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Structure of dimension-bounded temporal correlations
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We analyze the structure of the space of temporal correlations generated by quantum systems. We show that
the temporal correlation space under dimension constraints can be nonconvex. For the general case, we provide
the necessary and sufficient dimension of a quantum system needed to generate a convex correlation space for
a given scenario. We further prove that this dimension coincides with the dimension necessary to generate any
point in the temporal correlation polytope. As an application of our results, we derive nonlinear inequalities to
witness the nonconvexity for qubits and qutrits in the simplest scenario, and present an algorithm which can help
to find the minimum for a certain type of nonlinear expressions under dimension constraints.
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Introduction. States of a quantum system are mathemat-
ically described by vectors in a Hilbert space. When no a
priori information about the measurements or the states is
known, one of the intrinsic properties we can possibly tell
about an unknown quantum system is the dimension of its
underlying Hilbert space. The dimension is considered as
a valuable resource from an information-theoretical view-
point [1–3]. Higher-dimensional quantum systems have been
proven to be able to perform better in some tasks such as
quantum key distribution [4,5] and so they can be used to
implement more powerful protocols than lower-dimensional
quantum systems [6].

But what can be concluded if the dimension is lim-
ited? For instance, in the semi-device-independent framework
of quantum information processing, nothing else but the
dimension of the quantum system is assumed [7,8]. The
system is then measured in different experimental configu-
rations and the statistics of the outcomes, usually referred
to as quantum correlations, are recorded. The typical ex-
ample of this scenario is the Bell test which proves that
quantum mechanics is nonlocal. The resulting spatial cor-
relations play a central role in many quantum information
protocols, such as quantum key distribution and random-
ness certification [7,9]. Preceding works studied the space
of quantum correlations arising from quantum systems of
different dimensions in many scenarios [10–14], with various
techniques using convex optimization designed to find the
bound of some linear functionals of the correlations achiev-
able with a given dimension [15,16]. In the Bell scenario,
however, the sets of correlations arising from dimension-
bounded Hilbert spaces are typically nonconvex [17–19].
Hence what linear functionals characterize are essentially the
convex hulls of correlation sets, rather than correlation sets
themselves. In addition, some of these Bell-type dimension
tests have recently been critically investigated, as they may
not characterize the experimentally relevant figures of merit
[20,21].

In this Letter we consider a different model, where mea-
surements are performed in a temporal sequence [22–26],
instead of spatial correlations investigated in Bell tests. The
temporal correlations obtained by sequential measurements
can be used to violate Leggett-Garg inequalities [27,28],
proving quantum mechanics is not a theory of macroscopic
realism. We study the structure of temporal quantum correla-
tions generated by dimension-bounded systems. First, we will
prove that already for the simplest scenario, the correlation
spaces obtained by qubit or qutrit systems are nonconvex, and
we provide nonlinear witnesses detecting this nonconvexity.
Namely, they can distinguish quantum systems with different
dimensions even if the convex hulls of the correlation spaces
are the same. For general scenarios, we give a formula for the
necessary and sufficient dimension of quantum systems, from
which a convex set of temporal correlations can be obtained.
As an application, we show that our nonconvexity witnesses
are also qualitatively better dimension witnesses than linear
ones. In order to derive nonlinear inequalities able to test
higher dimensions, we present an iterative algorithm which
allows us optimize a certain type of temporal correlation poly-
nomials over dimension-bounded Hilbert spaces.

The space of temporal correlations. As illustrated in Fig. 1,
a single system prepared in an initial state ρin is subjected
to a sequence of measurements of a certain length L. At
each time step, a measurement selected from a given set
{M0,M1, . . . ,MS−1} is performed according to the input
from an input alphabet X = {0, 1, . . . , S − 1}, and after each
measurement an output from an alphabet A = {0, 1, . . . , O −
1} is obtained. No assumption on the type of measurements
will be imposed. In between two measurements we allow for
an arbitrary quantum dynamics, which may depend on the for-
mer choice of measurements and the measurement outcomes.
Given an initial state ρin, one obtains a probability distribution
p(ab · · · |xy · · · ) for any input sequence xy · · · . We call the
collection of the probability distributions generated by all
possible inputs a temporal correlation. As a result of causality,
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FIG. 1. A quantum system with initial state ρin is measured sev-
eral times, and the measurements can be repeated. The output state
after each measurement will be subjected to a quantum dynamics
which may depend on the prior choice of measurements and the
outcome of the measurements. In this figure we depict this scenario
for L = 3.

the choice of latter measurements cannot affect the outcomes
of former measurements. Hence, the temporal correlations
have to fulfill the arrow of time (AoT) constraints [29]. For
a two-step process, the constraints read∑

b

p(ab|xy) =
∑

b

p(ab|xy′), (1)

for all a, b ∈ A, x, y, y′ ∈ X . If there is no further assumption
on the dimension of the quantum system, for any given L,
S, and O, the temporal correlations form a polytope denoted
by PL

S,O [29]. The extreme points of this polytope are the
deterministic assignments, where each measurement has a
fixed outcome and the AoT constraints are fulfilled [25,30]. A
correlation {p(abc · · · |xyz · · · )} is in the temporal correlation
polytope if and only if it can be decomposed as

p(abc · · · |xyz · · · ) = p(a|x)p(b|a, xy)p(c|ab, xyz) · · · , (2)

with p(a|x), p(b|a, xy), p(c|ab, xyz), . . . denoting the local
probability distribution where the measurement choice and
their outcomes in the preceding time steps are fixed [25]. It has
been shown that any correlation obeying the AoT condition
can be reached in quantum mechanics [25,31], in contrast to
the nonsignaling polytope in the Bell scenario [32], where not
all the points can be realized.

Nonconvexity in the simplest case. The most basic ex-
perimental setup is to measure an uncharacterized quantum
system twice, producing binary strings ab ∈ {0, 1}⊗2. The per-
formed measurements are chosen from a set of two-outcome
measurements {M0,M1}, based on the input string xy ∈
{0, 1}⊗2. Qubits can already be distinguished from higher-
dimensional systems with this simple setup, since one can
reach all the extreme points of the polytope by using qutrits,
but not qubits [25]. Moreover, as we prove below, the set of
quantum correlations generated by a qubit is not convex. For
example, the two extreme points of the correlation polytope,

p1 : p(10|00) = p(10|01) = p(01|10) = p(00|11) = 1,

p2 : p(10|00) = p(10|01) = p(10|10) = p(10|11) = 1, (3)

can be attained by measuring a single qubit [25]. Nevertheless,
the mixture of both, pm = p1+p2

2 , cannot be achieved by a
qubit. This can be seen as follows: In order to realize the cor-
relation pm, both measurements M0 and M1 have to be able
to give each of the two results. Moreover, measuring M0 in
the first step gives result “1” with certainty and in the second

step if M0 was measured in the first step, it produces result
“0” with certainty. This means both of its effects have to be
projective operators. Without loss of generality, we denote the
initial state by |1〉. Then the measurement M0 is measuring
the observable σz, and the intermediate state after choosing
M0 as the first measurement is precisely |0〉. Based on the
observation that measuring M1 on state |0〉 always gives out-
come “0,” we can tell that the effect of M1 corresponding to
outcome “0” is of the form |0〉〈0| + ε|1〉〈1|, with ε ∈ [0, 1). If
we measure M1 twice, the second step will give outcome “0”
with certainty, which indicates that the intermediate state after
measuring M1 is also the |0〉. However, in this case the prob-
ability p(01|10) vanishes, which contradicts p(01|10) = 1/2.

Besides the case-to-case analysis, the nonconvexity can
also be detected by nonlinear inequalities:

Observation 1. For correlations resulting from arbitrary
measurements on a qubit, it holds that

S1 = 2p(0|0) + p(0|0, 00) + 2p(0|1)

+ p(0|0, 11) + p(1|0, 10)p(1|0, 01) �
d=2

6. (4)

Here, p(b|a, xy) = p(ab|xy)/p(a|x) denotes the proba-
bility of obtaining the outcome “b” when measuring the
measurement My in the second time step, given that the
measurement Mx was measured in the first time step, and
outcome “a” was obtained. The proof of Eq. (4) is presented
in Appendix A of the Supplemental Material, wherein also an
example of nonconvexity detected by Eq. (4) is given [33]. In
this example, both extreme points we consider are achievable
by a qubit, but the uniform mixture of them violates the in-
equality as demonstrated in Fig. 2. The maximal value S1 = 7
can be achieved by an extreme point of the polytope, which
corresponds to a qutrit system [25].

In the simplest scenario L = S = O = 2 all the ex-
treme points are already achievable by qutrits, so linear
dimension witnesses could not distinguish qutrits from higher-
dimensional quantum systems. Still, nonlinear criteria can do
that, as the following inequality shows:

Observation 2. For arbitrary measurements we have that

S2 = p(0|0, 00) + p(0|0, 01) + p(0|0, 10) + p(1|1, 00)

+ p(1|1, 10) + p(1|1, 11)

+ p(1|0, 11) + p(0|1, 01) �
d=2

4 + 2
√

2 �
d=3

5 +
√

5,

(5)

where the first bound holds for a qubit, and the second bound
for a qutrit. The algebraic maximum S2 = 8 can be reached
by a four-level system.

It should be noted that the above inequality can also be in-
terpreted in the prepare-and-measure scenario where the pair
(a, x) determines the prepared state and y the input defines the
measurement setting. In this context, it corresponds to a quan-
tum random access code [34], for which the qubit bound has
already been shown analytically [35], and the qutrit bound has
been obtained numerically [13]. This connection allows one
to use inequalities and techniques known in the prepare-and-
measure scenario for the study of temporal correlations and
vice versa. In Appendix B of the Supplemental Material we
provide a proof of the Observation, in particular we prove the
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FIG. 2. Schematic illustration of the temporal correlation space
in the simplest case. The octagon denotes the temporal correlation
polytope, the darker area is the temporal correlation space generated
by a qubit, and the lighter area denotes the temporal correlations that
can be reached by a qutrit, but not a qubit. We label the extreme
points achievable by a qubit with circles and other extreme points
with crosses. The curve in the bottom describes (4), whose maximum
is achieved by an extreme point which cannot realized by qubit. The
algebraic maximum of inequality (5), described by the double curves
at the upper left, is achieved by the uniform mixture of two extreme
points that are achievable by qubits.

qutrit bound analytically [33]. Alongside we show an example
of two extreme points, who both can be reached by measuring
a qubit, but the uniform mixture requires a four-level system
and reaches S2 = 8.

Mixing with white noise. We will consider in the following
that the experiment is affected by noise. We call the noise local
white noise if the experiment is only disturbed at one time
step, which causes the local-in-time distribution {p(a|hx)} to
be mixed with a local uniform distribution {p(a|hx) = 1

O }.
Here, h stands for the history, i.e., the chosen measurements
and their outcomes before the time step. If the correlation
{p(abc · · · |xyz · · · )} itself is mixed with a uniform distribu-
tion {p(abc · · · |xyz · · · ) = 1

OL }, we say that the noise is a
global white noise. Counterintuitively, mixing a correlation
{p(abc · · · |xyz · · · )} with local or global white noise does
not necessarily reduce the dimension required to realize it.
This also exemplifies the nonconvexity of dimension-bounded
temporal correlations. Here, we discuss the two kinds of white
noise separately.

(i) Local white noise: For example, if the correlation is
affected by local white noise to step two, the conditional
probability distribution at the second step {p(b|a, xy)} for
chosen a, x, y is mixed with {p(b|a, xy) = 1

O }. Obviously for
certain correlations, this process can have more outcomes for
one time step, which may increase the necessary dimension of
quantum system.

(ii) Global white noise: Consider a given correlation
{p(abc · · · |xyz · · · )} is mixed with the identity correlation
{p(abc · · · |xyz · · · ) = 1

OL }. Here, we present two examples,
where the necessary dimension increases.

Example 1. Consider a trivial extreme point in the (2-2-
2) scenario, p(00|00) = p(00|01) = p(00|10) = p(00|11) =
1. Its uniform mixture with the identity is

p(ab|xy) =
{

5
8 , for a = 0, b = 0,

1
8 , otherwise,

(6)

which cannot be generated by a one-dimensional quantum
system in contrast to the original correlations.

Example 2. Consider the extreme point defined by
p(00|00) = p(00|01) = p(00|10) = p(01|11) = 1. It can be
easily seen that this point can be realized with measurements
on a qubit [25,36]. However, as we will show in Appendix C
of the Supplemental Material, the convex combination of this
point and sufficiently weak global white noise requires at least
a qutrit for its realization [33].

From the discussion above, we see that the correlation
space expands while the dimension d of the underlying quan-
tum system increases, until the whole correlation polytope is
obtained. For the simplest scenario, the nonconvexity of the
qutrit correlation space shows that the whole correlation poly-
tope cannot be reached with a qutrit, although all the extreme
points can be achieved. A natural question then arises: Which
dimension is needed in order to obtain the entire temporal
correlation polytope? We give an explicit formula for this
dimension in the following, and we show that any correlation
space generated by a system with a smaller dimension is
nonconvex.

General scenarios. For an arbitrary given scenario with L
measurement steps, S possible measurements, and O possible
outcomes per measurement, the temporal correlation polytope

PL
S,O has (OS )

SL−1
S−1 extreme points [25]. The following theorem

provides the smallest dimension of a quantum system, such
that the generated set of temporal correlations will be con-
vex. We call this the critical dimension D(L, S, O). We show
moreover that the set of temporal correlations generated by a
quantum system of critical dimension is already the temporal
correlation polytope PL

S,O. Hence, the set of temporal correla-
tions of a quantum system cannot be extended by increasing
its dimension beyond the critical dimension.

Theorem 1. The critical dimension is given by the following
formula,

D(L, S, O) = min

{
OS,

(OS)L − 1

OS − 1

}
. (7)

Quantum systems with a dimension larger than or equal to
the critical dimension generate the correlation polytope PL

S,O.
Moreover, any correlation space generated by quantum sys-
tems with smaller dimension is nonconvex.

To give an example, with this formula we can calculate
the critical dimension of the simplest case as D(2, 2, 2) = 4.
The detailed proof is presented in Appendix D of the Sup-
plemental Material [33]. A sketch of the proof is as follows:
In order to show that the critical dimension is necessary to
achieve all the correlations in the polytope, we consider two
density matrices which have to be able to each realize a certain
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local-in-time correlation. Then we show an upper bound on
the overlap of the eigenstates corresponding to the maximal
eigenvalue of these two density matrices. One can then show
that if the pairwise upper bound is low enough for a set of
states, these states have to be linearly independent, which
proves the necessity of the critical dimension. For the other
direction, we construct protocols to realize an arbitrary point
in the correlation space with a D-dimensional system. Then
we give examples contradicting the convexity of correlation
space generated by systems whose dimension is smaller than
critical dimension. Our results can be also straightforwardly
used in the prepare-and-measure scenario where in addition to
constraints on the dimension among others also the minimal
overlap assumption has been considered [37].

Numerical algorithms. Finally, let us provide a seesaw
algorithm that can find the maximum of the general polyno-
mial, if the maximum is attained on pure states and projective
measurements under dimension constraints. The polynomials
discussed in this Letter all fulfill this assumption. Exploiting
the correspondence between length-two temporal correlations
and the prepare-and-measure setup, our method can be uti-
lized in both scenarios.

Consider any given polynomial p(X1, X2, . . . , Xn) where
the Xi’s are the involved probabilities of the form p(a|x) or
p(b|a, xy). Since every maximization problem can be con-
verted into a minimization problem, we only present the
method for finding the minimum of such a polynomial. To
find the minimum of p(X1, X2, . . . , Xn) for a d-dimensional
quantum system, we can first choose a random number q,
and check whether p(X1, X2, . . . , Xn) can achieve a value
smaller than q with correlations obtained from measuring
a d-dimensional system. We illustrate this using the d = 2
case as an example. For a correlation that can be produced
by a qubit, its corresponding (X1, X2, . . . , Xn) has a quan-
tum representation Xi = tr(ρiMi ), with ρi being the initial or
intermediate states and Mi the measurement effects. By as-
sumption, the polynomial is minimized by a correlation with
pure states ρi = |ψi〉〈ψi| and projective measurement effects
Mi = |φi〉〈φi|. For this correlation we can construct a 2 × 2n
matrix

� = (|ψ1〉, . . . , |ψn〉, |φ1〉, . . . , |φn〉|). (8)

Then, the matrix �†� is a 2n × 2n positive semi-definite
matrix with all diagonal entries equal to 1 and rank 2. Every
Xi = tr(ρiMi ) = |〈ψi|φi〉|2 is the absolute square of a certain
entry. If the minimum of p(X1, X2, . . . , Xn) is smaller than
a number q, then there should exist a common object in the
following two sets of 2n × 2n matrices:

(M1) Rank two positive semidefinite matrices.
(M2) Hermitian matrices with the main diagonal

(1, 1, . . . , 1), whose entries corresponding to {Xi} satisfy
the inequality

p(X1, X2, . . . , Xn) � q. (9)

To examine the existence of such a matrix, one can iterate
between these two sets. Starting from a matrix in M1 one can
find analytically the closest matrix in M2. For this matrix,
one can then find analytically the closest matrix in M1 again,
etc. We describe the algorithm in detail in Appendix E of
the Supplemental Material [33]. A common object exists if
the iteration converges, the converse is however not true. In
Appendix F of the Supplemental Material we give an example
of applying our method to treat the inequality (5) numeri-
cally [33].

Conclusions. We characterized the nonconvex structure of
temporal correlation space generated by finite-dimensional
quantum systems. For arbitrary scenarios, we derived the criti-
cal dimension of quantum systems to generate a convex set of
temporal correlations. We established nonlinear inequalities
for the simplest case with upper bounds satisfied by qubits or
qutrits, respectively. These nonlinear inequalities can serve as
implementable dimension witnesses. In this way, our results
might trigger experimental investigations of the performance
of systems with different finite dimensions.

Note that our setting allows for arbitrary dynamics to occur
between adjacent time steps. The structure of the temporal
correlation space can change if we limit the possible interme-
diate channels to certain classes, e.g., Markovian channels. It
would be interesting to study the features of correlation space
corresponding to restricted quantum channels. This might in-
spire a general method to experimentally reveal the properties
of quantum channels by analyzing the obtained temporal cor-
relations. We leave this problem for future research.
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Przysikȩżna, Phys. Rev. Lett. 115, 120404 (2015).

[25] J. Hoffmann, C. Spee, O. Gühne, and C. Budroni, New J. Phys.
20, 102001 (2018).

[26] C. Spee, H. Siebeneich, T. F. Gloger, P. Kaufmann, M.
Johanning, C. Wunderlich, M. Kleinmann, and O. Gühne, New
J. Phys. 22, 023028 (2020).

[27] A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857 (1985).
[28] H. S. Karthik, H. A. Shenoy, and A. R. Usha Devi, Phys. Rev.

A 103, 032420 (2021).
[29] L. Clemente and J. Kofler, Phys. Rev. Lett. 116, 150401

(2016).
[30] A. A. Abbott, C. Giarmatzi, F. Costa, and C. Branciard, Phys.

Rev. A 94, 032131 (2016).
[31] T. Fritz, New J. Phys. 12, 083055 (2010).
[32] S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994).
[33] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.105.L020201 for discussions and proofs of
the results and a detailed description of the algorithm in the
main text.

[34] S. Wehner, M. Christandl, and A. C. Doherty, Phys. Rev. A 78,
062112 (2008).

[35] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, J. ACM
49, 496 (2002).

[36] C. Spee, C. Budroni, and O. Gühne, New J. Phys. 22, 103037
(2020).

[37] W. Shi, Y. Cai, J. B. Brask, H. Zbinden, and N. Brunner, Phys.
Rev. A 100, 042108 (2019).

L020201-5

https://doi.org/10.1103/PhysRevA.85.052308
https://doi.org/10.1103/PhysRevLett.100.210503
https://doi.org/10.1103/PhysRevLett.105.230501
https://doi.org/10.1103/PhysRevLett.110.150501
https://doi.org/10.1103/PhysRevA.92.042117
https://doi.org/10.1103/PhysRevA.92.022351
https://doi.org/10.1103/PhysRevLett.115.020501
https://doi.org/10.1103/PhysRevLett.122.070501
https://doi.org/10.1103/PhysRevA.92.062120
https://doi.org/10.1103/PhysRevLett.117.060401
https://doi.org/10.1103/PhysRevLett.112.140407
https://doi.org/10.1103/PhysRevLett.119.080401
https://doi.org/10.1103/PhysRevLett.120.060502
https://doi.org/10.1103/PhysRevLett.111.020403
https://doi.org/10.1007/s11467-013-0400-2
https://doi.org/10.1103/PhysRevLett.115.120404
https://doi.org/10.1088/1367-2630/aae87f
https://doi.org/10.1088/1367-2630/ab6d42
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1103/PhysRevA.103.032420
https://doi.org/10.1103/PhysRevLett.116.150401
https://doi.org/10.1103/PhysRevA.94.032131
https://doi.org/10.1088/1367-2630/12/8/083055
https://doi.org/10.1007/BF02058098
http://link.aps.org/supplemental/10.1103/PhysRevA.105.L020201
https://doi.org/10.1103/PhysRevA.78.062112
https://doi.org/10.1145/581771.581773
https://doi.org/10.1088/1367-2630/abb899
https://doi.org/10.1103/PhysRevA.100.042108

