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We catalog known optical moiré lattices and uncover exotic lattice configurations following a geometric analog
of the ancient sieve of Eratosthenes algorithm for finding prime numbers. Rich dynamics of Bose-Einstein con-
densates loaded into these optical lattices is revealed from numerical simulations of time-of-flight interference
patterns. What sets this method apart is the ability to tune the periodicity of the optical lattices without changing
the wavelength of the laser, yet maintaining the local potential at the individual lattice sites. In addition, we
discuss the ability to spatially translate the optical lattice through applying a structured phase only.
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Introduction. Optical lattices (OLs) generated by standing-
wave laser fields form a potential landscape into which
ultracold atoms can be loaded. The formation of a Bose-
Einstein condensate (BEC) of bosonic atoms under low
temperatures subject to the symmetries of an OL enables the
study of fundamental models of many-body systems [1–4],
facilitates observation of coherent phenomena such as Bloch
oscillations [5] or Wannier-Stark ladders [6], and serves as a
possible implementation of quantum computation [7].

Over the years, a zoo of OLs has been accumulated due to
the myriad ways in which laser beam configurations can be ar-
ranged to form the trapping potentials. Aside from the familiar
square or triangular OLs [8], quasiperiodic potentials recently
piqued the interest of researchers due to the expected hybrid
crystalline -amorphous features [9–11]. Another example is
the Kagome lattice [12,13] which adds geometric frustration
to the system and can lead to the appearance of a flat band.
However, these lattices and the dynamics of the atomic system
are typically treated on an individual basis.

The common parameter of periodic OLs is the periodicity
d , and it is a key parameter that dictates the dynamics of
the ultracold atom system. From moiré theory [14] the def-
inition of periodicity can be extended to quasiperiodic OLs
in terms of dominant frequency components. The periodicity
is usually tuned by changing the wavelength of the laser.
However, the atom-lattice interaction depends on the detuning
between the atomic transition frequency and the laser field
frequency. The effect of changing the wavelength of the laser
can be as drastic as changing the behavior at the high intensity
foci of the OL from trapping atoms to repelling them [15].
For one-dimensional systems the lattice periodicity can be
modified without changing the wavelength by controlling the
relative angle of the two interfering laser beams [16], but
in a two-dimensional system this approach has the adverse
effect of also changing the lattice symmetry. Moreover, these
approaches stretch the individual lattice sites, modifying the
local gradient of the potential. This, in turn, changes the num-
ber of atoms that can be loaded per site and thus distorts the

engineered dynamics of the system. Therefore, a framework
for designing OLs with varying periodicity, yet diffraction
limited foci is very valuable. As an additional benefit, such
a framework would catalog known OLs and pave the way for
designing more exotic potential landscapes.

Our recently developed integer lattice method [17] de-
scribes an algorithmic approach to computing the orientations
of laser beams for generation of OLs with variable periodicity
and symmetry. This technique combines prime number fac-
torization in the complex plane with moiré theory to compute
wave-vector components that can be used to generate desired
interference patterns. In this Letter, we consider writing the
OL potential in terms of integer factorization over a number
field as defined by the integer lattice method. Our simulations
of BECs in such OLs reproduce matter-wave interaction pat-
terns reported in literature and naturally lead to a classification
of OLs according to the key parameter in the integer lattice
method: the field norm. We demonstrate the utility of the
developed classification by calculating the set of OLs that
would allow for monochromatic tuning of the OL periodicity.

Since the integer lattice method is strongly linked to
the moiré effect, the proposed classification scheme shows
promise in other systems with controllable superlattice or-
dering, such as twisted multilayer graphene [18–20], twisted
van der Waals materials [21–23], and Anderson localization
in photonic moiré lattices [24].

Optical lattice potential in the integer lattice method for-
malism. Before writing down the governing wave function
of the system of cold atoms in an OL, we will integrate the
integer lattice method description of coherent lattices into
vector notation of the optical potential. In Ref. [17], the set of
orientations of the wave vectors of each light beam component
was introduced as

P(n) = {N (α) = n | α ∈ Z[ζm]}, (1)

where the ring Z[ζm] = {a + bζm | a, b ∈ Z} determines the
symmetry of the system by the choice of integer m in ζm =
e2π i/m. The corresponding field norm N (α) = αᾱ = n then
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FIG. 1. Generation of OLs using the integer lattice method. A
planar laser beam configuration (a) is arranged such that the input
beam orientations correspond to the concyclic points in the trian-
gular integer lattice Z[ζ6] (b). The resulting interference pattern in
the overlapping region of the input beams (c) shows a triangular
symmetry.

selects only specific wave vectors with an integer magnitude
n. However, the set P(n) in Eq. (1) contains only complex
numbers and, therefore, to give physical meaning to these
elements we introduce the set

Kn ≡ 2π

λ
vec

(
P(n)√

n

)
, (2)

where vec : x + yi �→ (x, y) simply converts the complex
number to vector notation. A planar arrangement of light
beams is the simplest configuration to form two-dimensional
patterns and is shown in Fig. 1(a). The way in which the
orientations of these beams is determined from the points
P(n) in the complex plane is illustrated in Fig. 1(b). Note that
the points P(n) are normalized to have unit length in Eq. (2)
and are subsequently scaled by the wavelength λ of the light
beams.

By introducing Kn, we can interface the integer lattice
method with the description of the general optical potential
for interfering laser beams given by [25]

Vlatt (r) = V0

∣∣∣∣∣
∑

j

E jε je
−i(k j ·r+ϕ j )

∣∣∣∣∣
2

, (3)

where r is the position vector in two dimensions, V0 is the
overall strength of the potential, E j ∈ [0, 1] is the relative
intensity of the laser beam, ε j is the polarization, and ϕ j is
the phase. The wave vectors k j can now be replaced by the
calculated wave vectors in Kn as follows:

V ′
latt (r) = V0

∣∣∣∣∣∣
∑

k j∈Kn

e−i(k j ·r+ϕ j )

∣∣∣∣∣∣
2

, (4)

assuming all beams are linearly polarized in the same direc-
tion such that ε j disappears, and have equal intensity, i.e.,
E j = 1. The phase ϕ j will come into play when discussing
the translation of the OL. For now, we set all the laser beams

to be in phase, i.e., ϕ j = 0. An example of a triangular OL
generated from P(7) is shown in Fig. 1(c). This final form of
the optical potential facilitates the analysis of BECs loaded in
OLs in the context of the integer lattice method.

Matter-wave interference pattern simulation. The momen-
tum distribution of the BEC holds key information of the
system and is most often experimentally obtained by ob-
serving matter-wave diffraction in time-of-flight imaging. We
therefore target simulating matter-wave interference patterns
in the following discussion.

Aside from the OL potential, we add a harmonic confine-
ment to the BEC, such that the total potential becomes

Vtot (r) = V ′
latt (r) + 1

2ω|r|2, (5)

with trapping frequency ω in units of the recoil frequency
ωR = h̄|k|2/2m with m the atomic mass. Therefore, V0 in
Eq. (4) is in units of the recoil energy ER = ωRh̄. For such
a system, the weakly interacting bosonic gas is known to be
well described by the time-dependent Gross-Pitaevskii equa-
tion (GPE) [26], which is written in dimensionless form as

i
∂	(r, t )

∂t
=

(
−1

2
∇2 + Vtot(r) + g|	(r, t )|2

)
	(r, t ), (6)

with g being the variable interaction strength parameter. We
find the ground state of the system described by Eq. (6) us-
ing an imaginary time evolution with the Fourier split-step
operator method [27] with absorbing boundary conditions
implemented using the QuantumOptics.jl framework [28].

Sieve of Eratosthenes. Having all components for simu-
lating bosonic gasses in OLs in place, we turn to a number
theory technique to algorithmically analyze two-dimensional
OL configurations. A good place to start is the result from
the integer lattice method linking coherent OLs to moiré su-
perlattices with periodicity determined by the prime number
factorization of an integer n via Eq. (1) in the complex plane
[17]. The major distinguishing factor between OLs is their
symmetry, which is fixed by choosing m. Furthermore, from
moiré theory it is known that the dominant spatial features are
determined by the smallest components in momentum space
[14], such that for ki ∈ Kn the pattern periodicity d can be
written as

d = min |ki − k j |−1. (7)

This quantity will act as the secondary distinguishing factor
between the generated patterns. To show that this distinction
is sufficient, we consider the distribution of the set of prime
numbers, which we will denote by P = {p ∈ N | p is prime}.
An important observation is that not all primes remain prime
in the complex plane. For example, 5 = (2 + i)(2 − i) is no
longer prime in Z[ζ4]. This has important consequences for
the generated coherent lattices.

Suppose a field norm n ∈ P remains prime (known as inert
primes [29]) in Z[ζm]; then P(n) = ∅, since these numbers
cannot be split in the complex plane. Let Im be the set of all
such inert primes in Z[ζm]. We can then filter out all these
prime numbers that have no valid field norm associated with
them, and be left with the set

Pm = P\Im. (8)
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FIG. 2. Integer lattice method classification of OLs analogous to the sieve of Eratosthenes algorithm. Each point in the diagram corresponds
to a triangular (m = 6) OL generated from an integer n. The distinction between lattices is based on lattice periodicity, with first occurring
lattices Λ6 marked red and identical lattices marked gray. The trend lines of the periodicity are added as a visual aid (dashed lines). Noninert
prime numbers P6 coincide with n of Λ6 (black squares). Higher-order moiré OLs (arrows) are generated from products of prime numbers,
e.g., 91 = 7 × 13.

The unique factorization theorem states that positive inte-
gers greater than zero can be represented in exactly one
way as a product of prime numbers—essentially describing
primes as building blocks of the natural numbers. Similarly,
the factorization of n ∈ Pm in Z[ζm] cannot be a compos-
ite decomposition of other field norms due to its primeness.
We therefore can leverage the principle of the sieve of
Eratosthenes—an algorithm in which all multiples of a num-
ber are marked iteratively such that only all primes remain
[30]—to identify all OLs which appear for the first time, i.e.,
have the lowest n for a given periodicity d . These lattices will
be labeled Λm.

In Fig. 2, each red dot corresponds to one of the first
occurring lattices 
n ∈ Λ6. Lattices generated from different
field norm values n are said to be degenerate if they have the
same periodicity d [see Eq. (7)]. These duplicate lattices are
iteratively marked gray. For example, one can easily verify
that solving Eq. (1) for n = 1 and n = 4 results in the same
set of wave vectors due to the normalization factor

√
n in

Eq. (2), e.g., K1 = K4. Also, the trend lines of the periodicity
are proportional to

√
n and are plotted as a visual aid. From

construction, any lattice 
n generated from n ∈ P6 will be in
Λ6. However, some lattices are constructed from a product of
prime numbers (highlighted with arrows in Fig. 2) and will
appear for the first time. For example, 
91, where n = 91 =
13 × 7. In Ref. [17] these were identified as higher-order

moiré superlattices, since their construction is a superposition
of past lattices. Of course, the exception is 
1, since 1 is not
a prime number. It is important to note that, even though 
n

have varying periodicity, the foci are diffraction limited.
The analysis of the infinitely many possible OLs is beyond

the scope of this paper. However, we will briefly discuss
several key examples for Λ6. In Fig. 3, the matter-wave inter-
ference patterns are plotted that correspond to the momentum
distribution of the BEC. First and foremost, we achieve in-
creased lattice periodicity (closer Bragg peaks in momentum
space) by choosing a larger value of n. The density of the
lattice sites ranges from dense Fig. 3(a) (n = 1) to interme-
diate Fig. 3(b) (n = 7) to sparse Fig. 3(c) (n = 13). Second,
contrasting to the regular triangular OLs, Fig. 3(d) shows
additional interference peaks inside the first Brillouin zone
for n = 67, revealing auxiliary dynamics of the system. These
stem from emerging secondary lattice sites of the OL. More-
over, more exotic OLs which result in a moiré superlattice
with lattice mismatch are shown for n = 109 in Fig. 3(e).
Finally, in Fig. 3(f), the distribution of the peaks displays a
clear twelvefold rotational symmetry for n = 181, with the
distinctive structure of a quasicrystal.

Note that the OLs in Fig. 3 all rely on triangular base
patterns (m = 6). Switching symmetry by fixing a differ-
ent m will open rich families of OLs for exploration.
For example, setting m = 5 in Eq. (1) will result in a
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FIG. 3. Calculated matter-wave interference patterns corre-
sponding to the momentum distribution of the superfluid in the
OLs obtained using the integer lattice method (see Fig. 2). Each of
the momentum distributions (a–f) shows different dynamics of the
system, solely dependent on the choice of n. The dashed triangle
(a–c) denotes the decrease of the first Brillouin zone, corresponding
to more dense lattice sites. The parameters used in the calculations
are ω = 0.08, V0 = −6, and g = 10.

wide range of quasiperiodic lattices with tenfold rotational
symmetry.

Phase synchronization. The main advantage of relying only
on wave-vector orientations to determine the OL symmetry
and periodicity is that switching between different lattices
amounts to activating the desired laser beams [E j = 1 in
Eq. (3)] and deactivating others. This has the benefit of not
relying on changing individual beam orientations or the op-
erating wavelength to tune the lattice periodicity. Similarly,
spatially moving the OL can be achieved without reorienting
the wave-vector components, but by applying structured phase
shifts ϕ j [see Eq. (4)] to the input beams.

Displacing the superpattern by shifting each wave com-
ponent along the wave vector is a known result from moiré
theory [14] and can be readily applied to the beam compo-
nents. The phase tuning scheme relies on synchronizing the
displacement of the plane-wave components such that the
wave fronts maintain the interference pattern at each point in
space. This is illustrated in Fig. 4(a). The structured phase
shifts have a magnitude that is determined by the projec-
tion of the wave vectors onto the direction of the desired
displacement. For example, horizontal motion of the moiré

(a)

(b)

(c)

0 max

FIG. 4. Phase tuning scheme for spatial translation of the OL.
A diagram of the phase shifts (a) for refocusing of the constructive
interference of a system with three input beams (red dots) from point
A to point B. The phase shift can be thought of as a displacement of
the plane wave front: initial (gray lines) and displaced (black lines).
Each phase shift has magnitude ϕ j . Positive (orange bars) or negative
(blue bars) phase shifts (b), when synchronized to follow a cardioid
curve (dashed line), enable the spatial translation of the OL (c).

superpattern requires the following phase shifts:

ϕ j = s · cos[arg(k j )]. (9)

The total displacement of the OL can be tuned with the scaling
factor s. Visualizing ϕ j in a radial plot unveils the cardioid
envelope [dashed line in Fig. 4(b)]. Displacing the OL in
arbitrary directions is thus achieved by orienting the cardioid
curve along the corresponding axis.

Tuning the phase of individual beams is overall challenging
in an experimental setting. However, advances in the spatial
light modulator technologies have already shown that tuning
a large parameter space is feasible, for example, in arrays of
optical tweezers for cold-atom experiments [31]. In compar-
ison, the integer lattice method greatly reduces the number
of parameters that need to be tuned to generate and move
complex OLs. Moreover, tuning the phase can be avoided
altogether for static OLs, since the prerequisite in the integer
lattice method is that all laser beams are in phase, which can
be readily achieved with a binary amplitude mask.

Conclusion. We describe a design scheme for OLs for
ultracold atom research that is predicted to give rise to rich
distributions of particle momenta. These distributions, charac-
terized by the localized Bragg peaks, are found by numerically
solving the Gross-Pitaevskii equation.

By recognizing that the OL symmetries are intimately
linked to prime number distributions according to the integer
lattice method, the possible ground states of the system are
identified by extending the sieve of Eratosthenes algorithm
to the norm of the wave-vector orientations. This approach
covers the known (quasi)periodic OLs and uncovers a wide
range of possible OL configurations.

The wave-vector orientations of the input laser beams cal-
culated using the integer lattice method are linked to moiré
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theory such that tuning the lattice periodicity can be achieved
by simply switching the laser beams on or off, without the
need to change their operating wavelength. Therefore, the
method lends itself to the dynamic study of many-body sys-
tems under varying periodicity of the carrier OL. In addition,
the OL can be continuously displaced by introducing a struc-
tured phase across the input beams, further highlighting the
utility of the integer lattice method as the go-to tool for de-
signing OLs for future cold-atom experiments.

Although finding the most suitable experimental real-
ization is a key future challenge, the discussed beam
arrangements lend themselves to be generated using stan-
dard experimental techniques. As such, it offers an exciting

framework for controlled studies of (quasi)periodic systems
of ultracold atoms, a major topic of current research. In addi-
tion, the two-dimensional nature of the theoretical framework
enables embedding the generated OLs in planar on-chip next-
generation quantum simulation devices.
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