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Two types of dark solitons in a spin-orbit-coupled Fermi gas
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Dark solitons in quantum fluids are well-known nonlinear excitations that are usually characterized by a
single length scale associated with the underlying background fluid. We show that in the presence of spin-orbit
coupling and a linear Zeeman field, superfluid Fermi gases support two different types of nonlinear excitations
featured by corresponding length scales related to the existence of two Fermi surfaces. Only one of these types,
which occurs for finite spin-orbit coupling and a Zeeman field, survives to the topological phase transition, and
is therefore capable of sustaining Majorana zero modes. At the point of the emergence of this soliton for varying
Zeeman field, the associated Andreev bound states present a minigap that vanishes for practical purposes, in
spite of lacking the reality condition of Majorana modes.
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Introduction. Dark solitons are topological excitations that
result from the balance between interaction and kinetic energy
[1]. In ultracold Fermi gases [2], a dark soliton is a phase
domain wall in the pairing wave function (or order parameter),
which vanishes at the soliton core and shows a π -phase jump
across it. Dark solitons probe features of the underlying super-
fluidity of the Fermi gas, and provide a connection between
macroscopic motion and dynamics at the interatomic length
scale.

The static structure, dynamics, and stability of dark soli-
tons in ordinary Fermi gases have been widely investigated,
both theoretically [3–8] and experimentally [9–11]. Mean-
while, the properties of solitons in spin-orbit (SO)-coupled
Fermi gases [12–19] are less well understood. In the presence
of a SO coupling and a linear Zeeman field, an interacting
Fermi gas exhibits a topological phase transition between the
regular superfluid phase and the topological superfluid phase,
where the latter one supports Majorana zero modes (MZMs)
[20–24]. The MZMs can be found when the fermionic pairing
vanishes locally, and thus they are associated either with the
system boundary, as edge states, or with internal, local de-
fects which locally destroy superfluidity, as pinned modes. A
particularly interesting example of the latter in one dimension
(1D) is the dark soliton. MZMs have striking features [25–27]
and have potential application in fault-tolerant quantum com-
putation [28–30]. In addition, dark solitons hosting MZMs
exhibit novel dynamics distinct from the normal behavior of
solitons [31]. In SO-coupled Fermi gases, most of the atten-
tion has been focused on solitons that smoothly connect to
ordinary solitons when the SO coupling and the Zeeman field
go to zero [32,33]. The presence in this system of two Fermi
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surfaces [34], with different characteristic energy and length
scales that feature distinct condensation peaks of fermionic
pairs, suggests the possible existence of different types of
topological excitations for finite SO couplings. However, to
the best of our knowledge, this possibility has been over-
looked.

In this Letter we show that in the presence of SO cou-
pling and Zeeman field, the Fermi gas supports two different
types of dark solitons characterized by length scales related
to the existence of two, inner and outer, Fermi surfaces. In
complement to previous studies [32,33], we find that (i) an
alternative type of soliton associated with the outer Fermi
surface, existing only in the presence of SO coupling and a
Zeeman field, has continuation (as based on the continuous
existence of such a Fermi surface) into the topological regime
where it hosts MZMs at the core, (ii) the onset of this soliton
is accompanied by the appearance of nontopological quasi-
zero-energy Andreev bound states (ABSs) inside the core,
(iii) the soliton associated with the inner Fermi surface, which
smoothly connects to the regular soliton without SO coupling,
has no continuation into the topological regime as its charac-
teristic length scale vanishes when approaching the transition
point, and (iv) the order parameter profile, the particle density,
and the associated ABS spectrum are distinct for the two types
of solitons. This characterization also allows us to propose
accurate ansatzes to describe MZMs inside the soliton core.

Model. We consider a 1D spin-1/2 Fermi gas with SO
coupling at zero temperature. Within a mean-field approach,
the energy spectrum Ej and the corresponding fermionic
quasiparticle amplitudes {uσ j (x), vσ j (x)} with spin σ =↑,↓
are given by the Bogoliubov–de Gennes (BdG) equa-
tions [23,24,32,33,35]

[
Ĥso i�σy

(i�σy)† −σxĤsoσx

]
ψ j = Ejψ j, (1)
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where ψ j = [u↑ j, u↓ j, v↑ j, v↓ j]T and j = 1, 2, . . . labels the
state, and the single-particle Hamiltonian is

Ĥso = − h̄2

2m
∂2

x + Vext (x) − μσ + h̄k�

m
p̂x σz − ν σx. (2)

Here, σi=x,y,z are Pauli matrices, ν denotes the strength of the
Zeeman field (or linear coupling), kl couples the orbit and spin
degrees of freedom, and Vext (x) is the confining potential. We
focus on spin-balanced systems [35], with chemical potential
μ↑ = μ↓ = μ. The BdG equation (1) has the particle-hole
symmetry, i.e., Cψ∗

Ej
= ψ−Ej , that connects the positive-

and negative-energy states through [uσ , vσ ] → eiφ[v∗
σ , u∗

σ ] as
Ej → −Ej , where C satisfies C∗C = I [36]. Hence the two
eigenstates corresponding to energies ±Ej describe the same
physical degrees of freedom. The modes that satisfy the reality
condition Cψ∗

Ej
= ψEj are Majorana fermions [27,37,38]. The

particle-hole symmetry ensures that the reality condition can
be achieved only for Ej = 0, i.e., Cψ∗

0 = ψ0 or uσ = eiφv∗
σ .

At zero temperature, the number density can be written as
n(x) = ∑

j,σ,Ej�0 |vσ, j (x)|2, and the order parameter of paired
fermions as �(x) = g1D

∑
j,Ej�0 u↓ j (x)v∗

↑ j (x), where g1D <

0 is the 1D attractive interaction strength between opposite
spin particles. We characterize the interaction by the nondi-
mensional parameter γ = m |g1D|/(π h̄2 kT F ), where kT F =
πnT F /2 and nT F are the Fermi wave number and the number
density, respectively, of the noninteracting gas.

Two Fermi surfaces. For the static, uniform density
state, the plane-wave expansion of the spinor ψk (x) =
[u↑k, u↓k, v↑k, v↓k]T exp(ikx)/

√
2π provides the dispersion

(positive-energy branches)

E1,2(k) =
√

ε2
k + ν2 + ζ 2

� ± 2
√

ζ 2
k ζ 2

� + ε2
k ν2, (3)

where ζk = h̄2k2/(2m) − μ, ζ� = h̄2k�k/m, εk =
√

ζ 2
k + |�|2

is the eigenenergy of the Fermi gas in the absence of SO
coupling, and E2(k) > E1(k). For k = 0, Eq. (3) gives h̄ω0 =
ν ±

√
μ2 + |�|2. The energy gap of the lower branch is

closed for νc =
√

μ2 + |�|2. For ν > νc the gap reopens,
and the system enters the topological regime [20–23]. Such
closing and reopening of the energy gap is an instance of
a topological transition: broadly speaking, a transition that
separates two phases characterized by the value of a topologi-
cal invariant (instead of a broken symmetry) [26]. Particular
features introduced by the SO coupling emerge from the
two-band structure of the dispersion. These bands give rise
to two Fermi surfaces associated with Fermi wave vectors
kF± = πn±/2, where n± represent different contributions to
the total number density, n = n+ + n−, from both bands. The
scenario is simpler for � = 0, where particle and hole equa-
tions separate; in this case n+ and n− correspond to different
bands, and, just by filling the respective Fermi seas up to
the chemical potential, one obtains the two Fermi momen-

tum kF± =
√

k2
μ + 2k2

� ±
√

4 k2
� (k2

� + k2
μ) + k4

ν , where kν =
√

2mν/h̄. In the absence of SO coupling and the Zeeman field,
i.e., k� = ν = 0, kF+ = kF− ≡ kμ = √

2mμ/h̄ is the usual
Fermi momentum. When the interparticle interactions operate
(� �= 0), the Fermi wave vectors evolve into the minima of

FIG. 1. Momentum distribution Nk = ∑
σ v2

σk = Nk,1 + Nk,2

(dashed line) and symmetric condensation amplitude
Fk = u↓kv

∗
↑k − u↑kv

∗
↓k = Fk,1 + Fk,2 (solid line) in the regular

superfluid phase (top panel) and in the topological phase (bottom
panel), where Nk,i=1,2 and Fk,i=1,2 account for the contributions from
each band. The condensation amplitude peaks at the position of the
Fermi surfaces. Here, kl = 0.75kμ and � = 0.25μ. The inset shows
the dispersion of the two positive-energy bands E1,2(k).

the dispersion curves [2]. In particular, in the presence of
SO coupling, they can be obtained, with kF+ � kF− , from
the lowest positive-energy band of the interacting system as
∂E1(k)/∂k = 0 [39]. Notably, for ν � νc, it gives kF− = 0.

The existence of two Fermi surfaces can be clearly seen
from the momentum distribution Nk = v2

↓k + v2
↑k for the

two bands E1,2(k) of the interacting system, along with
the associated (symmetric) condensation amplitude Fk =
u↓kv

∗
↑k − u↑kv

∗
↓k [40] (Fig. 1). The momentum distribution

presents a balanced spin population, since uσk = uσ̄ ,−k and
vσk = −vσ̄ ,−k . Before the topological transition, ν < νc, the
lowest-energy band E1(k) gives rise to two separated, inner
(contributing to n−) and outer (contributing to n+), regions
of occupied momentum states (top panel of Fig. 1). The
highest-energy band E2(k) presents a single momentum re-
gion (contributing to n+) of occupied states in the range of
wave numbers k ∈ [−kμ, kμ]. Correspondingly, the peaks of
the condensation amplitude Fk appear at ±kF± (top panel of
Fig. 1). When the system enters the topological regime (ν �
νc), the inner momentum region of occupied states in E1(k)
vanishes, and so does the associated condensation amplitude
peak occurring at kF− = 0 (bottom panel of Fig. 1).

These features suggest that the considered SO-coupled
Fermi gas system can support two type of solitons with typical
length scales associated with the two values of the Fermi
momentum ξ± = h̄2kF±/(m|�∞|) [3]. We refer to these so-
lutions, associated with kF− and kF+, as type-I and type-II
solitons, respectively. The type-I soliton smoothly connects to
the normal dark soliton as k� → 0 and ν → 0. To show that
this is the case, we numerically solve the BdG Eqs. (1) for
a system in a hard-wall potential [41], and search for a self-
consistent solution (by means of a modified Broyden’s method
[42]) starting from the ansatz �̃− = |�∞| tanh(2x/ξ−). We
find that the profiles of the order parameter � and the density n
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(a)

(b)

FIG. 2. Comparison between type-I and type-II solitons in the
normal superfluid phase for ν = 0.53μ and k� = 0.75kμ. (a) Modu-
lus of the order parameter (top panel) and the density (bottom panel)
profiles of type-I and type-II solitons for an interaction strength
γ = 0.73. A regular soliton for the same interaction strength and
without SO coupling (k� = ν = 0) is also shown for comparison.
(b) Order parameter profiles for two interaction values γ1 = 0.5 and
γ2 = 0.73. Apart from the Friedel oscillations, the ansatzes �̃± (see
the main text) capture well the soliton length scales as probed by the
Fermi wave numbers kF− (left panel) and kF+ (right panel).

of the type-I soliton have similar shapes as those of solitons in
the absence of SO coupling for equal interaction, and the small
differences are merely quantitative [Fig. 2(a)]. Our results
for the ABSs energies of type-I solitons, as functions of ν,
are consistent with previous studies [32,33]. Slightly before
the topological transition, the first two ABSs energies be-
come again degenerate (the degeneracy happens also at ν = 0)
(Fig. 3). Beyond this point, we have not found type-I soliton
solutions, which is consistent with the fact of the vanishing
Fermi surface associated with kF−.

Type-II dark solitons. We find type-II soliton solutions to
the BdG Eqs. (1) by starting the usual self-consistent numer-
ical procedure from the ansatz �̃+ = |�∞| tanh(2x/ξ+). As
can be seen in Fig. 2(a), not only are the widths of the two
types of solitons distinct, but also the presence of Friedel
oscillations, notably accentuated in the type-I soliton, marks
an important difference between them [Fig. 2(b)]. Moreover,
the density dip at the core shows a stark contrast between the
solitons, with the type-II density having a very low depletion

FIG. 3. The three lowest quasiparticle energies of the hard-wall
trapped system with a dark soliton in the center. Both the interaction
strength γ = 0.73 and the SO wave vector k� = 0.75kμ are fixed
for varying linear coupling ν. The topological transition takes place
at νc ≈ 1.45μ. Below νc the two lowest-energy modes are ABSs
localized at the soliton core: εI

1,2 and εII
1,2 are the energies associated

with type-I and type-II solitons, respectively. ε3 is the third lowest
excitation energy that corresponds to a bulk mode. For these pa-
rameters, type-II solitons emerge at ν = ν∗ � 0.5μ. The inset shows
the spectrum in the vicinity of the transition point, where the x axis
represents ν/νc instead of ν/μ. In the yellow region the system is
very sensitive to small ν variations, and the numerical solutions (not
shown) present a poor convergence.

due to the soliton presence [Fig. 2(a)]. Since the length scale
kF+ persists across the topological transition, the associated
type-II solitons can be found in both the nontopological and
the topological regimes, and so it gives rise to topological
solitons that support MZMs.

In the nontopological regime both types of solitons host
two ABSs localized at their cores [43], whose energies are the
lowest among the quasiparticle excitation energies (Fig. 3).
The lowest-energy bound state of type I swaps the u↑ j and
v↓ j components of type II, while the second lowest bound
state has essentially the same profile for both types (although
their energies differ due to the respective order parameters at
the core). The other spin components u↓ j and v↑ j show equal
moduli |u↑ j (x)| = |u↓ j (x)| and |v↑ j (x)| = |v↓ j (x)|, but oppo-
site phase gradients ∂x arg u↑ j = −∂x arg u↓ j , and ∂x arg v↑ j =
−∂x arg v↓ j .

Our numerical results show that, for general parameters
and given k�, there is a threshold linear coupling ν∗, such that
type-II solitons only exist for ν > ν∗; below this threshold
only type-I solitons can be found. In low-pairing systems,
|�|/μ 
 1, the presence of two well-resolved condensation
peaks at the Fermi surfaces, i.e., (kF+ − kF−)ξ+ � 1 [44], is
a sufficient condition for the existence of type-II solitons.

Nontopological quasi-zero-energy modes and MZMs. In-
terestingly, at the point of emergence of the type-II soliton
ν = ν∗, the lowest-energy bound state presents a vanishing ex-
citation energy [typically εII

1 (ν∗) = 10−2–10−3μ, see Fig. 3].
However, this quasi-zero-energy mode does not share the
particle-hole symmetry of MZMs, i.e., |u↑ j | �= |v∗

↑ j |. For a
zero-energy eigenmode, the particle-hole symmetry relates
ψ0+ and ψ0− through Cψ∗

0+ = ψ0−. However, for nontopo-
logical modes ψ0− �= ψ0+, while for MZMs, within numerical
accuracy, ψ0− � ψ0+. The vanishing energy of εII

1 (ν∗) is a
result of the accidental cancellation of different energy terms
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(a)

(b)

FIG. 4. Type-II solitons and MZMs in the topological regime of a
hard-wall trapped Fermi gas with interaction strength γ = 0.73, SOC
wave vector k� = 0.75kμ, and linear coupling ν = 1.5μ. (a) Com-
parison between the numerical solution for one of the MZMs at the
soliton core and the analytical ansatz Eq. (4), evaluated with the value
of kF+ for the noninteracting gas. (b) The zero-energy modes give
rise to localized MZMs at the edges and at the soliton core. Inside the
core the modes fulfill u↑ = −iv↓ while at the edges u↑ = iv↓ [35].

in the BdG Hamiltonian and has nothing to do with MZMs
[for which we find typical excitation energies several orders of
magnitude smaller than εII

1 (ν∗)]. This kind of nontopological
quasi-zero-energy mode has also been discovered in other rel-
evant systems [45–54]. When ν → νc, the two ABSs energies
associated with the type-II soliton εII

1,2 → 0 (Fig. 3).
Topological regime. Within the topological regime, as in

previous works [32,33], we find two fermionic zero-energy
eigenstates of the BdG Eqs. (1) with energies E0

1 ∼ E0
2 ≈ 0.

Each of the eigenstates can be decomposed into two MZMs.
At the soliton core there are two localized MZMs and the
other two MZMs are localized at the left and right edges
(Fig. 4). The MZMs at the soliton core can be written
as ψM

1,2 = N0[U0,V0]T , where U0 = [u1,2, u∗
1,2]T , V0 = i σxU0,

and N0 is the normalization factor. Here, u1,2 ≡ u↑,1,2 and
we have used the spin balance condition (u↓ = u∗

↑, v↓ =
−v∗

↑) and the reality condition (uσ = eiφv∗
σ with φ = π/2).

We propose the following ansatzes of the MZMs at the
soliton core,

ũ1 = N1 f (kF+x)sech(x/ξ+),

ũ2 = −N2 k−1
F+∂x f (kF+x)sech(x/ξ+),

(4)

where f (kF+x) = cos(kF+x) + i α sin(kF+x), and it solves
Eq. (1) exactly with α = −2k�kF+/(k2

ν + k2
F+ − k2

μ) when
� = 0. N1,2 are normalization constants that produce∫

dx|ũ1,2|2 = 1/4. The ansatzes show good agreement with
the numerical results [Fig. 4(a)]. In general, two MZMs have

to be far apart to avoid the overlapping of their wave functions,
hence to ensure that their splitting energy is exponentially
small. Here the two MZMs are localized in the same core
region, but the out-of-phase oscillation of their wave func-
tions produces a vanishing overlap, i.e.,

∫
dx(ψM

1 )†ψM
2 =

4 Re(
∫

dx u∗
1u2) = 0. This phenomenon has also been re-

ported in Refs. [32,55].
Conclusion. We discovered an alternative type (type II) of

dark solitons in a spin-orbit-coupled Fermi gas under an ex-
ternal Zeeman field. Type-II solitons have no correspondence
in ordinary Fermi gases and appear only for a finite Zeeman
field. Previously, the Majorana solitons had been presented in
the literature as the natural counterpart of the regular type-I
soliton found in the nontopological regime. We show that
this is not the case, since only this type-II soliton exists in
both the nontopological and the topological regimes, and so in
the latter regime it hosts Majorana zero modes. Our findings
provide a different scenario of soliton excitations in spin-
orbit-coupled Fermi gases. More generally, the emergence
of the type-II soliton in the nontopological regime implies
the coexistence, for a given set of parameters in an interact-
ing, quantum-degenerate fermionic system, of two different
types of nonlinear excitations featuring a localized π -phase
jump in the order parameter. In this regard, type-II solitons
could also be found in other condensed matter systems in the
search for the realization of Majorana zero modes, such as the
1D hybrid nanowires with a semiconductor-superconductor
structure in the presence of spin-orbit coupling, where a π

Josephson junction gives rise to a domain wall in the order
parameter [56].

The two types of solitons are expected to exhibit strikingly
distinct dynamical behaviors. In contrast to the type-I soliton,
the physical mass of the type-II soliton, which accounts for
the density dip, is negligible. For instance, in a harmonic
trap, a type-I soliton would oscillate around the potential
minimum with a frequency that is still governed by the ratio
of its inertial and physical masses [4], while for the type-II
soliton, spin-orbit and coherent couplings would dominate
the motion. Moreover, different soliton generation strategies
[57] could be required for their experimental realization. A
simultaneous amplitude and phase engineering method [58]
might provide an initial density profile more consistent with
each soliton type. The detection and identification of the two
types of solitons in ultracold-gas experiments requires probing
both the fermionic density and the order parameter. The den-
sity could be reconstructed via, for instance, phase contrast
imaging, while the order parameter could be determined by
quasiparticle spectroscopy [59]. From these measurements,
the typical length scales and density depletion of the solitons
can be extracted. An indirect detection of the Majorana modes
would be associated with the reconstruction of the hosting
soliton once the system has entered the topological regime.
A direct (static) detection of Majorana zero modes would
involve the resolution of the density of states, or at least, as
happens with the weak link conductance in hybrid nanowires
[56], the measurement of a transport quantity capable of prob-
ing the density of states. In this regard, an anomalous result
from the measurement of the current-phase Josephson current
across the soliton could provide the signature of the presence
of Majorana zero modes [60].
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