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Mediated interaction between polarons in a one-dimensional Bose gas
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We study a weakly interacting one-dimensional Bose gas with two impurities coupled locally to the boson
density. We derive analytical results for the induced interaction between the impurities at arbitrary positive
coupling and separation r. At r < &, where & denotes the healing length of the Bose gas, the interaction is
well described by the mean-field contribution. Its form changes as the coupling is increased, approaching a
linear function of r at short distances in the regime of strong coupling. The mean-field contribution decays
exponentially at arbitrary coupling for » > £. At such long distances, however, the effect of quantum fluctuations
becomes important, giving rise to a long-ranged quantum contribution to the induced interaction. At longest
distances it behaves as 1/r3, while at strong coupling we find an intermediate distance regime with a slower
decay, 1/r. The quantum contribution in the crossover regime is also calculated. The induced interaction between
impurities (i.e., polarons) is attractive and leads to the formation of their bound state, known as bipolaron. We

discuss its binding energy.
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Introduction. The concept of mediated interaction plays
a pivotal role in physics. Within the standard model, the
fundamental interactions between matter particles are medi-
ated by bosonic fields [1]. In quantum electrodynamics, the
Casimir effect denotes the interaction between metallic plates
mediated by the virtual excitations in the vacuum [2]. In con-
densed matter, the formation of Cooper pairs in conventional
Bardeen-Cooper-Schrieffer superconductors occurs due to the
attraction between electrons mediated by the quanta of lattice
vibrations [3]. Another example is the Ruderman-Kittel-
Kasuya-Yosida exchange interaction between nuclear mag-
netic moments or localized electrons mediated by the conduc-
tion electrons in metals [4]. Recently, related phenomena have
been experimentally studied with ultracold gases, which give
rise to an attractive interaction between foreign particles —
impurities [5-7].

A mobile impurity interacting with a bath of quantum par-
ticles transforms into a polaronic quasiparticle with distinct
features from the original particle [8]. First obtained for elec-
trons in ionic crystals [9], the latter scenario also applies for
impurities in ultra-cold Bose gases. Many theoretical [10-22]
and experimental [23-28] papers considered the latter system.

Studies of impurities in one-dimensional Bose gases are
of particular interest since reduced dimensionality enhances
the role of quantum fluctuations, leading to phenomena where
the mean-field description is insufficient [29]. In Bose gas
environments various properties of a single polaron have been
studied [30—40]. In cases when two (or more) impurities are
present in the system, the induced interaction between them
due to the interaction with particles of the medium is one of
the most basic problems [41-45]. For identical impurities that
are locally and weakly coupled to the Bose gas, an exponen-
tially small attractive interaction proportional to e~2/¢ was
found in Ref. [41]. Here r denotes the impurity separation,
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while £ is the healing length of the Bose gas. However, the
effect of quantum fluctuations gives rise to another contribu-
tion to the induced interaction of a long-range nature [42]. It
behaves as £3/r% at ¥ >> £ and therefore becomes dominant at
long distances [42,43].

In this paper we take advantage of weak repulsion be-
tween bosons to calculate analytically the induced interaction
between impurities at arbitrary positive coupling. This is
possible due to the existence of an analytical solution of the
corresponding Gross-Pitaevskii equation, enabling us to find
exactly the mean-field contribution to the induced interaction,
which is dominant at r < &. In the complementary regime
r > &, we apply the scattering approach to find explicit re-
sults for the quantum contribution to the induced interaction.
It is long-ranged and shows two characteristic regimes, see
Fig. 1. Our theory has direct implication for the many-body
physics with polarons, which will exhibit clusterization into
multi-polaronic bound states due to the induced attractive
interaction.

Gross-Pitaevskii equation. We study a one-dimensional
system of weakly interacting bosons with repulsive short-
range interaction of the strength g. Consider two impurities at
separation r, locally coupled to the Bose gas density, which is
modeled by the potential V (x) = G[8(x 4+ r/2) + §(x— r/2)].
At the mean-field level, the system can be described by the
Gross-Pitaevskii equation [29]
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Here m denotes the mass of bosons. For convenience, we
study the system with periodic boundary conditions.
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FIG. 1. Schematic diagram of different regimes of the in-
duced interaction between two polarons in a weakly interacting
one-dimensional Bose gas. At short separations r, the mean-field
interaction U (r) is dominant, while for » longer than a few &, the
long-range interaction U2(r) that originates from quantum fluctu-
ations prevails. The two qualitatively different contributions to the
induced interaction are separated by the dotted crossover line, which
depends weakly on G and y. Aty = 0.1, its position is near 5.4 r/&
at G < 1 and 3.6 r/€ at G> 1. Along the curved crossover line,
U (r) has a constant value [cf. Fig. 2]. The equation numbers on the
plot refer to the analytical results for the interaction calculated in the
main text.

Let us first consider heavy, static impurities and at a later
stage account for their kinetic energy using perturbation the-
ory. In this case we can assume the solution of Eq. (1) in the
form Yo (x, 1) = Yo(x)e /" where u denotes the chemical
potential. Equation (1) then reduces to the nonlinear eigen-
value problem for 1(x), which has many solutions. Among
them, we seek for the one with the smallest energy. The cor-
responding eigenfunction v(x) is nodeless at finite coupling
G. However, in the limit G — 400, the boson density must be
completely depleted at the impurity positions, leading to two
nodes in ¥y(x). The ground-state energy of the system in the
mean-field approximation is given by

L2
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—L/2

The chemical potential u entering Ey(r) in Eq. (2) should be
eventually expressed in terms of the boson density n from the
normalization condition

1 L2
= f dxl Yool 3)
—L)2

Here L is the system size. The mean-field contribution to
the induced interaction between the impurities mediated by
the Bose gas is defined by U(r) = Ey(r) — Eo(r — 00). It
vanishes at r — oo.

The mean-field contribution. At G = 0, corresponding to
the absence of impurities, we find ¥y(x) = +/it/g. The con-
dition (3) then leads to the chemical potential of the weakly
interacting Bose gas, uo = gn. At G > 0, the local density
near the impurity positions deviates from the constant value in
spatial regions on the order of the healing length of the Bose
gas, & = h/./mu. Up to the phase factor, for the family of

solutions of Eq. (1) we find [43,46]
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Here cd(x; a) is the Jacobi elliptic function [47]. We consider
the case of identical impurities and therefore the solution (4) is
an even function, ¥y(x) = Y¥o(—x). The parameters 0 < a <
1 and b should be obtained from the continuity of ¥(x) at
the impurity position x = r/2 and the jump in the derivative,

Yor/2+0) —yy(r/2 —0) = 2mGyro(r/2)/h%. This yields
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where 7 = r//2(1 + a)¢ and G = G/&uy is the dimension-
less impurity strength. By sn(x; a) and dn(x;a) are denoted
the Jacobi elliptic functions [47]. The induced mean-field
contribution to the interaction for the wave function (4) then
takes the form
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where we employed Egs. (5). In Eq. (6) we have introduced
€ = h*n?/2m and y = mg/l*n < 1 is the dimensionless
parameter describing the interaction strength between the par-
ticles of the Bose gas. By £(x;a) = f(;c dzdn?(z; a) is denoted
the Jacobi epsilon function. The parameter a depends on
the impurity strength G and separation r through the con-
dition (5b). In Eq. (6), E?(G) denotes the difference of the
ground-state energy of the system with and without an impu-
rity, which is given by

E8<5>—eﬁ(§—2n—2—"3) I
3 3 ) C+Va+G
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This result also has another interpretation. A single impurity
very strongly coupled to the Bose gas leads to a complete
depletion of the boson density at its position. The resulting
energy increase of the system, which is given by Eq. (7) taken
at G — +00, coincides with the boundary energy of the Bose
gas [48,49]. We emphasize that Eqs. (6) and (7) are exact with
respect to the impurity strength G, but they are calculated at
the lowest order in y. In Fig. 2 is shown the induced mean-
field interaction (6). It is appreciable at strong coupling and
short separations.

Strong-coupling regime. The explicit analytical result for
U(r) can be obtained once the parameter a is eliminated
from Eq. (6) using the condition (5b). In the regime r < &,
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FIG. 2. Plot of the mean-field interaction U (r) given by Eq. (6)
as a function of the dimensionless distance between impurities r/&
and the dimensionless coupling G= G./v/g. The interaction (6) is
bounded, —8¢,/¥/3 < U(r) < 0; colors on the plot correspond to
its value.

calculating a to the linear order in r /&, we obtain

~2
U(r) = E*(2G) — 2E*(G) + __ GG r (8)
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where E” is defined by Eq. (7). The interaction (8) is exact
with respect to the impurity strength G. Neglected higher-
order terms in Eq. (8) are small for r « & at any G. However,
they are small even for r = & at G > 1, tending to zero at least
as 1/G?. In the latter regime we can obtain U (r) differently.
Performing the expansion of Eq. (5b) at @ < 1, we obtain
G =~ 1/+/8acos(r/~/2&). Requiring this expression to be pos-
itive, we obtain the condition on the distances, r < 7§/ V2,
while the corresponding interaction at G — 400 is given by
the exact expression U (r) = —e,/y(8/3 — r/&). This follows
by setting a = 0 in Eq. (6) or, equivalently, from the result (8)
at G — +o00. Therefore, the interaction (6) is accurately de-
scribed by the linear function (8) at impurity separations that
can be even longer than & in the regime of strong coupling,
G> 1 ~

The linear form of the interaction (8) at G >> 1 can be
understood using a simplified approach where we approxi-
mate the wave function (4) as ¥o(x) = /u/gat |x| > r/2 and
Yo = 0 otherwise. This can be justified by noting that |/(x)|?
is a convex, even function for |x| < r/2 and thus it satisfies
[Yo@))? < |Wo(0)]? ~ na ~n/G* K natr < né/ﬁ. From
Egs. (2) and (3) we then easily recover the term €,/y r/& in
the interaction, but not the constant term. This must be the
case as the latter effect cannot be described by the simplified
form for ¥ (x), since the density depletion of the characteris-
tic size £ at |x| > r/2, near the impurities, is neglected.

Large-distance regime. At r > &, the interaction (6) can be
explicitly evaluated by substituting r/§ = /2(1 4 a)[K(a) —
c] in Egs. (5b) and (6). This parametrization is motivated by
the identity cd(K(a);a) = 0, where K(a) denotes the com-
plete elliptic integral of the first kind. After performing the
expansion around a = 1, we find G = 2/ sinh(2c¢), and
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The attractive interaction (9) is valid at arbitrary G [50].
In the special case of weak coupling, G < 1, it reduces to
the known result [41,43,52], U(r) = —26\/752(% Unlike
Eq. (9), the latter result applies at any r. In Fig. 1 are illus-
trated different regimes of the induced interaction. We notice
that the result (9) can be understood classically. Each of the
impurities produces the disturbance in the boson density of
the characteristic size &. At separations of several &, the two
disturbances practically do not overlap, resulting in an expo-
nentially decaying mean-field interaction.

Quantum contribution. One should be aware, however, that
at distances longer than a few & the quantum contribution
U?(r) to the induced interaction becomes important. It is
given by [44,53,54]

h > :
Uor) = %Im / dkIn[1 —r(k)*¢**],  (10)
0

where v = fin,/y /m denotes the sound velocity. The central
quantity in Eq. (10) is r(k), which is the reflection amplitude
of the Bogoliubov quasiparticle with wave vector k on the
potential of the single impurity placed at the origin in the Bose
gas. The corresponding scattering problem is obtained by
studying the quantum correction, v, (x, 7), to the mean-field
single-particle bosonic operator, ¥y (x, t). The former can be
understood as a superposition of Bogoliubov quasiparticles. It
satisfies the linear equation [29]

e

ot 2m ox?

+ gV ()2 (x, ). (11)
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Here V(x) = Gé(x) is the impurity potential, and o(x) =
J/ntanh (|x|/€ + arctanh(n)), which is obtained from the
more general solution (4) replacing G — G/2 and r — 0.

The reflection amplitude for the scattering problem (11)
can be calculated using the standard methods [55,56]. At small
momenta and arbitrary G we obtained

r(k)——i<2+—éz+€;— I)Sk (12)
2\V4+G? ‘

The neglected subleading terms in Eq. (12) are small at §k <
1 in the regime of weak coupling, G < 1. However, they
can be omitted under the more stringent condition £k < 1/G
in the regime of strong coupling, G >> 1. This signals_the
existence of another regime at intermediate momenta, 1/G <
§k < 1, in the latter case. Therefore, we should study the case
&k ~ 1/G <« 1, where we found

£k

"= s

(13)

Equation (13) describes the crossover between the regimes
1/G < &k with v(k)= 1, and £k < 1/G with r(k) = —iG&k,
which is a special case of the more general result (12).
Results for the quantum contribution. We are now pre-
pared to evaluate the quantum contribution to the induced
interaction between impurities. Substitution of the reflection
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amplitude (12) in Eq. (10) leads to

1 24 G2~ £3

16”6)/( F—i—GZ—i_G 1) el (14)
The long-range interaction (14) applies at distances r >
& max(1, G) In the regime of weak coupling, G <« 1,itis in
agreement with the corresponding result of Refs. [42,43,52].
Our result (14), however, applies at arbitrary coupling G. It
gives explicit dependence of the induced interaction on G.

The interaction (14) becomes inaccurate as the distance
decreases toward the crossover regime, r ~ £G > &. There
we should use the reflection amplitude (13), yielding

Ul(r )_67/g dzln(l—
27 r 0

US(r) =

et
—_— ). 15
(z+2r/EG)? > ()

Equation (15) applies at G > 1 for arbitrary r. In the regime
of intermediate distances, £ < r < & G from Eq. (15) we find
the induced long-range interaction,

Ul(r) =
The interaction (16) shows much slower decay than the re-
sult (14), valid in the regime of longest distgnces. Atr > &G,
Eq. (15) reduces to Eq. (14) evaluated at G > 1. We notice
that the interaction (16) coincides with a general result for the
Casimir interaction between two strong §-function scatterers
in a massless scalar one-dimensional field [57]. In Fig. 1
are shown our results for the induced interaction at arbitrary
distances and coupling between the impurities and the Bose
gas.

Discussion. The induced mean-field interaction (6) was
evaluated for heavy, static impurities. This is not a fundamen-
tal limitation of our study since the dynamics of impurities can
be accounted for by studying their kinetic energy in perturba-
tion theory. The latter is controlled by small parameter m/M,
where M denotes the impurity mass. The correction to the
ground-state energy (2) can be straightforwardly expressed in

terms of ¥ of Eq. (4) as
2
19%y 0 I/fo). (17)
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Here we assumed that the center of mass of the system is mo-
tionless. This is possible since the total momentum commutes
with the Hamiltonian and thus it is a conserved quantity, taken
to be zero. Equation (17) gives a small positive correction to
the interaction (6), proportional to (m/M)e /v .

The induced attraction between impurities mediated by the
surrounding Bose gas will favor the formation of their bound
state, called bipolaron [52,58-62]. Two heavy impurities at
the same position increase the system energy by E*(2G),

AE(r)

while the increase is 2E* (G) when they are far apart. Here
E* is defined by Eq. (7). The difference ZEB(G) EB(ZG)
is positive and defines the bipolaron binding energy. A finite
impurity mass M gives rise to two effects. Firstly, there is
a correction to the induced interaction, as discussed in the
previous paragraph. It increases the binding energy on the
order of (m/M)e./y. Secondly, at finite M the bound state
should be described quantum mechanically. It acquires a finite
spread around r = 0, leading to a positive zero-point motion
that decreases the binding energy. At G > 1, the correspond-
ing energy change is proportional to (m./y /M W 3eﬁ [63].
This follows from the study of the Schrodinger equation in
the linear potential determined by Eq. (8). Here we must note
that in order to find the lowest energy state for two massive
polarons, it is sufficient to consider the interaction potential
at small separations, which is linear. The wave function is
localized in the region where the potential is linear, rapidly
vanishing in the forbidden region. The opposite signs and dif-
ferent parameters in the two corrections to the binding energy
leave the possibility to fine tune it varying y, which describes
the interaction strength of the Bose gas. The detailed study of
properties of bipolarons is postponed for a future work.

Conclusion. In this paper we have analytically calculated
the induced interaction between polarons in a weakly inter-
acting Bose gas. We have studied the general case of arbitrary
coupling of impurities to the Bose gas G > 0 and separation r,
and obtained the nonperturbative results (8), (9), (14), as well
as (16) that apply in four characteristic regions, see Fig. 1. The
induced interaction is attractive and will lead to the formation
of a bound state of polarons. An interesting extension of this
paper would be a study of a macroscopic number of polarons
in the Bose gas and their clusterization into multipolaron
states. We notice that N heavy Bose polarons in the Bose gas
will form a N-polaron bound state since E*(N G) < NE*(G).
However, a more realistic case should account for the polaron
mass and mutual repulsion between them, which will favor
the creation of smaller clusters. We finally remark that the
exact solution (4) of the Gross-Pitaevskii equation (1) will be
relevant to other situations, since the latter equation has much
broader applicability than the scope of this paper. Similarly,
the scattering approach [cf. Eq. (10)] can be applied to study
the quantum contribution to the induced interaction between
foreign particles in higher-dimensional media.

Note added in proof. Recently, a related preprint that con-
tains a study of the mean-field contribution to the induced
interaction appeared on arxiv that is eventually published [64].
It reports an expression for the interaction that differs from our
Eq. (6) by the r-independent term 2E B(G)
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