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Applying the semiclassical model, we identify two connected effects in intraband high-order harmonic
generation (HHG): (1) propagation time from the point of emission at the source to the point of detection, and (2)
beyond-electric-dipole corrections to the light-matter interaction. These effects inherit information regarding the
dispersion and cause specific features in the spectra including even-ordered harmonics in systems with space-
and time-inversion symmetry. They can for certain experimental geometries be measured free of the dipole
background.
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High-order harmonics (HHG) is a central part of strong-
field and attosecond science due to its capability to produce
ultrafast bursts of coherent ultraviolet light and to probe
ultrafast electron dynamics [1–9]. HHG in gases can be ratio-
nalized by the three-step model, in which an atom is ionized,
the continuum electron then propagates through the external
field, and later recombines upon emission of its excess energy
[10–12]. HHG within the diverse range of condensed-matter
systems is widely debated [13–25], but for band-gap materials
often described by intra- and interband dynamics. The inter-
band process bears similarities to the three-step model [12],
as the electron is excited to a conduction band, whereafter it
propagates to later recombine with its hole and emit its excess
energy [19]. For the intraband process, harmonics are gener-
ated as an electron wave packet propagates through a band
dispersion that deviates from the quadratic free-electron one.
Although both processes are coupled [19,26], generally the in-
terband (intraband) mechanism dominates the HHG spectrum
at harmonics beyond (below) the band gap.

With increasing significance in the long-wavelength
regime [27], the intraband process described with a semi-
classical model has been excellent for modeling a variety
of HHG experiments. It has reproduced the characteristics
of the spectrum and cutoff scaling of ZnO [28], orientation
dependencies for MgO [25], orientation and polarization de-
pendencies in GaSe [29], qualitative features of the spectra
of ZnS [30], polarization and band-structure properties of
ZnSe [31,32], qualitative dynamics of the Berry curvature for
monolayer MoS2 [33], spectral features and cutoff scaling for
extreme ultraviolet beyond band-gap harmonics, as well as
reconstructed the Berry curvature of SiO2 [34,35]. In addi-
tion, the interpretation of the semiclassical model is intuitive,
as it bears resemblance to the equations of motion for free
electrons driven by electric and magnetic fields. However,
for free electrons in a similar strong-field long-wavelength
regime, a breakdown of the electric dipole approximation for
the light-matter interaction occurs in a variety of processes
(see, e.g., Refs. [36–44]). Beyond-dipole corrections are
often associated with the high-frequency regime, and thus for

condensed-matter HHG, they have only been considered in
the scope of examining the nondipole nature of the highest-
frequency components of the emitted harmonic field [45].
An investigation of the validity of the dipole approximation
within the low-frequency regime of the driving field seems
crucial, as here the dipole approximation has been readily ap-
plied for the semiclassical approach in the literature [28–35].
Following this, identification of nondipole-induced features in
the HHG spectra is critical in order to, e.g., distinguish them
from topological features, which also arise in the semiclassical
equations of motion [46]. Furthermore, since a nondipole
radiation-pressure force typically arises in the high-intensity
regime [47–49] it is relevant to reconsider the emitted radi-
ation pattern since the emitter might be moving nontrivially
towards or away from the detector.

A characteristic of the intraband process is that the har-
monics are emitted throughout the electron trajectory and
not simply upon recombination. It differs significantly from
the interpretation of gaseous or interband HHG. For HHG in
gases, the three-step model prescribes that only the contribu-
tion of the electron wave packet, which returns to the nucleus,
will emit harmonics at the recombination step [10,12]. This
happens as a part of the electron wave packet returns to
spatially overlap with the nucleus to form a time-dependent
dipole moment and generate stimulated emission. When de-
scribing the observed spectrum at a detector, the signal will
not only consist of a single atom radiation pattern but will
consist of the coherent sum of the radiation from many atoms
in the gas. The observed HHG signal is thus restricted on
constructive interference, which infers that HHG is emitted
mostly in the propagation direction of the driving field. For
an account of such macroscopic effects of gaseous HHG, see,
e.g., Ref. [50]. As a result of macroscopic effects, additional
information regarding the generation process can be gained
by considering the temporal and spatial distribution of the
emitted radiation. For HHG in gases, this can be applied
to, e.g., differentiate between long and short trajectories of
the generation process [51]. For the intraband generation
process, the dynamics are widely different. Here, the
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generation process is described from the point of view of
Bloch states, which are spread in real space across many
atomic sites. In the semiclassical model, a wave packet of
Bloch electrons is propagated. This wave packet is spread
across many lattice sites, however, localized when compared
to the applied long-wavelength driving field. The current
induced by such a wave packet thus accounts for the co-
herent motion of electron contributions across many lattice
sites. Furthermore, the intraband process does not require
the recombination step, making it intrinsically different from
the gaseous case. In the intraband dynamics, the electron
wave packet induces a current throughout its trajectory, which
causes the emission of harmonics. We expect, based on this
widely different nature of the generation process, that macro-
scopic effects of another nature arise for HHG in solids. Of
such effects are the propagational time delay required for
the emitted harmonics to reach the detector. The time delay
depends on the instantaneous distance towards the detector
for the wave packet along its trajectory. Propagation time
delay is expected to be relevant for the material characteristics
of thin samples where other propagation effects are reduced.
Similar to the gaseous case, we expect that such propagation
effects imprint an additional layer of information regarding
the generation process onto the observed spectra. Propagation
delay effects introduces new features in the HHG spectra,
which are connected to the nondipole-induced ones. Here, we
consider the following: (i) How does the variable propagation
time delay from emission to observation of the harmonics
affect the observed spectra? (ii) To what extent can nondipole
effects alter the spectra? (iii) When are such effects important,
and how are they related?

The semiclassical model for an electron wave packet
describes the dynamics of intraband electrons centered at
position r with wave vector k. We examine a system with
space- and time-inversion symmetry where the magneti-
zation and Berry curvature vanish [52], allowing us to
single out the behavior stemming from propagation time
and nondipole effects. The three-dimensional dispersion is
expanded ε(k) = h̄2

4a2me
{1 + ∑

n

∑
i={x,y,z} cn,i cos(nkia)} with

material-dependent cn,i coefficients. Similar ε(k)’s are applied
in the literature [13,27,28,30–35]. Parameters of a general-
ized zinc-based crystal are applied with cm,i = −0.95δm,1 −
0.05δm,3 and lattice spacing a = 5.4 Å [30]. Typical band gaps
for such zinc-based crystals are of 3–4 eV, corresponding to
transitions with ∼6–7 harmonic orders of the applied carrier
frequency. The dynamics of the intraband wave packet of
charge −e, e > 0, are governed by

h̄k̇ = −e(E + ṙ × B) and ṙ = 1

h̄

∂ε(k)

∂k
, (1)

where E and B are the space- and time-dependent elec-
tric and magnetic fields derived from the vector potential
A = A0(η)[0, ε cos(η), sin(η)]T with η = ωt − ωx/c, where
c is the speed of light. Throughout this work an an-
gular frequency of ω = 0.0217 a.u. (λ = 2100 nm) is
applied. A0(η) is a 30-cycle sin2 envelope function, and
ε ∈ [0; 1] describes the polarization, with ε = 0 and ε = 1
for linearly and circularly polarized light, respectively. To
retain an intensity of I = 5.3 × 1011 W/cm2 when vary-
ing ε, the amplitude of the vector potential in atomic

FIG. 1. Illustration of the electron dynamics in retarded time.
The incoming electric field E(r, tret ), illustrated as circularly polar-
ized in the (y, z) plane and propagating in the x direction, induces
an electron wave-packet trajectory, which is magnified in the figure.
Relative to this trajectory, the detector position is noted R(tret ) and
depends on the retarded emission time tret. After the propagational
delay between tret and the detection time t , the detector, placed at an-
gle φ in the (x, y) plane, measures the spectrum of the generated field
Egen(R(tret ), t ) with an associated polarizer singling out εi-polarized
harmonics.

units is scaled as A0 = √
I/(ω

√
1 + ε2). When considering

nondipole effects within the strong-field, long-wavelength
limit, it is useful to expand the vector potential as A =∑∞

l=0 A(l ) with A(l ) denoting the lth order of ωx/c such that
A(l ) = (l!)−1dlA/dηl |η=ωt (−ωx/c)l . The electric and mag-
netic fields inherit the notation of the associated A(l ), such that
E (l ) = −∂t A(l ) and B(l ) = ∇ × A(l ). Thereby A(0) is the term
within the commonly applied electric dipole approximation,
in which the term qṙ × B of Eq. (1) vanishes as B(0) = 0.

Phase-matching effects modify HHG in solids similar to
introducing a rapid dephasing and can be neglected for thin
targets in the detection direction [53]. Doing so, the accel-
eration electric field emitted by the electronic wave packet,
observed at R(tret ), is [54]

Egen(R(tret ), t ) = −eR(tret ) × [R(tret ) × r̈(tret )]

4πε0c2R(tret )3
. (2)

For an illustration of the geometry, see Fig. 1. Effects
arising due to the focal spot size are not included and are
expected to be negligible in experimental geometries where
variations of the distance towards the detector are negligible
across the width of the focal spot. With increasing φ (Fig. 1)
this could be maintained by engineering or angling the sam-
ple. The harmonics generated at the retarded emission time
tret are observed at the detection time t = tret + R(tret )/c after
the propagation time delay R(tret )/c. The electron trajectory is
therefore evaluated at the retarded time. Typically for HHG in
solids, an approximation to this formula is applied, in which
one neglects the propagational time delay, i.e., the difference
between the time of emission tret and the time of detection t . In
doing so, the emitted spectra are derived from the current j(t )
or the time derivative hereof, which for the case of a localized
electronic wave packet can be written as

Egen,0(t ) ∝ −d j(t )

dt
= er̈(t ). (3)
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FIG. 2. Calculated εz-polarized HHG spectra observed at φ = 0
(see Fig. 1) with (a) linearly polarized and (b) circularly polarized
driving fields. Similar spectra are given with φ = π/2 for (c) and
(d), respectively. The radiation pattern |Egen(ω)|2 from Eq. (2) (black
continuous) is compared to the approximation |Egen,0(ω)|2 of Eq. (3)
(blue dashed) induced by an intraband electronic wave packet with
initial conditions r = [0, 0, 0]T and k = [0, 0, 0]T . See text for laser
parameters.

In general, we consider a detector placed at an angle φ in
the (x, y) plane measuring εi-polarized light at a distance of
1 m from the origin of the electronic wave packet (Fig. 1).
We have checked that the results of the present work are
independent of changes to the macroscopic distance R(t = 0)
to fit specific experimental setups. For the numerical simu-
lation, we initialize an electron wave packet at the � point,
k(t = 0) = [0, 0, 0]T and r(t = 0) = [0, 0, 0]T , as is typically
done within the literature [30,31,34,35]. The model does not
account for field-induced electron correlation effects, which
is justified when applying a single driving pulse [55]. The
electron wave packet is propagated through Eq. (1), beyond
and within the dipole approximation.

First, in Fig. 2, we investigate solely the propagation
time delay effect. To this end, we consider a regime where
nondipole effects are shown later to be negligible, namely by
considering εz-polarized harmonics originating dominantly
from the z-polarized current within the polarization plane. In
Fig. 2, we compare the predictions of Eq. (2) with those of
the approximate Eq. (3), for a linearly and circularly polar-
ized field with detector positions φ = {0, π/2}. Figure 2(a)
shows that the approximation of Eq. (3) is justified at φ = 0.
The reason is that the temporal variation in R(tret ) is rel-
atively small when the detector is placed perpendicular to
the polarization direction of the driving field. In Fig. 2(b)
the electron dynamics is no longer one dimensional, as the
wave packet is driven in the polarization (y, z) plane of the
circularly polarized driving field. Since, however, the detector
is placed in a direction perpendicular to this plane, Eq. (3) is
still accurate. Comparing Figs. 2(a) and 2(b), we note that a
reduction is found in the spectra with increasing ellipticity,
due to the amplitude of the electric vector potential decreas-
ing for fixed intensity. The electron driven linearly in the z

FIG. 3. Norm square of the Fourier transform of the acceleration
along the polarization z̈ or propagation ẍ direction for a driving
field with (a) linear ε = 0 and (b) circular ε = 1 polarization. The
acceleration induced by the electromagnetic field is compared to that
induced by the dipole field and the ND-SFA approach of Eq. (4). For
the propagation direction, the acceleration obtained within the dipole
approximation vanishes. The parameters are as in Fig. 2.

direction will dominantly emit a symmetrical radiation pat-
tern in the (x, y) plane, as prescribed by the dipole radiation
pattern. This is seen when comparing different φ in Figs. 2(a)
and 2(c), which are normalized by identical scaling. For the
circularly polarized driving field, however, this symmetry is
broken by propagation time delay as observed in Fig. 2(d).
For finite φ the electron has an excursion in the direction of
the detector, causing a relatively larger change in the distance
to the detector R(tret ), and a time-dependent propagation de-
lay (Fig. 1). This effect infers that an electron accelerating
with a given frequency lω will be observed to attain addi-
tional frequency components of (l ± 1)ω. In Fig. 2(d) this
is apparent as even harmonics arise with intensity scaling as
sin2(φ). Propagation delay effects can seemingly be neglected
in Figs. 2(a)–2(c), where the electron trajectory is confined
to a plane perpendicular to the direction towards the detector
and the effect of the variations of the propagational delay is of
higher order. Oppositely such effects must be included if the
detector occupies a solid angle with multiple φ components,
or if a significant excursion of the wave packet is in the direc-
tion of the detector, where it generates additional side peaks in
the spectra. The magnitude of such side peaks depends on the
electron trajectory, and can thus bring insight into properties
of the material. We note that these results are qualitatively
similar to those obtained by initializing the electron wave
packet at the driving field maxima, where the excitation pro-
cess is most likely (see Supplemental Material [56]).

We now analyze nondipole effects in Fig. 3. In order to
single these out from the propagation delay effects, we start
by analyzing the acceleration of the electron wave packet
to characterize the nondipole components hereof. Later the
nondipole effects on the HHG spectrum will be examined
inserting the acceleration in Eq. (2). In regions where Eq. (3)
is accurate, we can draw conclusions based on the frequency
components of the wave-packet acceleration. To investigate
the nondipole corrections to the electron acceleration we in-
clude leading-order effects from the interaction between the
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dipole-induced motion and the magnetic field. A similar ap-
proach was found to account for nondipole effects in atomic
systems [49,57,58]. In this nondipole strong-field approxima-
tion (ND-SFA) approach, the first part of Eq. (1) reduces to

h̄k̇ = −e
[
(−∂t A(0) ) + (

ṙyB(1)
z − ṙzB

(1)
y

)̂
x
]
, (4)

where the last term describes a radiation-pressure-like force
on the wave packet in the laser propagation direction [49].
Simulations with the fully retarded, the ND-SFA, and the
dipole field are compared in Fig. 3. For the acceleration
within the polarization plane [z̈ in Figs. 3(a) and 3(b)] the
dynamics are well described within the dipole approximation,
consistent with the free-electron case [49]. Also, similar to
the free-electron case, significant nondipole corrections arise
for the dynamics in the propagation direction in Figs. 3(a)
and 3(b) where a harmonic nondipole acceleration containing

even-ordered multiples of the driving frequency is observed.
Remarkably for circularly polarized light, in Fig. 3(b), only
nondipole effects of fourth-order multiples are observed. In
the long-pulse circularly polarized driving-field regime, a free
electron would have ṙy ∝ A(0)

y and ṙz ∝ A(0)
z , in which case

the last term of Eq. (4) vanishes, as A(0) ‖ B(1) [49]. This
is not the case for the intraband wave packet as its induced
velocity in the polarization plane is not proportional to A(0),
but modified by the nonparabolic band dispersion as captured
by the last part of Eq. (1). These predictions solidify the
different nature of nondipole effects for atomic or intraband
dynamics. We observe in Fig. 3 that the ND-SFA approach
accurately describes these dynamics. Due to its simplicity, it is
suitable for analytical calculations (see Supplemental Material
[56]) in which one can find the wave-packet acceleration to be

r̈ = h̄ω

2ame

∑
n

∞∑
l=1,3,5,...

⎡
⎣− h̄(l+1)

am�c {cn,zJl+1
[

nae
h̄ A0(ωt )

] + cn,y(−1)(l+1)/2Jl+1
[

nae
h̄ εA0(ωt )

]} sin[(l + 1)ωt]
nlcn,y(−1)(l−1)/2Jl [ nae

h̄ εA0(ωt )] sin(lωt )
−nlcn,zJl [ nae

h̄ A0(ωt )] cos(lωt )

⎤
⎦, (5)

where Jl are Bessel functions and m� is the effective mass
of the dispersion along the propagation direction [56]. We
note that the arguments of the Bessel functions in the long-
pulse limit can be expressed in terms of ωB/ω with ωB =
eaA0ω/h̄ the Bloch frequency. The analytical approach ac-
curately describes the dominant nondipole dynamics, and
allows for characterizing the selection rules for the harmonic
contributions to the acceleration [56]. Generally, with space-
and time-inversion symmetry only odd- (even-) frequency
components will be present in the y and z direction (x direc-
tion), respectively [56]. Furthermore, for a circularly polarized
driving field and if the dispersion in both directions of the
polarization plane is identical, cn,y = cn,z, then the x direc-
tion will consist of only fourth-ordered harmonic motion
[56], similar to what is observed in Fig. 3(b). The detec-
tion of the nondipole acceleration thus provides a tool to
investigate the symmetries of the material at hand as well
as the dispersion along both the propagation and polarization
directions.

Lastly, we consider in Fig. 4 the interplay between
the propagation time and nondipole effects. In general,
the two mechanisms couple since nondipole corrections to
the electron trajectory modify R(tret ) of Eq. (2) altering the
propagation time delay R(tret )/c. Furthermore, the nondipole
εz-polarized harmonics are sensitive to propagation time delay
as they are observed at nonvanishing φ. We consider a detector
placed at φ = π/2 since here both the emitted HHG spectra
of the electron acceleration from the polarization plane and
from the nondipole x motion can be observed by consid-
ering the εz- and εx-polarized harmonics, respectively. The
HHG spectra, calculated from Eq. (2), are given in Fig. 4.
At first, when comparing Figs. 3(a) and 4(a), no significant
propagation delay effects are observed. This is due to the
nondipole-induced dynamics along the propagation direction
being of order 1/c lower than the excursion in the polariza-
tion plane. Similarly, no nondipole effects were found for
the spectra of Figs. 2(a) and 2(c). For circularly polarized

light, the excursion in the y direction of the polarization plane
contributes with additional side peaks to Fig. 4(b), when com-
pared to Fig. 3(b), for both the εz-polarized and the nondipole
εx-polarized harmonics. Interestingly for the fourth harmonic
in Fig. 4(b), the propagation time delay side peak from the
εz-polarized harmonics is of similar magnitude as the domi-
nant nondipole harmonic with εx polarization. The interplay
of nondipole effects and propagation delay effects can thus
be investigated by considering the ellipticity dependence of
specific harmonics as a function of φ and the signatures of
each mechanism can be readily distinguished in experiments
by varying the detector angle φ and observed polarization εi.
If observing εx-polarized harmonics at φ = π/2, nondipole
harmonics can be identified free of the vanishing background
of harmonics emitted within the dipole approximation. Both
propagation time and nondipole effects can thus be singled
out by varying the driving field ellipticity and detection angle.
Features arising in the HHG spectra from both mechanisms

FIG. 4. HHG spectra, |εi · Egen(ω)|2, including polarization time
delay in Eq. (2) for the z̈ and ẍ accelerations in Fig. 3. The detector
is placed at an angle of φ = π/2.
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carry information about the dispersion both within the polar-
ization and propagation directions. Similarly, the nondipole
harmonics are sensitive to the symmetry of the sample, as
discussed in relation to Fig. 3, and therefore in principle
provide a path to examining structural changes on an ultrafast
timescale. We also note that the significance of nondipole
harmonics, as well as propagation time delay contributions, is
restricted by the effective mass of the system [see Eq. (5)], and
is expected to increase with a lower effective mass, where also
the harmonic cutoff is expected to be extended [26,59,60].
Furthermore, both effects are expected to increase in mag-
nitude in the regime of low-frequency, high-intensity driving
fields. A detailed investigation onto such other materials and
parameter regimes is a topic for future work. If initializing
the electron wave packet at the driving field maxima, the
results of Figs. 3 and 4 remain qualitatively identical for a
linearly polarized driving field. For circularly polarized light
the broken time-reversal symmetry can affect the spectra (see
Supplemental Material [56]).

In conclusion, by including propagation time delay to intra-
band HHG, additional side peaks appear in the HHG spectra,
resulting in even harmonics despite space- and time-inversion
symmetries in the sample. The propagation delay depends on

the position of the detector compared to the emitting electron
wave packet, and the effect is negligible if the wave packet
is having a relatively small amplitude motion in the direction
towards the detector. We have characterized nondipole correc-
tions to the electron wave-packet dynamics as an oscillatory
motion in the propagation direction of the driving field. By
analyzing a leading-order approximation to the equation of
motion, we provide an analytical assessment of the nondipole
effects [Eq. (5)]. For inversion symmetric lattices, selection
rules are found for the emitted nondipole harmonics. These
are even- or fourth-ordered for the case of a linearly or cir-
cularly polarized driving field. For a complete description
of the HHG process, one must be aware of the interplay of
propagation time and nondipole effects. Both effects bring
information regarding material properties, which affect the
real-space electronic trajectory and velocity. Similarly, they
provide a tool for investigating the symmetries of the sample
and reconstructing the dispersion both within and out of the
polarization plane.
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