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Various experimental platforms have proven to be valid testbeds for the implementation of nondipolar light-
matter interactions, where atomic systems and confined modes interact via two-photon couplings. Here, we study
a damped quantum harmonic oscillator interacting with N two-level systems via a two-photon coupling in the so-
called bad-cavity limit, in the presence of finite-temperature baths and coherent and incoherent drivings. We have
succeeded in applying a recently developed adiabatic elimination technique to derive an effective master equation
for the two-level systems, presenting two fundamental differences compared to the case of a dipolar interaction:
an enhancement of the two-level systems spontaneouslike emission rate, including a thermal contribution and a
quadratic term in the coherent driving, and an increment of the effective temperature perceived by the two-level
systems. These differences give rise to striking effects in the two-level systems dynamics, including a faster
generation of steady-state coherence and a richer dependence on temperature of the collective effects, which can
be made stronger at higher temperature.
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I. INTRODUCTION

Atomic systems interacting with confined photonic or
phononic modes represent one of the most studied classes
of quantum-optical systems. On the one hand, the confine-
ment may induce modifications of single atom absorption
and emission rates such as the well-known Purcell effect [1].
On the other hand, the collective nature of such interactions
gives rise to a rich quantum phenomenology characterized,
for example, by the emergence of quantum phase transitions
[2] and by the qualitative modifications of optical properties
[3]. Concerning the latter, a sub- and a superradiant regime
have been identified, respectively, characterized by the damp-
ening or the amplification of atomic absorption and emission
rates with respect to the independent-emitter case [4]. These
regimes have been extensively studied also in the presence of
coherent or incoherent optical drivings [5–12]. Much attention
has been devoted to the so-called bad-cavity limit in which
the confined mode is strongly dampened with respect to the
interaction with the atoms [5–8,10,11]. In this context, the ef-
fective dynamics of the atoms can be obtained by adiabatically
eliminating the confined mode [13–16].

Besides the fundamental interest, collective quantum phe-
nomena induced by light-matter interactions can be exploited
in a variety of applications. In particular, the sub- and su-
perradiant regimes may be associated to the generation of
collective states of the emitters, which are of great interest
for quantum sensing [17,18], generation of nonclassical states
[19], photon storage [20], and excitation transfer [21]. This
phenomenology is of high experimental relevance, as collec-
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tive light-matter interactions can be controllably implemented
in a broad range of atomic and solid-state quantum systems,
such as cold atoms [22], trapped ions [23], metamaterials
[24], plasmonic cavities [25], color centres in diamonds [26],
quantum dots [27], and superconducting circuits [28].

To the best of our knowledge, collective radiative phe-
nomena have not so far been analyzed for two-photon (2ph)
interactions. However, it has been recently predicted that us-
ing atomic or solid-state systems it is possible to implement
nondipolar light-matter couplings, where the linear interac-
tion is inhibited and where quantum emitters and localized
bosonic modes interact via the exchange of two excita-
tion quanta. In particular, such two-photon couplings can
be observed by engineering superconducting atom-resonator
systems [29,30] or by applying analog quantum simula-
tion schemes in trapped ions [31–33] or ultracold atoms
[34,35]. Notice that nondipolar transitions have already been
observed using superconducting artificial atoms [36], and
that quantum-simulation techniques have already been ex-
perimentally applied to observe the physics of fundamental
dipolar light-matter interaction models in extreme regimes
of parameters [35,37]. On the dissipative side, two-photon
relaxation [38,39] and pumping [38] have also been theoret-
ically analyzed and experimentally implemented [40]. The
fast-growing interest in two-photon couplings is motivated
by a rich phenomenology, characterized by counterintuitive
spectral features [41–46], high-order quantum optical nonlin-
earities [29,30,47], and quantum phase transitions [48–52].
In turn, this phenomenology can be exploited in different
quantum-information applications [53–55]. We finally stress
that the two-photon coupling analyzed here differs from other
physical situations for which the term “two-photon” is used.
Some examples are two-photon excitations (see chapter 6.7 of
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Ref. [56]), two-photon absorption [57], two-plasmon emission
[58], and two-photon emission coming from strong light-
matter coupling [59].

In this Letter, we study the dynamics of a damped
harmonic oscillator (HO) interacting with an ensemble of
two-level systems (TLSs) in the bad-cavity limit in the case
of a two-photon coupling. By applying a recently developed
approach to perform adiabatic elimination in open quantum
systems [15,16], we derive an effective master equation for
the TLSs that takes into account the coupling with finite-
temperature baths as well as coherent and incoherent optical
drivings. Our analytical and numerical analysis of the time
evolution and steady-state behavior unveils an unexpected
collective phenomenology induced by nondipolar light-matter
interactions. Compared to the dipolar case, the two-photon
coupling introduces the possibility to enhance the absorption
and emission processes, and leads to a higher resilience of
sub- and superradiance with respect to the baths temperature.

II. PHYSICAL MODELS

We study a system composed of a damped HO interacting
via a resonant Jaynes-Cummings Hamiltonian with N TLSs
in the bad-cavity limit [13,14,16], comparing the one-photon
(1ph) and 2ph interaction cases. The two models are described
by the Hamiltonians

Hl = h̄ωa†a + l h̄ω

2
Jz + h̄g[alJ+ + (a†)l J−], (1)

where l = 1 for the 1ph case and l = 2 for the 2ph one, ω is
the frequency of the HO and lω the one of the TLSs (i.e.,
we consider a resonant interaction in both cases), g is the
coupling parameter between the HO and the TLSs, a and a†

are the usual annihilation and creation operators of a HO,
while Jz = ∑N

i=1 σ (i)
z and J± = ∑N

i=1 σ
(i)
± , where σz, σ−, and

σ+ are, respectively, the z-Pauli, the lowering, and the raising
operators of a TLS. The ground and the excited energy levels
of each TLS are indicated, respectively, by |g〉 and |e〉. In
Sec. I of the Supplemental Material (SM) [60] we provide an
example of a possible implementation with superconducting
circuits [61] of the above Hamiltonian for the case l = 2, by
generalizing the study done in Ref. [30] to the case of more
than one TLS.

We suppose that the HO and each TLS are each in contact
with an independent thermal bath at temperature T (equal for
all baths) and that a resonant coherent pumping on the HO
and an incoherent local pumping on the TLSs are available.
In the interaction picture, using a phenomenological approach
[62–64], the master equation for the global density matrix ρG

is

ρ̇G = −ig[alJ+ + (a†)l J−ρG] + LHO(ρG) + LQ(ρG), (2)
where LHO(•) and LQ(•) are dissipators acting, respectively,
on the HO and on the TLSs, given by

LHO(•) = − i[(β∗a + βa†), •]

+ k[(1 + n̄ω,T )Da(•) + n̄ω,TDa† (•)],

LQ(•) =
N∑

i=1

[
γloc(1 + n̄lω,T )D

σ
(i)
−

(•)

+ (γlocn̄lω,T + P)D
σ

(i)
+

(•)
]
, (3)

where DX (•) = X • X † − 1
2 {X †X, •}, k and γloc are the re-

laxation rates of, respectively, the HO and each TLS due
to the local couplings with their own thermal baths (γloc is
assumed to be the same for all the TLSs), β characterizes the
interaction between the HO and the coherent field, P quanti-
fies the action of the incoherent pumping on each TLS, and
n̄ω,T = [eh̄ω/(kBT ) − 1]−1, kB being the Boltzmann constant.
The coherent pumping is treated in the rotating-wave approx-
imation, being |β| � ω. The phenomenological approach is
justified because we consider the TLSs and the HO weakly
coupled (g � ω) [62], the HO weakly coupled to its bath
(k � ω) [62], and the external coherent field resonant with
the HO [63].

III. ADIABATIC ELIMINATION

By applying a recently introduced adiabatic elimination
technique [15,16] we have been able to derive an effective
master equation for the reduced density matrix of the TLSs,
ρ = TrHO{ρG} (see Secs. II and III of SM [60] for a review of
this technique, the detailed derivation, and some comments on
the validity range of the adiabatic elimination):

ρ̇ = −ig[αl J+ + (α∗)l J−, ρ] + LQ(ρ)

+ γl [nlDJ+ (ρ) + (1 + nl )DJ− (ρ)], (4)

where we recall that l = 1 for the 1ph case and l = 2 for the
2ph one, and

α = −2iβ

k
, γ1 = 4g2

k
, n1 = n̄ω,T ,

γ2 = γ1(1 + 2n1 + 4|α|2),

n2 = n1
n1 + 4|α|2

1 + 2n1 + 4|α|2 . (5)

As expected, even in the 2ph case the adiabatic elimi-
nation gives rise to collective dissipative terms [second line
of Eq. (4)]. We observe that differently from the case of
collective radiative phenomena induced by the interaction of
different atoms with a common vacuum field [4], here the
collective phenomena result from the coupling with a common
damped HO. Notice that, although Eq. (4) retains its formal
structure when changing l (see Sec. IV of SM [60] for de-
tails), the effective parameters αl , γl , and nl coming from the
adiabatic elimination depend differently in the two models on
the physical parameters g, β, k, ω, and T [see Eq. (5)]. This
results in profound physical differences between the 1ph case
and the 2ph one, leading to unexpected effects specific to the
2ph case. In particular, we can identify three main modifica-
tions. A first evident difference regards the dependence of the
unitary driving term on α, which is linear in the 1ph case and
quadratic in the 2ph one. An even more striking difference
concerns the collective relaxation rate γl which, only in the
2ph case, depends on the parameters characterizing the state
of the HO at order zero, n1 and α (see Sec. III of the SM
[60]). Finally, the coherent pumping increases the temperature
of the effective collective bath seen by the TLSs, generated
by the adiabatic elimination of the HO. In particular, setting
n2 = n̄2ω,T ∗ = [e2h̄ω/(kBT ∗ ) − 1]−1, the temperature of this col-
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FIG. 1. Time evolution of the excited-state population of one
TLS, ρee, with physical parameters β = 1.25k (so that |α| = 2.5),
γloc = 0, g = 0.01k, T = 0, and P = 0. The dot-dashed blue line and
the continuous red line are the curves obtained by using the effective
model of Eq. (4) for, respectively, the 1ph and 2ph models. Empty
markers show discrete points obtained from the numerical simulation
of the full model of Eq. (2). In the 2ph model the steady state is
clearly reached much faster.

lective bath is

T ∗ = 2h̄ω

kB

[
ln

(
e2h̄ω/(kBT ) − 2

1 + 4|α|2(eh̄ω/(kBT ) − 1)
+ 2

)]−1

. (6)

Notice that when α = 0 the temperature of this collective bath
would be the same as that of the original bath of the HO (T ∗ =
T ). The peculiar form of γ2 and n2, especially their quadratic
dependence on |α|, can be useful to manipulate the dynamics
of the TLSs, possibly enhancing their absorption and emission
processes.

In the following, we discuss the physical consequences of
these differences. In order to check the validity of the adia-
batic elimination, we will show in several figures numerical
simulations of the full model of Eq. (2).

IV. COHERENT DRIVING EFFECTS: FASTER DYNAMICS
AND ROBUST STEADY-STATE COHERENCE

In order to focus on the effects due to the coherent pumping
on the HO, let us consider the case of zero temperature and no
local incoherent pumping on the TLSs. For T = 0 and P = 0,
Eq. (4) simplifies and γ2 = γ1(1 + 4|α|2).

The quadratic dependence of γ2 on |α| can be exploited to
make the system reach much faster its steady state in the 2ph
case. This is shown in Fig. 1, comparing the dynamics of one
TLS (henceforth we use the notation 〈x|ρ|y〉 = ρxy) for the
two models.

Focusing on the reachable steady states ρst in the one TLS
case, Fig. 2 shows that nondiagonal ones in the bare basis, that
is, those presenting coherences, can be obtained. The analyti-
cal expression of these coherences in the general case (T �= 0
and P �= 0) can be found in Sec. V A of the SM [60]. In
particular, non-negligible coherences are obtained when g is
sufficiently high (but inside the validity range of the adiabatic
elimination). By comparing the two models, one can see that

FIG. 2. Steady-state excited populations and coherences of one
TLS as a function of |α| with γloc = 0, g = 0.01k, T = 0, and P = 0.
The various empty markers show discrete points computed with
the full model of Eq. (2). As predicted, the error induced by the
effective model increases as |α| increases. The inset shows a zoom of
the 2ph steady-state coherence for 2 � |α| � 2.5. Both the full and
the effective model predict a very low variation of the coherence in
this range of |α|.

great differences arise for |α| � 1. In this regime, indeed, the
2ph interaction allows one to generate steady states in much
shorter time (as one can evince from Fig. 1) and with higher
coherences. Moreover, the steady state does not change much
for little variations of |α| when |α| is high enough. This is
due to the fact that when γloc is negligible, the steady state
depends only on the ratio γl/(g|α|l ), which in the 2ph case
does not tend to zero but to 16g/k. For example, when γloc = 0
and g = 0.01k, the steady-state coherences for 2 � |α| � 2.5
are very close, as shown in the inset of Fig. 2. Therefore, it is
possible to rapidly generate nondiagonal steady states resilient
to intensity fluctuations of the coherent driving. We stress
that the generation of steady-state coherence is relevant since,
in general, it is considered as a resource for quantum tech-
nologies [65]. In particular, it has been recently shown that
nondiagonal steady states can find applications in quantum
metrology protocols [66,67], which could be then enhanced
by generating these states faster.

V. TEMPERATURE RESILIENCE OF
COLLECTIVE PHENOMENA

Let us now consider the case of no coherent pumping, in
order to focus on the emergence of correlations due to the
collective dissipative terms. For α = 0, in Eq. (4) the unitary
term disappears, γ2 = γ1(1 + 2n1), and n2 = n2

1/(1 + 2n1) =
1/[e2h̄ω/(kBT ) − 1]. This particular setting has been used [7,8]
to study the emergence of sub- and superradiant steady
states as a function of the incoherent pumping parameter P
when T = 0. The quantity Jcorr = 〈J+J−〉 − ∑

i=1〈σ (i)
+ σ

(i)
− 〉 is

used to characterize these collective phenomena. In particu-
lar, Jcorr > 0 indicates the occurrence of superradiance while
Jcorr < 0 indicates that of subradiance.
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FIG. 3. Jcorr of the steady state of two TLSs as a function of T
(n̄ω,T in the plot) and P/k in the 1ph and 2ph cases for g = 0.01k,
γloc = 10−4k, and α = 0. The horizontal lines correspond to the
value P = P∗ ≡ γloc + γ1 = 5 × 10−4k, where both models give ex-
actly Jcorr = 0 at zero temperature. The 2ph model exhibits a richer
dependence on temperature including stronger subradiance and su-
perradiance at higher temperatures. Note that the extremal values that
Jcorr may assume in the two-TLS case are −1 and 1.

When T = 0, there is no difference between the 1ph and
the 2ph models because γ2 = γ1. In contrast, the two models
behave very differently for T �= 0, as shown in Fig. 3 where
we plot the steady value of Jcorr in the two models as func-
tions of the incoherent pumping and the baths temperature
in the case of two TLSs, for g = 0.01k and γloc = 10−4k.
A more varied dependence of the collective phenomena on
temperature in the 2ph case is observed due to the increase
of the collective dissipation rate γ2 with the temperature. In
particular, remarkable differences are observed when P is
close to P∗ ≡ γ1 + γloc, since for this value of P, in the 1ph
case, Jcorr = 0 for any T , while this is not the case in the 2ph
case. This can be also evinced by the analytical expression we
have obtained for Jcorr in the two-TLS case (see Sec. V B of
the SM [60]) which shows that subradiance and superradiance
are obtained when P is, respectively, lower or higher than
γl + γloc. This behavior of the sign of Jcorr has been confirmed
in all the other simulations that we have done (up to six TLSs).
This means that for P = P∗, since γ2 increases with temper-
ature, subradiance is observed for any temperature different
from zero in the 2ph case. One could wonder if part of these
differences arises just because the TLSs in the 2ph model have
frequency 2ω so that, for the same temperature, they interact
with local baths by means of a lower average excitation num-
ber. To check the extent of this effect we have also looked at
the same plot using the frequency 2ω for the TLSs and the
HO for the 1ph case finding only a partial reduction of the
differences between the two models. An example of this issue
is treated for a specific example in Fig. 4.

A different behavior of collective phenomena is still
present in the case of a larger number of TLSs, as exhibited
in Fig. 4(a), where the plot of Jcorr in the steady state as a
function of the incoherent pumping for four TLSs at a fixed
temperature (n̄ω,T = 1) clearly shows relevant differences in
the two models, especially for the subradiance. In particular,
in the 2ph case, a higher peak of both super- and subradiance
can be reached, even when the frequency of the TLSs and of
the HO in the 1ph case is set equal to 2ω. A more striking dif-
ferent behavior of the two models can be obtained by studying

FIG. 4. (a) Jcorr of the steady state of four TLSs as a function
of P, for g = 0.01k, γloc = 10−4k, T such that n̄ω,T = 1, and α = 0.
Here, Jcorr is plotted for the 1ph (for both ω and 2ω) and 2ph cases.
(b) Steady Jcorr of four TLSs as a function of T (n̄ω,T in the plot),
for g = 0.01k, γloc = 10−4k, and α = 0, for P = P∗ ≡ γloc + γ1 =
5 × 10−4k and P = 1.5P∗ (see legend). The 1ph (ω and 2ω) and 2ph
cases are compared. In both plots, Jcorr is always zero for P = P∗ in
the 1ph case and the various empty markers indicate discrete points
computed with the full model of Eq. (2), i.e., without performing
the adiabatic elimination [in panel (b), because of computational
difficulties only points with n̄ω,T up to 10 are considered]. Note that
the extremal values that Jcorr may assume in the four-TLS case are
−2 and 4.

the dependence of the steady value of Jcorr on T for specific
values of the pump, as shown in Fig. 4(b). For P = P∗ no
subradiance nor superradiance is visible in the 1ph case, while
in the 2ph case a strong subradiance may be observed. An
even more interesting case is obtained for P > P∗. In this case,
the system displays superradiance at T = 0 in both models
while it follows very different paths, depending on the model,
when the temperature increases. In the 1ph model, Jcorr is
always positive and tends to zero for increasing temperature
whereas, in the 2ph model, there is a temperature T ′ such that
P < γ2 + γloc for T > T ′. Therefore, in the 2ph model, the
system can go into a subradiant zone inaccessible through the
1ph interaction at fixed pumping.

VI. CONCLUSIONS

In summary, we have studied the case of a damped HO
interacting with N TLSs via a two-photon coupling in the
bad-cavity limit in the presence of finite temperature baths,
a coherent pumping on the HO, and an incoherent pumping
on the TLSs, comparing it to the one-photon-coupling case.
We have succeeded in applying a recent adiabatic elimination
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technique in the two-photon model to derive a master equation
governing the collective evolution of the TLSs. This presents
two fundamental differences compared to the dipolar case: an
enhancement of the spontaneouslike emission rate, including
a thermal contribution and a quadratic term in the coherent
driving, and an increased temperature of the effective bath
experienced by the TLSs. This unexpected phenomenology
makes it possible to accelerate the generation of nondiagonal
one-TLS steady states and to observe a drastic change of the
temperature-dependent behavior of quantum collective phe-
nomena, leading to a stronger resilience of these phenomena
to high temperatures. We finally remark that the models here
investigated can be feasibly implemented with both solid-state
and atomic existing quantum technologies, as also discussed

in Sec. I of SM [60] for the 2ph model in the solid-state
context.
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