aligned initial state pq is diagonal in m
and k. From this, it readily follows that any such symmetric
rotor state will fully recur, U(T;ey ) 00U (T ) = po, as a direct
consequence of angular momentum quantization.

To characterize fractional revivals, consider a mas-
sive prolate rotor (I, < I) in a well-aligned pure ini-
tial state, p9 = |Wo)(Wo|. Using Euler angles in the
z-y'-7” convention [43], the angle B € [0;7] between
the z axis and the rotor axis is then localized close
to B =0, implying that the quantum numbers of J,
and J. coincide, («, 8, y |Wo) = (B|wo) expliko(a + v )]1/27.
The total angular momentum quantum number j will
be distributed over a wide range of large values so
that the Wigner d-matrix elements in (a¢By|jmk) = (j +
1/2)'2d’ (B)exp(ima + iky)/2m can be replaced by their
asymptotic expressions [44] for |m|, |k| < j,

d;;k(ﬁ)i cos [(j+%),3+(m—k)%— %] "

Z(j+4)sinB

We focus first on the time evolution |y;) = Ug|vy) for m =
k = 0 and consider finite occupations of J,, J.. later on.

The semiclassical propagator for the 8 motion can then be
decomposed as

uc(B — Post) + us(B + Bost)
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These contributions can be resummed at integer fractions of
the revival time by using the expressions
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with P the Cauchy principal value. They hold for smooth 27 -
periodic test functions and can be obtained from the Poisson
summation formula.

Specifically, for ¢+ = T, /8, the summands in (3) can be
grouped into four sets of equal phase by splitting the sum-
mation index set into residue classes modulo 16. Using
trigonometric addition theorems, one finds

3
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The locations of the § functions and Cauchy singularities in
these expressions imply that a state initially localized at 8 =
0 will be promoted, at Ti, /8, into a superposition of narrow
wave packets localized at 8 = /8, 37 /8, 57 /8, 7 /8 due to
the constructive interference of all angular momentum states.

The state at T, /4 is obtained by applying the propagator
(5) twice or, alternatively, by resumming the (3) in residue
classes modulo 8. One finds that the initial state is promoted
into a superposition of two wave packets localized at g =
/4, 3w /4. Similarly, after half of the revival time, the ini-
tial wave packet reappears localized at § = 7 /2, implying a
perfectly antialigned rotor.

It thus follows from the composition property of Ug(r)
that the states |y) = Ug(£T5ev/8)|W0) are composed of
well-localized wave packets. Denoting by |&,) the wave
packet centered at B = nm /8, the coefficients in |y,) =
e ZZ:I My, |&,) can be read off from the semiclassical prop-

agators (¢ = 1, ..., 7). They are given by the unitary matrix
1 0 1 0 1 0 1
0 v2 0 0 0 V2 0
(|t 0 i 0 —i 0 -1
My, ==10 0 0 2 0 0 0 (6)
2[t 0o -1 0 -1 o0 1
0 V2 0 0 0 —v2 0
1 0 —i 0 i 0 -1
and vy = (0,0, —7 /8,0, /2, /4,37 /8, 0).
The states |vg), ..., [Y7) thus span an eight-dimensional

subspace. It is well suited for interferometric control of the
rotor alignment since phase differences can be imprinted by
applying a torque for a brief duration at one or more of the
fractional times £T., /8.

Torque pulses can be realized with an optical pulse polar-
ized in the z direction [29]. The interaction energy is then
proportional to cos? 8 for particles characterized by an opti-
cal anisotropy axis, rendering their optical response invariant
under the inversion of the orientation 8 — 7 — B. The corre-
sponding phase operator takes the form

d = exp(iv2¢ cos? B). (7)

It is diagonal in the angle operator [3, with the phase ¢ deter-
mined by the electric field E(¢) and the particle polarizability
anisotropy Aa, ¢ = A« [ dt|E(t)|>/2+/2h.

To control the nanoparticle alignment, one applies (7) after
the rotor has evolved freely for the time 7;,/8. Abbreviating
U = Ug(Tey/8), this yields the state

_E0+18) 183 +185)
2

U 9
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where we dropped a global phase. It has a relative phase ¢
between wave packets located at arctic and tropic latitudes;
see Fig. 1(a). Quantum interference during the free evolution
until the revival time transforms this into a superposition of
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the well-aligned initial state |1/) and the antialigned state |&,),

O p01yo) = cos (3 ) yo) +sin (%)l @)

By tuning the phase ¢, one can thus control the alignment at
the revival time.

This is illustrated in Fig. 1, for an initial state with
[l > o exp(—j2/800). It shows that alignment control
is facilitated already at T,/2 with the effects of ¢ =0, 7
swapped. Note that the revivals occur only for a short period
of time, given by the initial alignment decay, as determined by
the angular momentum distribution.

For finite values of m and k, it follows from (1) that u.(8, t)
remains semiclassically unaffected as long as |m]|, [k| < j,
while us(8, t) only acquires the additional sign (—)"™*. Given
that the initial state is well aligned, so that m = k, the eight-
state model and its prediction (9) therefore remain valid for
weakly occupied J,, J..

The numerical simulation of realistic particle states re-
quires matrix elements of the phase operator (7) in the angular
momentum basis. Since their exact computation gets numeri-
cally intractable for large j, one can resort to the semiclassical
approximation,

(jmk|d|j'm'k)

= 8mm/6kk/e"””/'/4[1 +iy/28

. Akm
—iAk" j+j'+1
x e it +]/EJ\j*j,\ —];;:j

with A% = (1 — 4k2/J?)(1 — 4m?/J?)/+/2. Tt can be ob-
tained from the Bohr-Sommerfeld quantization of the asso-
ciated action-angle variables [45] in leading order of mk/ >,
and will be used below.

Alignment control of realistic nanoparticles. In practice,
the initial state will not be perfectly aligned, the rotor will
not be completely symmetric, and the quantum dynamics will
not be fully coherent. We discuss these imperfections in turn,
showing that interferometric alignment control of realistic
nanoparticles can still be expected in their presence.

For concreteness, consider an ellipsoidally shaped silicon
nanorod with principal diameters of 5.5 and 50 nm, corre-
sponding to a mass of 1.1 x 10% amu and a revival time of
Tiey = 14 ms. After coherent scattering cooling close to the
trapped rotranslational ground state in an elliptically polarized
tweezer [27], one adiabatically changes to linear polariza-
tion such that the intrinsic rotation around the symmetry
axis is released with only weakly occupied J.. The initial
state may then be described by a mixture of («, 8, y|Wy)
exp[— sin’ 8 /40§ + iko(a + y)], with o and k( determined
by the cooling setup and the adiabatic release. Based on [27],
we assume og = 3.1 x 103 rad and ko € Z distributed as a
Gaussian with o < 6.

Once the trapping laser is switched off, the particle falls
freely, and is illuminated by the weak phase pulse att = T, /8
and by a strong readout pulse around 7., before it is recap-
tured and recooled. The torque needed to imprint the phase
¢ must be applied for a time T much shorter than the rota-
tional dispersion time. A pulse with constant amplitude yields

32k%m? iL}
G+J+1D4de &
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FIG. 1. (a) Orientational distribution of the rotor symmetry axis
at different times ¢. An initially well-aligned state at the north pole
(top left) recurs fractionally as a superposition of wave packets
with well-localized latitudes (top right) at ¢t = T,.,/8. A torque pulse
imprints a relative phase ¢ onto this superposition, even if the
interaction cannot distinguish between inverted orientations. Equal
phases are indicated by equal colors in the corresponding polar
angle distribution prob(8). The torque pulse thus controls whether
the state at ¢ = T, is fully aligned (¢ = 0), completely antialigned
(¢ = m), or a balanced superposition thereof (¢ = 7 /2). (b) Time
evolution of the corresponding alignment signal (cos® ), for ¢ =0
(gray), ¢ = m /2 (green) and ¢ = 7w (orange). (c) Expected signal
(cos® B)1,., as a function of ¢.

¢ = AozlEolzr/ﬁ4h, where |Ep|> = 4P/(nw560c) depends
on the power P and waist wy of the laser beam.

Figure 2(a) shows how the alignment signal at ¢ = 7 is
affected by the uncertainty in the initial orientation and by
finite values of the intrinsic angular momentum component.
Both lead to a moderate reduction of the anti-alignment effect.
This is due to the phase operator (7) no longer yielding defi-
nite relative phases for wave packets with angular dispersion,
and due to the matrix elements (10) effecting an m- and k-
dependent shift of the revival time. For ¢ = 0, in contrast, all
symmetric rotors display a perfect alignment recurrence.

The asymmetry of a general prolate top is characterized
by the parameter b = (Ia’1 — 117_1)/(216’1 — 1,;1 — Ib_l), which
determines the approximate rotation energies in terms of the
symmetric ones [46]. Assuming one of the minor principal
diameters to be 5.0 nm corresponds to |b| = 2.3 x 107>. For
such values, one may safely approximate the rotational eigen-
states by those of a symmetric top, and take into account only
the modified rotational energy spectrum.

Figure 2(b) shows the alignment signal at ¢ = 0, 7 and
the associated shift of the revival time as a function of the
asymmetry parameter for the initial state |Wy) (with og = 3 x
1073 rad and ky = 0). One observes that shape asymmetries
may lead to a noticeable reduction of the alignment effect,
while only slightly shifting the revival time. However, the
asymmetry assumed above, which is well within the capabil-
ities of present-day nanofabrication techniques, still yields a
sizable alignment signal of (cos® ) = 0.87.
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FIG. 2. (a) Anti-alignment effect at ¢ = 7 for realistic initial
states with angular spreads o = 0.1, oy = 0.03, and oy = 0.003
(top to bottom), as a function of the intrinsic angular momentum
width oy. For perfectly aligned initial states, the signal vanishes
identically (9). This interference effect gets impaired for realistic
values of o4 and oy, but is still observable. (b) Effect of nanoparticle
asymmetry on the alignment for ¢ = 0 and ¢ = w. The dash-dotted
line shows how the asymmetry increases the revival time (orange,
right scale). (c) Collisional decoherence at a nitrogen gas pressure of
5 x 10~° mbar reduces the achievable alignment control (solid line)
compared to the case of perfect vacuum (dash-dotted line). (d) Align-
ment associated with three exemplary Monte Carlo trajectories. (The
parameters used for all panels are given in the text, unless specified
otherwise.)

Collisions of the nanorotor with residual gas particles may
effect a gradual diffusion of the nanoparticle angular mo-
mentum and thus provide a dominant source of decoherence
[47-50]. Denoting the (operator-valued) orientation of the
symmetry axis by ¢ = (cos asin [3, sin acsin 3, cos BT, and
neglecting changes in the intrinsic rotation J., the correspond-
ing master equation reads as 9;,p = —i[H, p]/hi + gys(C -
p € — p), with I'g,, the collision rate [49]. It can be simulated
by means of a Monte Carlo unraveling [51,52] in terms of the
stochastic Schrodinger equation,

3
1 c
dW) = —Hdt + ) T
ih 2
=1\ /(W|c?|w)

|W)dN,, (11)

where the independent Poisson increments dN, have
the expectation values E[dN,] = Fgas(\I/|C%|\If)dt. Here we
used that ), Cﬁ =1, so that ), E[dN;] = [gasdrt is state
independent.

Figure 2(c) displays the impact of collisional decoherence
on the interferometric alignment control for I'g,s = 20.7 Hz,
corresponding to a nitrogen gas pressure of 5 x 10~ mbar at
room temperature. One observes that the interference signal
gets slightly degraded for these realistic gas pressures, irre-
spective of the imprinted phase ¢. For illustration, Fig. 2(d)
shows the alignment dynamics of three sample trajectories
from the ensemble described by (11).

A further source of decoherence might be the Rayleigh
scattering of laser photons from the phase pulse. However, this
is negligible since a power of 1.3 mW suffices to imprint a rel-
ative phase of 27 (assuming a pulse duration of #, = 100 ns,
a wave length of 1550 nm, and a waist of wy = 30 pum),
implying that only 1.7 x 10~'* photons scatter on average
during the pulse.

Conclusions. The interferometric alignment scheme relies
only on the free quantum dynamics of symmetric rotors and
on their polarization anisotropy. It can thus be employed for a
wide range of particle species and sizes, even in the absence of
internal spin [23,53], magnetization [54] or dipole moments
[55]. The scheme will find applications whenever exquisite
control is required of the field-free alignment of single parti-
cles in vacuum [29].

We found that the interference effect can be represented in
an effective eight-dimensional subspace spanned by superpo-
sitions of narrow orientational wave packets. More complex
interference schemes are thus conceivable by applying several
pulses of light at integer multiples of 7., /8, effecting uni-
tary transitions between these states. They could be used for
preparing orientational superposition states, for tests of quan-
tum physics, for precision metrology of molecular properties,
or even for processing quantum information [56,57]. Beyond
that, it is straightforward to use even smaller integer fractions
of the revival time if interference in higher-dimensional effec-
tive spaces is required.
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