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Radiation reaction enhancement in flying focus pulses
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Radiation reaction (RR) is the oldest still-unsolved problem in electrodynamics. In addition to conceptual
difficulties in its theoretical formulation, the requirement of exceedingly large charge accelerations has thus
far prevented its unambiguous experimental identification. Here, we show how measurable RR effects in a
laser-electron interaction can be achieved through the use of flying focus pulses (FFPs). By allowing the focus
to counterpropagate with respect to the pulse phase velocity, a FFP overcomes the intrinsic limitation of a
conventional laser Gaussian pulse (GP) that limits its focus to a Rayleigh range. For an electron initially also
counterpropagating with respect to the pulse phase velocity, an extended interaction length with the laser peak
intensity is achieved in a FFP. As a result, the same RR deceleration factors are obtained, but at FFP laser powers
orders of magnitude lower than for ultrashort GPs with the same energy. This renders the proposed setup much
more stable than those using GPs and allows for more accurate in situ diagnostics. Using the Landau-Lifshitz
equation of motion, we show numerically and analytically that the capability of emerging laser systems to deliver
focused FFPs will allow for a clear experimental identification of RR.

DOI: 10.1103/PhysRevA.105.L020203

Radiation reaction (RR), i.e., the energy and momentum
loss of an accelerated charge as it emits radiation, remains
an outstanding issue in the formulation of classical electrody-
namics [1–3]. The classical equation of motion accounting for
RR, the Lorentz-Abraham-Dirac equation (LAD) [4], suffers
from causality issues, runaway solutions, and/or problems
with initial conditions. The Landau-Lifshitz (LL) equation [1]
is free from these shortcomings, but it is derived from the
LAD equation. Thus, experimentally testing the classical
RR equation is still an outstanding and important problem.
Alternative classical RR equations, such as the Eliezer-Ford-
O’Connell equation, are indistinguishable at the classical level
from the LL equation, because they differ by terms smaller
than quantum corrections [5–7]. To this day, RR remains
an active area of investigation highlighted by a number of
research [8–23] and review articles published over the last
decade [24–28], as well as in recent experimental efforts
to measure the effects of RR on electrons interacting with
aligned crystals [29,30] and ultrastrong laser fields [31,32].
Apart from its fundamental importance, relating, e.g., to in-
trinsic properties of elementary particles like the mass of the
electron, RR plays a crucial role in several fields of physics,
such as astrophysics, plasma, and accelerator physics.
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Progress in RR research is mainly hindered by the experi-
mental difficulty of its detection. A number of experimental
facilities, including synchrotrons, wigglers, and x-ray free
electron lasers, employ an external electromagnetic field to
wiggle an electron and produce radiation. However, because
the emitted energy is much smaller than the electron en-
ergy, even when accounting for electron beam coherence
effects, the effect of RR on the electron trajectory is negligi-
ble. Furthermore, recent experiments utilizing high-intensity
lasers [31,32] operated in a regime where quantum effects
“interfered” with classical RR, complicating their physical
interpretation.

The flying focus is a newly developed technique for con-
trolling the trajectory of peak laser intensity over distances
much longer than the Rayleigh range [33,34]. In the original
experimental demonstrations, the peak intensity was made
to travel at any desired velocity by adjusting the chirp and
using a chromatic lens to independently set the time and
location at which each frequency within the pulse came to
focus [33,34]. More recent implementations have proposed
axiparabola-echelon optics [35] and “space-time light sheets”
[36,37] to achieve the same effect. Building on this capability,
several studies have illustrated the advantage of flying focus
pulses (FFPs) for a wide range of laser-based applications,
including ionization waves in plasma [38,39], photon acceler-
ation [40], laser wakefield acceleration [35], vacuum electron
acceleration [41], and nonlinear Thomson scattering [42].

In the present Letter we show that FFPs lower the laser
power required for significant RR deceleration of electrons
(charge e < 0 and mass m) by orders of magnitude com-
pared to conventional ultrashort Gaussian pulses (GPs). The
high-intensity region of a GP is set to the Rayleigh range
which defines a limited spatial domain through which an
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FIG. 1. Schematic representation of an ultrarelativistic electron
counterpropagating with respect to a Gaussian beam (top panel) and
to a flying focus beam with focal velocity equal and opposite to the
phase velocity (bottom panel). For the sake of clarity the laser-pulse
envelope is not included (see the text and SM [43] for details). The
axes are not to scale.

ultrarelativistic electron quickly passes. This is especially true
for ultrashort GPs, which have their pulse energy concentrated
to a fraction of the Rayleigh range. In contrast, the peak
intensity of a FFP can move at the speed of light and in the
opposite direction of its laser phase velocity (Fig. 1). Thus,
an ultrarelativistic electron traveling in the opposite direction
of the phase fronts can remain in the “focus” of a FFP for
extended interaction times limited only by the total pulse
energy. In order to clearly compare the performances of both
field configurations, we first analytically calculate the electron
energy loss. Then, we validate the FFP results numerically by
simulating the electron trajectories using the LL equation for
RR [1]. The lower power and peak intensity required by FFPs
minimize the quantum effects, provide additional control, and
improve diagnostic access to unambiguously identify this elu-
sive phenomenon in experiments.

It was shown in Ref. [44] that the exact solution of
Maxwell’s equations given in Ref. [45] describes a monochro-
matic flying focus beam (FFB) with a fixed focal velocity
v f = −1 = −vp, with vp being the beam phase velocity (units
with h̄ = c = ε0 = 1 are used throughout). Here, we refer to
“beams” (GBs/FFBs) in the infinite, monochromatic case and
to “pulses” (GPs/FFPs) in the finite, time-localized case. We
employ this solution to model the FFBs because

(i) it satisfies the vacuum wave equation exactly;
(ii) the electric and magnetic fields can be expressed ana-

lytically in closed form;
(iii) its exponential drop-off in the transverse direction

assures a finite beam power, which is important for a direct
comparison with GBs.

We indicate as Aμ(x) the four-vector potential of either
the FFB or the GB and we work within the Lorenz gauge
∂ · A = 0. In the FFB case we impose the additional condition
A+(x) = A0(x) + Az(x) = 0 [44].

We consider an expression of the four-vector potential,
which is an exact solution of the vacuum wave equa-
tion ∂2Aμ = 0, in the case of a monochromatic spectral profile
(see Ref. [44] for the case of the Gaussian spectral profile and
the Supplemental Material (SM) [43]). For a FFB polarized
along the x axis with a wave vector pointing in the direction of
the positive z axis, the independent four-potential components
are

Ax = A0
σ0

σ (η, η0)
e−r2/σ 2(η,η0 ) cos[�(0, η, η0)], (1a)

A0 = A0

ω0

x

σ 2(η, η0)
e−r2/σ 2(η,η0 ) sin[�(1, η, η0)]. (1b)

Here, we have introduced the four-potential amplitude A0,
the spot radius σ0, the angular frequency ω0 = 2π/λ0, and the
laser wavelength λ0 as the main quantities characterizing the
beam. Also, we employ light-cone coordinates φ = t − z, η =
t + z, and r = (x, y), such that r =

√
x2 + y2 is the distance

from the z axis, and σ (η, η0) = σ0

√
1 + η2/η2

0, η0 = ω0σ
2
0 .

This implies that the focus of the FFB is placed at η = t + z =
0; i.e., the focal velocity is −1, opposite to the propagation
direction of the phase fronts. Finally, the phase �(a, η, η0) is
defined as

�(a, η, η0) = ω0φ − r2

σ 2(η, η0)

η

η0
+ (1 + a) arctan

(
η

η0

)
.

(2)
For the GBs we employ the solution within the paraxial

approximation in which the diffraction angle θ = σ0/z0 is
the small parameter [46]. Here, z0 = ω0σ

2
0 /2 is the Rayleigh

length. We again consider a linearly polarized field in the x
direction with the wave vector pointing along the positive z
axis. The solution of the paraxial equation within the Lorenz
gauge and with Az = 0 is given by

Ax = A0
σ0

σ (z, z0)
e−r2/σ 2(z,z0 ) cos[�(0, z, z0)], (3a)

A0 = A0

ω0

2x

σ 2(z, z0)
e−r2/σ 2(z,z0 ) sin[�(1, z, z0)], (3b)

which places the stationary focus of the GB at z = 0.
The time-averaged power of the GB going through the xy

plane can be expressed in the paraxial approximation as [47]

Pave = π

4
A2

0ω
2
0σ

2
0 ≈ 21.5 GW

(
ξ0

σ0

λ0

)2
, (4)

where ξ0 = |e|A0/m is the dimensionless normalized am-
plitude, which is related to the laser peak intensity I0 as
I0[W/cm2] = 1.37 × 1018ξ 2

0 (λ0[μm])−2. The corresponding
expression for the FFB is the same (see the SM [43]). The
time-averaged power in both cases is derived under the as-
sumption that the Rayleigh length is much larger than the laser
wavelength.

In order to transition from monochromatic beams to pulses
of finite energy, we employ a slowly varying envelope g(φ)
with a constant flat-top profile (see SM [43]). We work in
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an approximation of long pulses and neglect any derivatives
of the envelope g(φ). For a total pulse energy Etot and av-
erage power Pave, the pulse length is given by τ = Etot/Pave.
If spatial focusing effects are ignored, i.e., for a plane wave
characterized by the envelope g(φ), and if a pulse coun-
terpropagating with respect to an ultrarelativistic electron is
considered, then the wave-electron interaction time tint is ap-
proximately given by τ/2.

Since we are going to consider ultrarelativistic electrons
at the focus of the laser field, for the sake of analytical
estimations, we assume that the latter can be locally approxi-
mated as a plane wave with the dimensionless amplitude ξ (t )
given by the field value at r = 0. Also, in the ultrarelativis-
tic limit the electron energy loss can be directly computed
from the relativistic Larmor formula PL = −(2/3)mreu̇2 of
the electromagnetic radiated power [we use the diagonal met-
ric tensor (+1,−1,−1,−1)]. Here, re = e2/(4πm) is the
classical electron radius and u̇μ is the proper-time deriva-
tive of the four-velocity uμ = (γ , u). This corresponds to the
energy loss dγ /dt = (2/3)reu̇2, where u̇2 = −ξ 2(t )(k0 · u)2

in a plane-wave with four-wave-vector kμ
0 = (ω0, k0). For an

ultrarelativistic electron moving in the direction opposite the
wave vector k0, k0 · u ≈ 2ω0γ and φ ≈ 2t along the elec-
tron trajectory. Thus, the differential equation for the electron
gamma factor γ (t ) with the initial condition γ (0) = γ0 has
the approximate solution [48]

γ (t ) ≈ γ0

1 + κ (t )
, (5)

where κ (t ) = 4
3γ0reω

2
0

∫ t
0 g2(t ′)ξ 2(t ′)dt ′ represents the decel-

eration factor after a time t and where the integral is taken over
the slowly varying amplitude function ξ (t ) and envelope g(t )
to be computed along the electron trajectory at r = 0. For the
analytical estimates, we assume a unit rectangular envelope
g(t ) = 1 for t ∈ (0, tint ) and zero elsewhere.

In the GP case the amplitude changes as ξ (t ) =
ξ0/

√
1 + z2(t )/z2

0. We assume the best-case scenario where
the electron interacts with the pulse while moving through
the region of its highest focus. Thus, the electron trajectory
is approximately given by r(t ) = 0 and z(t ) = ρz0 − t , where
r(0) = 0 and z(0) = ρz0 is the initial electron position, with
ρ being a dimensionless parameter defined according to the
following considerations. We set the “final” electron position
at t = tint, i.e., after moving through the whole focal region
at almost the speed of light, to the value z(tint ) = −ρz0 (see
the top panel of Fig. 1). Thus tint = 2ρz0, and the parameter
ρ gives half of the number of Rayleigh lengths z0 over which
the electron interacts with a GP with fixed total pulse energy
Etot and average power Pave: ρ = Etot/(4z0Pave). The integral
for κ (t ) can be evaluated as

∫ tint

0 ξ 2(t ′)dt ′ = 2ξ 2
0 z0 arctan(ρ).

By using Eq. (4) for the average power Pave, the deceleration
factor κGP after the interaction time tint can be expressed as

κGP(tint ) = 32

3

EtotE0

m2

( re

σ0

)2 arctan(ρ)

ρ

≈ 2.0
Etot[J] E0[GeV]

σ 2
0 [μm]

arctan(ρ)

ρ
, (6)

where E0 = mγ0 is the initial electron energy. This means
that at fixed pulse energy Etot the deceleration factor is larger
for smaller focal spot sizes σ0 → 0 and smaller interaction

times ρ → 0. Both of these trends require increasing the pulse
amplitude and power to keep the total pulse energy Etot fixed.
This can be seen from the relation Pave = Etot/2tint ∼ Etot/σ

2
0 ρ

and, taking into account Eq. (4), ξ 2
0 ∼ Pave/σ

2
0 ∼ Etot/σ

4
0 ρ.

In principle, the deceleration factor can be arbitrarily large
(until the electron stops) but, as we decrease σ0 to about 2λ0,
we run into issues with the paraxial approximation, with the
assumptions for deriving Eqs. (4) and (5), not to mention the
difficulties in the experimental feasibility of such pulses [49].
For a specified total pulse energy Etot and average power Pave

the interaction parameter ρ is given by

ρ = 1

2ω0σ
2
0

Etot

Pave
≈ 2.4 × 10−2Etot[J]λ0[μm]

Pave[PW] σ 2
0 [μm]

. (7)

The estimate for the deceleration factor κ is then obtained by
substituting this expression into Eq. (6).

For the FFP the situation is considerably simpler because
the electron can co-travel with the moving focus for the dura-
tion of the interaction tint (see bottom panel of Fig. 1). Then,
the integrand in κ (t ) is constant and

∫ tint

0 ξ 2(t ′)dt ′ = ξ 2
0 tint. By

using the expression of the power Pave = Etot/2tint and Eq. (4),
we obtain the final deceleration factor

κFFP(tint ) = 32

3

EtotE0

m2

( re

σ0

)2
≈ 2

Etot[J]E0[GeV]

σ 2
0 [μm]

. (8)

We note that this result does not depend on Pave. Thus, one can
obtain the same deceleration effect by decreasing the average
power, provided that the interaction time tint = Etot/2Pave in-
creases accordingly. In other words, FFPs allow us to decrease
the beam power in a trade-off for a longer interaction time. At
fixed total energy and spot size the scaling with the interaction
time is Pave ∝ ξ 2

0 ∝ t−1
int . From Eq. (5) we have

ξ 2
0 = 3

16π2

κFFPλ
2
0

tintre

m

E0
≈ 11.5

κFFPλ
2
0[μm]

tint[ps]E0[GeV]
. (9)

Analogously, for fixed Pave the spot size can grow with interac-
tion time as σ0 ∝ √

tint while keeping the overall deceleration
constant. This is not possible for GPs whose interaction
with charged particles is limited by the Rayleigh length [see
Eq. (6)].

For GPs with a pulse length longer than their Rayleigh
range (ρ > 1), the factor arctan(ρ)/ρ, by which Eqs. (6)
and (8) differ, goes to zero. At fixed total energy, electrons
in FFPs achieve higher decelerations than in GPs by a fac-
tor ρ/ arctan(ρ) > 1. In state-of-the-art high-intensity laser
systems, the pulses are already compressed to a very small
fraction of the Rayleigh range around the focus (ρ → 0)
[31,32] and at the same total energy the FFP improvement
is only marginal [arctan(ρ)/ρ → 1]. In this situation, how-
ever, FFPs can achieve the same deceleration for much lower
laser powers by increasing tint. This is crucial for precision
RR experiments where the lower laser power and intensity
provide better control over the interaction environment and
enables in situ diagnostics, e.g., for the laser intensity, which
are unavailable at ultrahigh fields [31,32].

In Fig. 2 we show the improvement in necessary aver-
age power in tint = 100 ps FFPs over compressed GPs with
ρ = 0.5. For such ρ the electron interacts with exactly one
Rayleigh range of the GP. Although the decelerations for
the same energy and spot size are almost identical in this
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FIG. 2. The necessary average power in tint = 100 ps FFPs
vs the average power in GPs for a desired deceleration and
a given pulse energy. The dashed yellow lines correspond to
log10(PFFP/PGP) ∈ {−3, −2, −1, 0}. The solid blue lines mark the
range σ0 ∈ (2, 10) μm for GPs as indicated. The same boundaries
for FFPs are with ρ = 0.5 almost identical. The plot is cut off at GP
σ0 = 2λ0 = 2 μm [see the discussion above Eq. (7)].

example, FFPs can achieve the same with up to a thousand
times less power. As the GPs become longer (ρ > 1), their
power requirements also decrease, but high decelerations are
no longer accessible at given energy due to the limited extent
of their focal region. If we would increase the energy in the
GP to keep the deceleration constant (at given σ0) it would
grow quickly with ρ as Etot ∝ ρ/ arctan(ρ) but the necessary
power would decrease slowly as PGP ∝ 1/ arctan(ρ).

In order to demonstrate the cumulative nature of RR decel-
eration in a FFP, we have numerically solved for the electron
motion using the LL equation [1]

u̇μ = Fμνuν + 2
3 re

[
Ḟμνuν + (δμ

ν − uμuν )F ναFαβuβ
]
, (10)

where Fμν = e(∂μAν − ∂νAμ)/m. The first term alone
(Lorentz force) would not account for particle deceleration
and the electron would not undergo net energy loss. We
have ensured numerically that the term proportional to Ḟμν

is negligible, see, e.g., also Refs. [50,51], and omitted it
from the simulations. The focus of FFPs was successfully
propagated in experiments for distances ∼0.5 cm (tint ≈ 16
ps) [34]. In our simulations we fixed the laser wavelength
at λ0 = 1 μm and interaction time tint = 100 ps ≈ 1.884 ×
105 1/ω0, which can be achieved by increasing the chirp
relative to a tint ≈ 16 ps. The total pulse energy was set to
Etot = 10, 50, and 200 J, corresponding to Pave = 0.05, 0.25,
and 1 TW, respectively, and to ξ0 varying in the range 0.19–
2.7 (see SM [43]), i.e., peak intensities I0 = 5 × 1016–1 ×
1019 W/cm2. The initial electron gamma factor was γ0 =
1000 (E0 = 0.511 GeV) and the laboratory time step was
set to dt = 0.01 1/ω0. The quantum nonlinearity parameter
χ0 = 5.9 × 10−2 E0[GeV]

√
I0[1020 W/cm2] is in the range

9.5 × 10−3–6.7 × 10−4 justifying the classical treatment of
RR [25]. Finally, the above-mentioned envelope function g(φ)
was implemented as a smooth, symmetric, 5th-order polyno-
mial rise and fall surrounding a constant flat-top profile. The
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FIG. 3. Overall RR deceleration κFFP after interaction time tint =
100 ps of an electron with E0 = 0.511 GeV in the FFPs (see the text
for other numerical parameters). The curves are analytical estimates
and the crosses result from the numerical simulations.

tint = 100 ps pulse is sufficiently long that the envelope can
vary slowly compared to η0 and the pulse still maintains the
approximately rectangular shape (see SM [43]).

Figure 3 demonstrates that the FFP energy loss estimates
from Eq. (8) are in excellent agreement with the numerical
results except for the highest κFFP(tint ). Once the electron
is decelerated to γ � 30, the interaction with the pulse be-
comes more complicated than our estimates capture. For
example, the electron begins to lag behind the FFP and expe-
riences additional ponderomotive deceleration [42]. Further,
the transverse oscillations in the field become important and
the approximation k0 · u ≈ 2ω0γ used for deriving Eq. (5) is
no longer valid.

In conclusion, we have shown that FFPs allow one to reach
significant RR deceleration effects with orders of magnitude
lower laser power than ultrashort Gaussian pulses currently
used in experimental attempts to measure RR. This was
achieved by exploiting the cumulative nature of RR effects
and the unique properties of the FFPs, for which the peak
intensity can move in the opposite direction of the phase
velocity. In contrast to GPs, which require a high degree of
temporal compression to reach the necessary intensity, a long
FFP pulse can be used, alleviating technological constraints
on the optics [52] and allowing for in situ diagnostics.

Previous experiments [34] that have demonstrated FFPs at
intensities of 1014 W/cm2, durations of tens of picoseconds,
and spot sizes of σ0 ∼ 10λ0 along with rapid developments in
laser technology indicate that an experimental demonstration
will be realizable in the near term. In fact, intensities beyond
the relativistic threshold (ξ0 = 1) are already envisaged for
other applications [35].

The technology to place an electron beam within the sev-
eral micron volume of the focus already exists and is regularly
used in experiments [53–55]. The ponderomotive force ex-
pelling an off-axis electron from the FFP can be mitigated
by starting with higher γ0 or by filtering electrons to create
a highly collimated beam.

Thus, our present results motivate the forthcoming exper-
imental implementation of FFPs in applications aiming at
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measuring the dynamics driven by RR, which is to this day a
contentious topic, with initial laser-based experiments not yet
providing a statistically conclusive observation of RR [31,32].

ACKNOWLEDGMENTS

We would like to thank Dustin Froula, Warren Mori, Mat-
teo Tamburini, Jorge Vieira, and Marija Vranic for useful

discussions. This material is also based upon work supported
by the Office of Fusion Energy Sciences under Awards No.
DE-SC0019135 and No. DE-SC00215057, the Department
of Energy National Nuclear Security Administration under
Award No. DE-NA0003856, the University of Rochester, and
the New York State Energy Research and Development Au-
thority.

[1] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields
(Elsevier, Oxford, 1975).

[2] A. O. Barut, Electrodynamics and Classical Theory of Fields
and Particles (Dover, New York, 1980).

[3] F. Rohrlich, Classical Charged Particles (World Scientific, Sin-
gapore, 2007).

[4] P. A. M. Dirac, Proc. R. Soc. London, Ser. A 167, 148 (1938).
[5] J. Koga, Phys. Rev. E 70, 046502 (2004).
[6] Y. Hadad, L. Labun, J. Rafelski, N. Elkina, C. Klier, and H.

Ruhl, Phys. Rev. D 82, 096012 (2010).
[7] S. V. Bulanov, T. Z. Esirkepov, M. Kando, J. K. Koga, and S. S.

Bulanov, Phys. Rev. E 84, 056605 (2011).
[8] M. Vranic, J. L. Martins, J. Vieira, R. A. Fonseca, and L. O.

Silva, Phys. Rev. Lett. 113, 134801 (2014).
[9] T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, Phys.

Rev. Lett. 112, 015001 (2014).
[10] M. Tamburini, C. H. Keitel, and A. Di Piazza, Phys. Rev. E 89,

021201(R) (2014).
[11] J.-X. Li, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rev. Lett.

113, 044801 (2014).
[12] T. Heinzl, C. Harvey, A. Ilderton, M. Marklund, S. S. Bulanov,

S. Rykovanov, C. B. Schroeder, E. Esarey, and W. P. Leemans,
Phys. Rev. E 91, 023207 (2015).

[13] S. R. Yoffe, Y. Kravets, A. Noble, and D. A. Jaroszynski, New
J. Phys. 17, 053025 (2015).

[14] R. Capdessus and P. McKenna, Phys. Rev. E 91, 053105
(2015).

[15] M. Vranic, T. Grismayer, R. A. Fonseca, and L. O. Silva, New
J. Phys. 18, 073035 (2016).

[16] V. Dinu, C. Harvey, A. Ilderton, M. Marklund, and G.
Torgrimsson, Phys. Rev. Lett. 116, 044801 (2016).

[17] A. Di Piazza, T. N. Wistisen, and U. I. Uggerhøj, Phys. Lett. B
765, 1 (2017).

[18] C. N. Harvey, A. Gonoskov, A. Ilderton, and M. Marklund,
Phys. Rev. Lett. 118, 105004 (2017).

[19] C. P. Ridgers, T. G. Blackburn, D. Del Sorbo, L. E. Bradley, C.
Slade-Lowther, C. D. Baird, S. P. D. Mangles, P. McKenna, M.
Marklund, C. D. Murphy, and A. G. R. Thomas, J. Plasma Phys.
83, 715830502 (2017).

[20] F. Niel, C. Riconda, F. Amiranoff, R. Duclous, and M. Grech,
Phys. Rev. E 97, 043209 (2018).

[21] F. Niel, C. Riconda, F. Amiranoff, M. Lobet, J. Derouillat, F.
Pérez, T. Vinci, and M. Grech, Plasma Phys. Controlled Fusion
60, 094002 (2018).

[22] M. Formanek, A. Steinmetz, and J. Rafelski, Phys. Rev. D 102,
056015 (2020).

[23] A. Di Piazza and G. Audagnotto, Phys. Rev. D 104, 016007
(2021).

[24] R. T. Hammond, Electron. J. Theor. Phys. 7, 221 (2010).

[25] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel,
Rev. Mod. Phys. 84, 1177 (2012).

[26] D. A. Burton and A. Noble, Contemp. Phys. 55, 110 (2014).
[27] T. G. Blackburn, Rev. Mod. Plasma Phys. 4, 5 (2020).
[28] A. Gonoskov, T. Blackburn, M. Marklund, and S. Bulanov,

arXiv:2107.02161.
[29] T. N. Wistisen, A. Di Piazza, H. V. Knudsen, and U. I. Uggerhøj,

Nat. Commun. 9, 795 (2018).
[30] C. F. Nielsen, J. B. Justesen, A. H. Sørensen, U. I. Uggerhøj,

and R. Holtzapple, New J. Phys. 23, 085001 (2021).
[31] J. M. Cole, K. T. Behm, E. Gerstmayr, T. G. Blackburn,

J. C. Wood, C. D. Baird, M. J. Duff, C. Harvey, A. Ilderton,
A. S. Joglekar, K. Krushelnick, S. Kuschel, M. Marklund, P.
McKenna, C. D. Murphy, K. Poder, C. P. Ridgers, G. M.
Samarin, G. Sarri, D. R. Symes, A. G. R. Thomas, J. Warwick,
M. Zepf, Z. Najmudin, and S. P. D. Mangles, Phys. Rev. X 8,
011020 (2018).

[32] K. Poder, M. Tamburini, G. Sarri, A. DiPiazza, S. Kuschel,
C. D. Baird, K. Behm, S. Bohlen, J. M. Cole, D. J. Corvan,
M. Duff, E. Gerstmayr, C. H. Keitel, K. Krushelnick, S. P. D.
Mangles, P. McKenna, C. D. Murphy, Z. Najmudin, C. P.
Ridgers, G. M. Samarin, D. R. Symes, A. G. R. Thomas, J.
Warwick, and M. Zepf, Phys. Rev. X 8, 031004 (2018).

[33] A. Sainte-Marie, O. Gobert, and F. Quéré, Optica 4, 1298
(2017).

[34] D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D.
Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni,
S. Bucht et al., Nat. Photonics 12, 262 (2018).

[35] J. P. Palastro, J. L. Shaw, P. Franke, D. Ramsey, T. T. Simpson,
and D. H. Froula, Phys. Rev. Lett. 124, 134802 (2020).

[36] H. E. Kondakci and A. F. Abouraddy, Nat. Photonics 11, 733
(2017).

[37] M. Yessenov and A. F. Abouraddy, Phys. Rev. Lett. 125, 233901
(2020).

[38] D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R.
Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula,
Phys. Rev. Lett. 120, 225001 (2018).

[39] J. P. Palastro, D. Turnbull, S.-W. Bahk, R. K. Follett, J. L. Shaw,
D. Haberberger, J. Bromage, and D. H. Froula, Phys. Rev. A 97,
033835 (2018).

[40] A. J. Howard, D. Turnbull, A. S. Davies, P. Franke, D. H.
Froula, and J. P. Palastro, Phys. Rev. Lett. 123, 124801 (2019).

[41] D. Ramsey, P. Franke, T. T. Simpson, D. H. Froula, and J. D.
Palastro, Phys. Rev. E 102, 043207 (2020).

[42] D. Ramsey, B. Malaca, A. Di Piazza, M. Formanek, P. Franke,
D. H. Froula, M. Pardal, T. T. Simpson, J. Vieira, K. Weichman,
and J. P. Palastro, arXiv:2108.04044.

[43] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.105.L020203 for details about derivation of

L020203-5

https://doi.org/10.1098/rspa.1938.0124
https://doi.org/10.1103/PhysRevE.70.046502
https://doi.org/10.1103/PhysRevD.82.096012
https://doi.org/10.1103/PhysRevE.84.056605
https://doi.org/10.1103/PhysRevLett.113.134801
https://doi.org/10.1103/PhysRevLett.112.015001
https://doi.org/10.1103/PhysRevE.89.021201
https://doi.org/10.1103/PhysRevLett.113.044801
https://doi.org/10.1103/PhysRevE.91.023207
https://doi.org/10.1088/1367-2630/17/5/053025
https://doi.org/10.1103/PhysRevE.91.053105
https://doi.org/10.1088/1367-2630/18/7/073035
https://doi.org/10.1103/PhysRevLett.116.044801
https://doi.org/10.1016/j.physletb.2016.10.083
https://doi.org/10.1103/PhysRevLett.118.105004
https://doi.org/10.1017/S0022377817000642
https://doi.org/10.1103/PhysRevE.97.043209
https://doi.org/10.1088/1361-6587/aace22
https://doi.org/10.1103/PhysRevD.102.056015
https://doi.org/10.1103/PhysRevD.104.016007
http://www.ejtp.com/articles/ejtpv7i23p221.pdf
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1080/00107514.2014.886840
https://doi.org/10.1007/s41614-020-0042-0
http://arxiv.org/abs/arXiv:2107.02161
https://doi.org/10.1038/s41467-018-03165-4
https://doi.org/10.1088/1367-2630/ac1554
https://doi.org/10.1103/PhysRevX.8.011020
https://doi.org/10.1103/PhysRevX.8.031004
https://doi.org/10.1364/OPTICA.4.001298
https://doi.org/10.1038/s41566-018-0121-8
https://doi.org/10.1103/PhysRevLett.124.134802
https://doi.org/10.1038/s41566-017-0028-9
https://doi.org/10.1103/PhysRevLett.125.233901
https://doi.org/10.1103/PhysRevLett.120.225001
https://doi.org/10.1103/PhysRevA.97.033835
https://doi.org/10.1103/PhysRevLett.123.124801
https://doi.org/10.1103/PhysRevE.102.043207
http://arxiv.org/abs/arXiv:2108.04044
http://link.aps.org/supplemental/10.1103/PhysRevA.105.L020203


FORMANEK, RAMSEY, PALASTRO, AND DI PIAZZA PHYSICAL REVIEW A 105, L020203 (2022)

flying focus fields (also with nonzero angular momentum), their
properties, and the simulation parameters.

[44] A. Di Piazza, Phys. Rev. A 103, 012215 (2021).
[45] E. Esarey, P. Sprangle, M. Pilloff, and J. Krall, J. Opt. Soc. Am.

B 12, 1695 (1995).
[46] Y. I. Salamin, Appl. Phys. B 86, 319 (2007).
[47] E. Esarey, S. K. Ride, and P. Sprangle, Phys. Rev. E 48, 3003

(1993).
[48] A. Di Piazza, Lett. Math. Phys. 83, 305 (2008).
[49] J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung,

H. W. Lee, S. K. Lee, and C. H. Nam, Optica 8, 630
(2021).

[50] M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel, and A.
Macchi, New J. Phys. 12, 123005 (2010).

[51] F. Li, V. K. Decyk, K. G. Miller, A. Tableman, F. S. Tsung, M.
Vranic, R. A. Fonseca, and W. B. Mori, J. Comput. Phys. 438,
110367 (2021).

[52] B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and
M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995).

[53] N. D. Powers, I. Ghebregziabher, G. Golovin, C. Liu, S. Chen,
S. Banerjee, J. Zhang, and D. P. Umstadter, Nat. Photonics 8,
28 (2014).

[54] W. Yan, C. Fruhling, G. Golovin, D. Haden, J. Luo, P. Zhang,
B. Zhao, J. Zhang, C. Liu, M. Chen, S. Chen, S. Banerjee, and
D. Umstadter, Nat. Photonics 11, 514 (2017).

[55] Y. Wu, J. Hua, Z. Zhou, J. Zhang, S. Liu, B. Peng, Y. Fang, X.
Ning, Z. Nie, F. Li, C. Zhang, C.-H. Pai, Y. Du, W. Lu, W. B.
Mori, and C. Joshi, Nat. Phys. 17, 801 (2021).

L020203-6

https://doi.org/10.1103/PhysRevA.103.012215
https://doi.org/10.1364/JOSAB.12.001695
https://doi.org/10.1007/s00340-006-2442-4
https://doi.org/10.1103/PhysRevE.48.3003
https://doi.org/10.1007/s11005-008-0228-9
https://doi.org/10.1364/OPTICA.420520
https://doi.org/10.1088/1367-2630/12/12/123005
https://doi.org/10.1016/j.jcp.2021.110367
https://doi.org/10.1103/PhysRevLett.74.2248
https://doi.org/10.1038/nphoton.2013.314
https://doi.org/10.1038/nphoton.2017.100
https://doi.org/10.1038/s41567-021-01202-6

