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Deep learning for retrieval of the internuclear distance in a molecule from interference patterns
in photoelectron momentum distributions
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We use a convolutional neural network to retrieve the internuclear distance in the two-dimensional H+
2

molecule ionized by a strong few-cycle laser pulse based on the photoelectron momentum distribution. We show
that a neural network trained on a relatively small dataset consisting of a few thousand images can predict the
internuclear distance with an absolute error less than 0.1 a.u. Deep learning allows us to retrieve more than one
parameter from a given momentum distribution. Specifically, we used a convolutional neural network to retrieve
both the internuclear distance and the laser intensity. We study the effect of focal averaging, and we find that
the convolutional neural network trained using the focal averaged electron momentum distributions also shows
a good performance in reconstructing the internuclear distance.
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I. INTRODUCTION

Development of techniques aimed at visualization of elec-
tronic and molecular dynamics in real time will open new
horizons in many branches of modern science and technology.
Many different techniques for time-resolved molecular imag-
ing have been proposed thus far (see Ref. [1] for a review).
The emergence and availability of table-top intense fem-
tosecond laser systems has led to several new time-resolved
imaging techniques using the highly nonlinear phenomena
originating from interaction of strong laser pulses with atoms
and molecules (see, e.g., Refs. [2,3] for review of these phe-
nomena and the whole field of strong-field physics). Examples
are laser-assisted electron diffraction [4,5], laser induced
Coulomb explosion imaging [6–9], high-order harmonic or-
bital tomography [10,11], laser-induced electron diffraction
(LIED) [12–15], and strong-field photoelectron holography
(SFPH) [16]. The two latter methods analyze momentum
distributions of electrons from strong-field ionization. The
recent experimental achievements in LIED and SFPH (see,
e.g., Refs. [17,18]) suggest that future experiments will aim at
extracting the information about nuclear motion in a molecule
from electron momentum distributions.

The understanding of the outcomes of these forthcom-
ing experiments requires thorough theoretical studies of the
effects of nuclear motion on the photoelectron momentum dis-
tributions. Such theoretical studies are already on the way. For
instance, it was shown in Ref. [17] that the different nuclear
wave packet dynamics in hydrogen and deuterium molecules
leads to a difference in bond length, which, in turn, transforms
into a shift of the holographic fringe at certain electron mo-
menta. Before analyzing the imprints of the nuclear motion
in momentum distributions, it is useful to study the distribu-
tions for fixed nuclei with varying internuclear distance. In
the present paper we address this problem using methods of
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machine learning, which is “a subfield of Computer Science
wherein machines learn to perform tasks for which they were
not explicitly programed” [19].

Machine learning, and more specifically deep learning
(see, e.g., Refs. [20,21] for textbook treatments), has been
successfully applied to the prediction of the flux of high-order
harmonics for different experimental parameters [22], the pre-
diction of the ground-state energy of an electron in various
two-dimensional (2D) confining potentials [23], and the re-
construction of the intensity and the carrier-envelope phase
(CEP) of ultrashort laser pulses from 2D images, namely
from frequency-resolved optical gating traces [24] and from
dispersion scan traces [25]. Recently a deep neural network
was also applied to develop an efficient numerical implemen-
tation of the trajectory-based Coulomb-corrected strong-field
approximation (TCSFA) (see Refs. [26,27] for the foundations
of the TCSFA method) [28]. In all these examples the appli-
cation of machine learning allowed the avoidance of heavy
computational costs that would be inevitable when solving
these problems using traditional ways.

Very recently the convolutional neural networks (CNN)
were used to predict high-order harmonic generation (HHG)
spectra for model di- and triatomic molecules for randomly
chosen parameters. The latter include laser intensity, in-
ternuclear distance, and orientation of the molecule [29].
Furthermore, it was shown in Ref. [29] that the CNN can be
used for solving inverse problems: determination of molecular
and laser parameters, as well as classification of molecules
based on their HHG spectrum (or time-dependent dipole
acceleration) alone. These problems are hard to solve by man-
ually inspecting a variety of complex spectra. On the other
hand, classification is one of the typical tasks of machine
learning. A similar situation is found for the problem of the
present work. In this paper we train a CNN to predict the in-
ternuclear distance in the 2D model H+

2 molecule from a given
photoelectron momentum distribution (PMD). Application of
a CNN is not the only possible way to retrieve the internuclear
distance from electron momentum distributions. This problem
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can be also solved by directly comparing the given PMD with
a precalculated set of momentum distributions corresponding
to various internuclear distances. However, the direct compar-
ison is not expected to perform well when used on momentum
distributions that it has not explicitly trained for. Therefore,
we focus on the CNN in this paper. Although the CNN will
also face problems when tested on distributions it has not
been trained for, it is of interest to address this question
quantitatively.

The momentum distributions that are needed to train the
CNN are calculated from the direct numerical solution of
the time-dependent Schrödinger equation (TDSE). We show
that a good accuracy of the predictions can be achieved even
for relatively small sets of training data. We then study the
effect of the focal averaging on the retrieval of the internuclear
distance with the CNN.

II. MODEL

A. Solution of time-dependent Schrödinger equation

For the calculations we use a few-cycle linearly polarized
laser pulse that is defined in terms of the vector-potential and
present between t = 0 and t f = (2π/ω)np:

�A(t ) = (−1)np
F0

ω
sin2

(
ωt

2np

)
sin (ωt + ϕ)�ex. (1)

Here �ex is a unit vector in the polarization direction (x axis),
np is the number of optical cycles within the pulse, and ϕ is
the CEP. The electric field is to be obtained from Eq. (1) as
�F (t ) = −d �A/dt . We do our simulations for ϕ = 0.

In the velocity gauge, the 2D TDSE for an electron inter-
acting with the laser pulse is given by

i
∂

∂t
�(x, y, t ) =

{
−1

2

(
∂

∂x2
+ ∂

∂y2

)

− iAx(t )
∂

∂x
+ V (x, y)

}
�(x, y, t ), (2)

where �(x, y, t ) is the coordinate-space wave function and
V (x, y) is the soft-core binding potential of the model H+

2
molecular ion in the frozen nuclei approximation:

V (x, y) = − 1√
(x − R/2)2 + y2 + a

− 1√
(x + R/2)2 + y2 + a

. (3)

Here, R is the internuclear distance and a = 0.64 is the soft-
core parameter. We use the Feit-Fleck-Steiger split-operator
method [30] to solve the TDSE Eq. (2). The ground-state
wave function was obtained by imaginary time propagation.
Our computational box was centered at (x = 0, y = 0) and
extends over x ∈ [−400, 400] a.u. and y ∈ [−200, 200] a.u.
We use equal grid spacings for x and y coordinates, �x =
�y = 0.1954 a.u.

The wave function was propagated from the beginning
of the laser pulse t = 0 to t = 4t f with the time step �t =
0.0184 a.u. We apply absorbing boundaries to prevent unphys-
ical reflections of the wave packet from the boundary of the
computational grid, i.e., at every time step the wave function

is multiplied by the mask:

M(x, y) =
{

1 for r � rb

exp[−β(r − rb)2] for r > rb
. (4)

Here, r =
√

x2 + y2, rb = 150 a.u. and β = 10−4. We note
that at the intensity of 4.0 × 1014 W/cm2 and for the
wavelength of 800 nm, the characteristic amplitude of the
laser-induced electron quiver motion is F0/ω

2 = 32.8 a.u.
Therefore, the position of the absorbing boundary rb exceeds
this value by a factor of 4.5. The photoelectron momentum
distributions are calculated by using the mask method [12,31].

B. Architecture of convolutional neural network

The choice of architecture of a neural network should ac-
count for the structure of the data used for learning and the
desired output. In our case the data used for learning are the
pairs consisting of the PMD (image) and the corresponding
internuclear distance R (label). Bearing in mind that the H+

2
molecule is ionized by a laser field linearly polarized along the
internuclear axis, we assume that every PMD has the aspect
ratio 2 : 1. The details of the necessary image preprocessing
are given in Sec. III. We train the neural network to solve the
regression problem, i.e., to predict the internuclear distance R
from a given PMD.

The deep neural network that we use for the problem at
hand consists of five nonreducing convolutional layers, each
followed by a reducing average pooling layer. Each of the
nonreducing convolutional layers operates with 32 filters with
sizes of 3 × 3 pixels. These convolution layers produce new
images “feature maps” (see, e.g., Ref. [21]). The number of
these new images equals the number of filters. The values of
the filter matrices are to be determined through the training
process, i.e., they play the same role as the trainable weights
of an ordinary artificial neural network. After performing
the convolution operation, all the convolutional layers apply
the rectified linear unit (ReLU) activation function, which is
defined as ReLU(x) = max(0, x). The average pooling layers
divide the images they get into pooling regions with sizes of
2 × 2 pixels and calculate averaged values in every region.
Therefore, each average pooling layer reduces the size of the
image by a factor of 2. The last average pooling layer is
connected to the dropout layer that randomly sets its input
elements, i.e., output of the preceding layer, to zero with a
certain probability. This probability is chosen to be equal to
0.2. The dropout layer allows us to avoid overfitting. The
output of the dropout layer is fed to a fully connected layer
that produces only one single value: the internuclear distance
R. This is the output value of the whole neural network.

III. NUMERICAL EXPERIMENTS AND RESULTS

The photoelectron momentum distributions calculated
from the solution of the TDSE (2) for three different inter-
nuclear distances are shown in Figs. 1(a), 1(c), and 1(e). It is
seen that the shape of the distribution changes considerably
with increasing R. However, the quantification of the corre-
sponding changes in the PMDs is a nontrivial task. This makes
application of neural networks particularly appropriate. In
order to train the neural network, we first need to produce a

L021102-2



DEEP LEARNING FOR RETRIEVAL OF THE … PHYSICAL REVIEW A 105, L021102 (2022)

-2 0 2

k
x
 (a.u.)

-2

0

2

k
y
 (

a.
u
.)

-2 0 2

k
x
 (a.u.)

-2

0

2

k
y
 (

a.
u
.)

-5

-4

-3

-2

-1

0

-2 0 2

k
x
 (a.u.)

-2

0

2

k
y
 (

a.
u
.)

-2 0 2

k
x
 (a.u.)

-2

0

2

k
y
 (

a.
u
.)

-5

-4

-3

-2

-1

0

-2 0 2

k
x
 (a.u.)

-2

0

2

k
y
 (

a.
u
.)

-2 0 2

k
x
 (a.u.)

-2

0

2

k
y
 (

a.
u
.)

-5

-4

-3

-2

-1

0

(a) (b)

(f)(e)

(c) (d)

FIG. 1. Electron momentum distributions for ionization of the H+
2 molecule by a laser pulse with a duration of np = 2 cycles and

wavelength of λ = 800 nm obtained from numerical solution of the TDSE. (a), (b) correspond to the internuclear distance 2.0 a.u.; (c),
(d) correspond to the internuclear distance 5.0 a.u.; (e), (f) correspond to the internuclear distance 6.0 a.u. The left column [(a), (c), and (e)]
show the distributions calculated at fixed intensity of 4.0 × 1014 W/cm2. The right column [(b), (d), and (f)] displays the distributions averaged
over the focal volume for the same peak intensity of 4.0 × 1014 W/cm2. The laser field is linearly polarized along the x axis. The distributions
are normalized to the maximum value. Shown is the decimal logarithm of the distribution, see text.

set of training data. To this end, we solve the TDSE, Eq. (2),
for N random internuclear distances Rk ∈ [1.0, 8.0] a.u. and
peak laser intensities Ik ∈ [1.0, 4.0] × 1014 W/cm2, where
k = 1, ..., N , and we calculate the corresponding electron mo-
mentum distributions. Since the solution of the 2D TDSE
takes a few hours on four to eight modern cores working in
parallel, the formation of a large training set is computation-
ally expensive. Here we use N = 3000. About one week is
needed to create such a data set using a computer cluster.
We note that our data set is relatively small (compared with
N = 200000 and N = 30000 used in Refs. [23] and [29],
respectively). Nevertheless, for the problem at hand even such
a modest data set allows us to obtain satisfactory results.

The PMD calculated from the solution of the TDSE is a
matrix of size 4096 × 2048. The usage of matrices of such
sizes as an input for a convolutional neural network will lead
to a slow training process. For this reason, we first modify the
matrix of the PMD as follows.

We find the absolute maximum PMDmax of the distribution
and calculate the decimal logarithm of the normalized PMD:
W = log10(PMD/PMDmax). We set W = −5 for all values
that are smaller than -5. We note that in doing so we consider
not only the low-energy part of the distribution created by
the electrons that do not experience hard recollisions with
their parent ions, but also the beginning of the high-energy
part of the PMD. This high-energy part is formed due to
electrons that are driven back by the laser field to their par-
ent ions and rescatter from them. Classically, the boundary
between low- and high-energy parts of the PMD corresponds
to the momentum k = 2

√
Up, where Up is the ponderomotive

potential. For the parameters of Fig. 1, this estimate yields
k ≈ 1.87 a.u. Then we find a rectangular area such that the
values of W at the boundary of the rectangle are just above -5.
This rectangle is shown by the dashed lines in Fig. 1(a). The
image within the rectangle is resized to 256 × 128 by using
bicubic interpolation. Finally, all the elements of the matrix
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FIG. 2. Plot of predicted vs true internuclear distances illustrating the performance of neural networks. (a) Neural network trained on a
set of distributions that were calculated with fixed laser intensities (not focal averaged), see text. (b) The same neural network as in (a), but
receiving focal averaged momentum distributions as test images. (c) The neural network trained on a set of focal averaged distributions and
tested on another independent set of focal averaged distributions.

are rescaled so that the minimum value corresponds to zero
and the maximum one is mapped to 255. The resulting matrix
of the size of 256 × 128 is used as an input for the CNN.

We split our data set into training and test sets in the
ratio 0.75:0.25. Only data from the training set were used for
training of the neural network. The goal of training is the mini-
mization of the loss function, i.e., the measure of deviation (in
our case the mean squared error) between predictions of the
neural network and expected outcomes for the training set.
The MATLAB package [32] is used for the calculations. The
training of a neural network is performed on a modern PC
using a graphic processing unit and takes only a few minutes.
The prediction of the internuclear distance from one single
image when the CNN is fully operational takes us about 0.024
sec on a PC. Therefore, the validation procedure for a test set
consisting of 750 images requires only 18 sec.

The results of the application of the trained neural network
to the test data are presented in Fig. 2(a). It is clearly seen that
the neural network can successfully predict the internuclear
distance. We characterize the quality of the neural network
by the mean absolute error (MAE) between the predicted
and true values of R over the test data set - a measure,
which is different from the loss function (mean squared error)
used in the training process. The neural network predicts
the internuclear distance with the MAE of 0.07 a.u. We
have found that another neural network that uses solely the
low-energy part of the PMDs (0 < kx <

√
2Up, |ky| <

√
Up)

shows slightly worse results: the corresponding MAE of R
is equal to 0.12 a.u. This implies that the recognition of the
internuclear distance with the neural network relies mostly on
the interference patterns in the low-energy part of the momen-
tum distributions, i.e., on the holographic patterns [16], but the
accuracy can be enhanced by including high-energy electrons.

It is clear that the shape of the PMDs depends not only
on R, but also on the laser parameters, especially on the
intensity I . Deep learning allows us to retrieve more than one
parameter from a given PMD. Using the same training data
set, we have trained another CNN that is able to retrieve both
the internuclear distance and the laser intensity. The MAEs
provided by this neural network for R and I are equal to 0.07
a.u. and 0.05 × 1014 W/cm2, respectively. It is seen that the
error for R coincides with the one obtained using the very first
neural network aimed at the retrieval of only the internuclear

distance. We therefore conclude that the ability of the CNN
to retrieve both parameters does not affect the accuracy with
which the internuclear distance is retrieved.

It is well-known that the intensity fluctuates in an ex-
periment. This raises the question: How vulnerable is the
performance of the trained neural network to the effect of fo-
cal averaging? To answer this question, we calculate a number
of electron momentum distributions averaged over the focal
volume and use them to test our neural network trained on
the distributions obtained for fixed laser intensities. For a peak
intensity I0, the focal-volume averaged distribution dP/d�k can
be calculated as [35]

dP

d3k
=

∫ I0

0

dP(I )

d3k

(
−∂V

∂I

)
dI, (5)

where dP(I )/d3k is the momentum distribution for a fixed
intensity I , and (∂V/∂I )dI is the focal volume element that
corresponds to intensities between I and I + dI . We as-
sume that the laser beam has Lorentzian spatial distribution
of the intensity along the propagation direction and Gaus-
sian intensity profile in the transverse direction (see, e.g.,
Refs. [3,33,34]). The focal volume element for such a beam
is given by [35]:

(
−∂V

∂I

)
dI ∼ I0

I

( I0

I
+ 2

)√
I0

I
− 1dI. (6)

Obviously, the calculation of the focal-volume averaged dis-
tribution requires a number of TDSE solutions for different
intensities I < I0, and therefore is computationally demand-
ing. For this reason, we calculate only Na = 100 focal
volume averaged PMDs for random internuclear distances
Rk ∈ [1.0, 8.0] a.u. and peak intensities Ik ∈ [1.0, 4.0] × 1014

W/cm2 (k = 1, ..., Na).
Figure 2(b) illustrates the performance of the neural net-

work on this test set. We see that the performance of the
CNN for the averaged PMDs is not as good as for the non-
averaged PMDs. The MAE on this test set reaches the value
of 0.83 a.u., which is still better than the value 1.4 a.u. that
we find in an approach based on direct comparison with the
training set. However, it is seen that the neural network works
relatively well for PMDs that correspond to the internuclear
distances less than 5.0 a.u. Indeed, the MAE calculated for the
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focal-volume averaged PMDs with R < 5.0 a.u. is equal to
0.24 a.u. The unsatisfactory performance of the CNN for focal
averaged PMDs with R > 5.0 a.u. can be understood from a
close inspection of Figs. 1(a)–1(f). It is seen that the aver-
aged distributions for R = 5.0 a.u. and R = 6.0 a.u. shown
in Figs. 1(d) and 1(f), respectively, are similar to each other,
especially in their low-energy parts, i.e., for 0 < kx <

√
2Up

and |ky| <
√

Up. Simultaneously, these distributions are not
too similar to their counterparts calculated for fixed laser
intensity [cf. Figs. 1(c) and 1(d), as well as Figs. 1(e) and 1(f)].
In contrast to this, the averaged distributions corresponding to
smaller values of R resemble the PMDs for same internuclear
distances and fixed intensities [cf. Figs. 1(a) and 1(b)]. All
this explains why the CNN trained with the distributions for
fixed intensities underestimates large internuclear distances
by treating them as R � 5.0 a.u. Aiming at a CNN that is able
to map different PMDs (averaged and unaveraged) to the same
R would indeed imply a non-bijective mapping.

In order to understand whether the internuclear distance
can be reliably retrieved from the focal averaged momentum
distributions using deep learning, we train another CNN. This
second neural network has the same architecture as the first
one, but it is trained on a set of averaged PMDs. A set of
Na = 100 distributions is too small to train a neural network.
Therefore, the data set should be augmented. To this end,
we apply 2D interpolation on an irregular grid (see, e.g.,
Ref. [36]) in the (R, I0) plane formed by the Na points. As
a result, we produce a set of 6000 focal averaged electron
momentum distributions and use them to train our new CNN.
In order to have a test set independent of the initial Na focal
averaged momentum distributions, we produce another Na =
100 of averaged PMDs for random internuclear distances and
peak laser intensities using direct numerical solution of the
TDSE and Eq. (5). We find that the CNN trained on the set of
intensity averaged PMDs shows a rather good performance,
see Fig. 2(c). It it also seen from Fig. 2(c) that the performance
of the CNN is slightly worse for small internuclear distances
as compared to larger values of R. We attribute this to the fact
that the interpolation accuracy for the focal volume averaged
momentum distributions is slightly worse for small internu-
clear distances. Nevertheless, the MAE on the independent
test set is about 0.14 a.u. This result clearly shows that neural
networks can be used to retrieve the unknown internuclear
distance from a given electron momentum distribution even
if the latter is affected by focal averaging.

When applied to a real experimental situation it would be
desirable for a neural network to possess some transferabil-
ity, i.e., to predict correct results even for PMDs obtained at
parameters that are beyond the range of the training data. The
neural networks trained here show only limited transferability.
This is seen from the example of our first neural network
trained on nonaveraged PMDs. The application of this neural
network to a new set of PMDs obtained for internuclear dis-
tances 8.0 < R � 12.0 a.u., i.e., outside of the training range
1.0 � R � 8.0 a.u., leads to an MAE of 3.0 a.u. If our neural
network is applied to images reflected about the vertical axis
(corresponding to a change of the CEP by π ), we find an MAE
of 1.4 a.u. Slightly better results are achieved in the case where
the neural network is applied to distributions obtained for a
nonzero angles between the molecular axis and polarization

direction. The corresponding MAE is 0.9 a.u. We note that an
approach based on the direct comparison of a given PMD with
a precalculated set of the distributions shows worse results in
terms of transferability. Here we find MAEs of 5.1, 1.6, and
1.4 a.u., respectively. The transferability problem of the neural
network can be solved by the transfer learning technique (see,
e.g., Ref. [37] for details). This approach was successfully
used in Ref. [29]. The application of this technique to the re-
trieval of the internuclear distance will be a subject of further
studies.

It should also be noted that the application of the neural
network to the problem at hand is not without shortcomings.
Since any neural network works as a “blackbox”, i.e., it is
not clear how the neural network takes its decisions, it is
often difficult to assess whether it works properly for a given
input image. On the other hand, the so-called visualization
methods of deep neural networks that allow to explain the
decisions of the CNNs are being actively developed nowadays
(see, e.g., Ref. [38] for a review). Overall, there are reasons
to believe that CNNs have a high potential for extracting
various molecular properties from the electron momentum
distributions produced by strong-field ionization.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have investigated the capabilities of deep
learning for retrieval of the internuclear distance in the H+

2
molecule from a given 2D electron momentum distribution
generated by a strong laser pulse. We have shown that the
neural network trained on a few thousand images is able to
predict the internuclear distance with a MAE less than 0.1 a.u.
In addition to this, the CNN can be trained to retrieve more
than one parameter from a given PMD. We have used the
neural network to predict both the internuclear distance and
the intensity of the laser pulse. Furthermore, we have studied
the effect of focal averaging on the retrieval of the internuclear
distance with a neural network. It is shown that the CNN
trained on a set of focal averaged distributions also performs
well.

The electron momentum distributions are sensitive not only
to intensity fluctuations, but also to the changes of other laser
parameters. For short laser pulses the variations of the CEP
can change the resulting PMDs significantly. Therefore, the
effect of the CEP on the retrieval of the internuclear distance
needs to be studied. Moreover, it is of interest to look “inside”
the CNN and analyze what features of the holographic struc-
tures allow the network to classify the images. This can be
done by application of the visualization methods developed
for the CNNs. Finally, the transferability of the neural net-
works designed for the problem at hand should be improved.
These questions will be the subject of further studies. Progress
in these directions is important for the development of SFPH
and for the whole field of time-resolved molecular imaging.
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