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We show that the cross sections for a broad range of resonant inelastic processes accompanied by excitation
exchange (such as spin exchange, Förster resonance, or angular momentum exchange) exhibit a near-threshold
scaling E�m12 , where E is the collision energy, �m12 = m′

1 + m′
2 − m1 − m2, and mi and m′

i are the initial and
final angular momentum projections of the colliding species (i = 1, 2). In particular, the inelastic cross sections
for �m12 = 0 transitions display an unconventional E 0 scaling similar to that of elastic cross sections, and their
rates vanish as T �m12+1/2. For collisions dominated by even partial waves (such as those of identical bosons in
the same internal state) the scaling is modified to σinel ∝ E�m12+1 if �m12 is odd. We present accurate quantum
scattering calculations that illustrate these modified threshold laws for resonant spin exchange in ultracold Rb +
Rb and O2 + O2 collisions. Our results illustrate that the well-known k−1 threshold scaling of inelastic cross
sections only applies to exothermic, rather than resonant, inelastic processes.
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Introduction. The unique controllability of ultracold atomic
and molecular collisions [1–10] gives rise to numerous appli-
cations of ultracold quantum gases in quantum information
science and precision tests of foundations of chemical and
statistical physics [5,11]. Further, much progress has been
achieved over the past few years in our ability to observe the
reactants and products of ultracold molecular collisions and
chemical reactions in single well-controlled quantum states
[6–9,11–13].

Ultracold atoms and molecules are typically prepared and
trapped in quantum states with a fixed value of the angular
momentum projection m on a space-fixed quantization axis
(typically fixed by an external electromagnetic field). Sub-
sequent angular momentum projection-changing collisions
play a key role in ultracold chemistry. If such collisions are
exothermic, they convert the intramolecular energy into trans-
lational energy of the relative motion, leading to undesirable
trap loss and heating. In contrast, resonant excitation exchange
(EE) collisions conserve the internal energy but lead to a co-
herent transfer of excitations (such as spin polarization) from
one particle to another. Examples of resonant EE processes in-
clude spin exchange in atomic, molecular, and ionic collisions
[14–25], Förster resonances in collisions of Rydberg atoms
[26–31], atom-dimer exchange chemical reactions [20,32],
excitation exchange between identical atoms or molecules
[33], charge transfer in cold ion-atom collisions [34–36], and
rotational angular momentum projection-changing collisions
[10]. In this Letter we resolve a long-standing controversy
regarding the threshold behavior of EE cross sections.

*Corresponding author: ttscherbul@unr.edu

Spin-exchange collisions in particular play an impor-
tant role in a wide array of research fields, ranging
from spin-exchange optical pumping [14–17], cold chem-
istry [20,21,32], precision magnetometry [18], and astro-
physics [37–41] to quantum many-body physics [22–25] and
quantum information processing, where they are used to gen-
erate entangled states [42,43] and to operate quantum logic
gates [44–48]. Recent experiments observed spin-exchange
collisions of ultracold alkali-metal atoms [49,50], Förster res-
onant energy transfer in Rydberg atom collisions [28–30],
and electric-field-induced shielding resonances in collisions
of rotationally excited KRb molecules [7]. We have recently
found that ultracold EE collisions are amenable to extensive
coherent control [10] due to the suppression of m12-changing
collisions at ultralow temperatures.

However, despite the ever-increasing interest in ultracold
EE collisions, there remains a considerable uncertainty about
the scaling of their integral cross sections (ICSs) near col-
lision thresholds [51,52]. It is commonly believed that the
inelastic ICSs scale as k−1 with the incident collision wave
vector k in the limit k → 0 [53,54]. While some computa-
tional studies did observe the k−1 scaling [16,21,39], others
reported that the ICSs for atomic EE collisions approach a
constant value [35,38,40,41], an unexpected observation that
has remained unexplained. Several authors attributed the k0

scaling to a deficiency of the degenerate internal state (DIS)
(or elastic) approximation [55–57] widely used to model EE
processes [32,35,38,40,41,55–69], which neglects the internal
structure of colliding atoms [19,38,39]. The exact reason for
this deficiency has remained unclear. More recently, the con-
stant near-threshold scaling of spin-exchange cross sections
was claimed to be incorrect [39], further deepening the ex-
isting controversy surrounding the threshold behavior of EE
collisions.
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Krems and Dalgarno presented a derivation of the thresh-
old laws for m-changing collisions of an open-shell atom
(or rotating molecule) with a spherically symmetric particle
[70] in the limit k → 0. They showed that the elastic ICSs
exhibit a k0 scaling, whereas the inelastic ICSs for m-changing
collisions vanish as k2�m when �m is even and as k2(�m+1)

when �m is odd [70]. However, their analysis cannot be
applied to describe EE processes where both species exchange
angular momenta. As such, a comprehensive understanding of
the threshold behavior of EE processes is still lacking, limiting
our ability to control a wide range of ultracold EE collisions
that are key to implementing quantum logic gates [44–48] and
to generating entanglement [42,43] and strong correlations
[22–25] in quantum many-body systems.

As noted above, here we resolve the long-standing contro-
versy regarding the threshold behavior of EE cross sections.
By deriving the threshold laws for ultracold EE collisions of
two species, both of which possess internal angular momenta,
we show that the ICSs for these processes display a collision
energy scaling σEE ∝ E |�m12|. Here �m12 = m′

1 + m′
2 − m1 −

m2 and mi and m′
i (i = 1, 2) are the initial and final angular

momentum projections of the colliding species, respectively.
In the important particular case �m12 = 0, the s-wave inelas-
tic ICS approaches a constant value and the corresponding rate
vanishes as T 1/2, as typically expected of elastic collisions
[54]. These results provide a conclusive explanation for the
unconventional k0 near-threshold scaling of the resonant EE
processes obtained in the widely used DIS approximation
[32,35,38,40,41,55–57] and for the unexplained change in the
threshold scaling of spin-exchange cross sections from k−1 to
k0 caused by this approximation [38].

To illustrate our findings, we present numerically ex-
act quantum scattering calculations of ultracold O2 + O2

and Rb + Rb collisions, which confirm our analytic results
and provide a blueprint for observing the unconventional
threshold scaling of inelastic cross sections in ultracold atomic
and molecular collision experiments. (For clarification, note
that inelastic refers to any collision where the nature or inter-
nal state of a colliding partner changes [71,72].)

Theory. Consider a binary collision of two atoms and/or
molecules, each possessing total internal angular momenta j1

and j2. The nature of the operators ji is set by the details of
the internal structure of the colliding species, which is imma-
terial for the discussion below. We focus on the case of weak
external fields, where ji remain good quantum numbers, and
consider as numerical examples collisions of two open-shell
17O2(3�) molecules (j = S + N, where S is the electron spin
and N is the rotational angular momentum) and collisions of
two 87Rb atoms (j = S + I, where I is the atomic nuclear
spin).

The starting point for our discussion is the expression for
the integral cross section for two particles initially colliding in
well-defined angular momentum eigenstates | jimi〉 (below, the
subscripts j1 and j2 will be omitted for brevity unless stated
otherwise),

σm1m2→m′
1m′

2
= π

k2

∑
l,ml

∑
l ′,m′

l

|Tm1m2,lml →m′
1m′

2,l
′m′

l
|2, (1)

where |lml〉 and |l ′m′
l〉 are the eigenstates of the orbital angular

momentum L̂2 of the collision complex and its projection
L̂z on the space-fixed quantization axis. We are interested in
the threshold scaling of the ICS with the collision energy
E , which is determined by that of the transition T -matrix
elements Tm1m2,lml →m′

1m′
2,l

′m′
l
. To make the threshold scaling

more explicit, we rewrite the T matrix in the total angular
momentum representation [73,74]

Tj1m1 j2m2,lml → j′1m′
1 j′2m′

2,l
′m′

l
=

∑
J,M

∑
j12,m12

∑
j′12,m

′
12

(2J + 1)
√

(2 j12 + 1)(2 j′12 + 1)(−1)l ′+lT J
j1 j2 j12l→ j′1 j′2 j′12l ′

× (−1) j12+ j′12+m12+m′
12

(
j1 j2 j12

m1 m2 −m12

)(
j12 l J

m12 ml −M

)

× (−1) j1+ j′1− j2− j′2

(
j′1 j′2 j′12

m′
1 m′

2 −m′
12

)(
j′12 l ′ J

m′
12 m′

l −M

)
, (2)

where j12 = |j12| = |j1 + j2| is the total internal angular
momentum and J = |J| = |j1 + j2 + l| is the total angular
momentum of the collision partners, which is conserved in
the absence of external fields.

The advantages of using Eq. (2) are twofold. First, the
threshold behavior of the T -matrix elements T J

j1 j2 j12l→ j′1 j′2 j′12l ′

only depends on l and l ′ through the Wigner threshold
law [51,52]

Tγ l,γ ′l ′ ∝ kl+1/2(k′)l ′+1/2, (3)

where k and k′ are the incident and final wave vec-
tors [51,52,75], respectively, and γ stands for all quantum
numbers other than l , i.e., the internal quantum numbers j1,
j2, and j12 or quantum numbers describing other simultaneous
resonant processes. Note that Eq. (3) assumes the absence of

near-threshold resonant, bound, and virtual states. A different
k scaling would result if such states were present [52,75,76].
In addition, we assume that the interactions between the
collision partners are short ranged and neglect the modifica-
tion of the threshold laws by long-range interactions [52]. In
the case of resonant scattering in the absence of external fields
considered below, the initial and final states are degenerate
(k = k′) and the near-threshold dependence of T -matrix ele-
ments takes the form

Tγ l,γ ′l ′ ∝ kl+l ′+1. (4)

In the limit of zero collision energy (k → 0) it follows from
Eq. (4) that the T -matrix elements with the lowest l and l ′
provide the dominant contributions to the sum in Eq. (2) and
hence to the ICS (1).
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Second, the 3- j symbols (:::) in Eq. (2) make explicit the
rotational symmetry restrictions on the possible values of l ,
ml , l ′, and m′

l . The 3- j symbols must satisfy the selection
rule m12 + ml = M = m′

12 + m′
l , m1 + m2 = m12, and m′

12 =
m′

1 + m′
2, which implies conservation of the total angular

momentum projection, M = m1 + m2 + ml = m′
1 + m′

2 + m′
l .

The values of ml and m′
l are then restricted by the change

of the internal projection �m12 = m12 − m′
12 = m′

l − ml . To
illustrate the restrictions on l and l ′, consider the s-wave
scattering (l = ml = 0) of two distinguishable particles that
changes m12 = m1 + m2 by 1. As stated above, since M is
conserved, we have �m12 = m12 − m′

12 = m′
l − ml = ±1 and

thus m′
l = ±1. In the absence of additional symmetry re-

strictions on the lowest possible values of l or l ′ in Eq. (1),
the dominant partial wave contributions are l = 0 and l ′ =
|�ml | = |�m12|. Substituting these values into Eq. (4), we
find Tγ l,γ ′l ′ ∝ k|�m12|+1. If the parity of molecular (atomic)
states does not change, the conservation of the total inversion
parity p implies that l and l ′ must have the same parity. This
is, for example, the case of spin-exchange transitions, which
only change the projections of the internal angular momenta
( j1 = j′1 and j2 = j′2). For ultracold collisions l = 0, and thus
l ′ must be even. The relation l ′ = |�m12| still holds for even
|�m12|, while for odd values of |�m12| it must be replaced by
l ′ = |�m12| + 1.

For collisions of identical bosons (fermions) in the same
internal state, the permutation symmetry must also be taken
into account. Only even (odd) partial waves will be present in
Eq. (1) [16,77]. For ultracold collisions of identical bosons
l = 0 and all permissible values of l ′ are even, as for the
case of ji-conserving spin-exchange transitions. For ultracold
collisions of identical fermions, l = 1 and all permissible
values of l ′ are odd. The relation l ′ = |�m12| holds for odd
|�m12|, while for even values of |�m12| it must be replaced by
l ′ = |�m12| − 1. Again, we find the same near-threshold scal-
ing Tγ l,γ ′l ′ ∝ k|�m12|+1 for even |�m12| and Tγ l,γ ′l ′ ∝ k|�m12|+2

for odd |�m12|. Note that |�m12| = 0 is a special case: The
lowest value of l ′ is 1 and Tγ l,γ ′l ′ ∝ k3. Thus, ultracold inelas-
tic collisions of identical fermions with |�m12| = 0, 1, and 2
all follow a near-threshold scaling identical to that of p-wave
elastic scattering, i.e., Tγ l,γ ′l ′ ∝ k3.

Summarizing the above discussion, the threshold behavior
of the T -matrix elements in the absence of l-restricting sym-
metries is given by Tγ l,γ ′l ′ ∝ k|�m12|+1. By taking the absolute
magnitude squared of the T -matrix elements and dividing
by k2 = 2μE , where μ is the reduced mass of the collision
complex [see Eq. (1)], we obtain the threshold scaling of the
ICS for collision-induced EE processes in the general case

σ j1m1 j2m2→ j′1m′
1 j′2m′

2
� E |�m12|. (5)

A modified threshold scaling applies in the case of even par-
tial wave scattering (spin-exchange transitions with j1 = j′1
and j2 = j′2 or those between identical bosons in the same
internal states)

σ j1m1 j2m2→ j′1m′
1 j′2m′

2
�

{
E |�m12| (|�m12| even)
E |�m12|+1 (|�m12| odd).

(6)

Significantly, unlike in the case of collisions with a structure-
less target [70], mi can be nonzero for both of the colliding
species, and thus |�m12| = 0 can correspond to inelastic as

well as to elastic scattering. Therefore, remarkably, these
expressions show that the threshold scaling of the ICS for
an inelastic EE process that conserves m12 (such as flip-flop
spin-exchange collisions) approaches a constant value in the
limit of ultralow collision energies. This behavior stands in
contrast with the expected E−1/2 scaling of the inelastic ICSs
in the limit E → 0 [4,54] and was reported without expla-
nation in several previous quantum scattering calculations of
near-resonant charge exchange [35] and spin exchange in cold
H + H collisions [38]. Note that m12 in Eqs. (5) and (6) is
the projection of the two-particle angular momentum j12 in
the incident collision channel. In contrast, in the work of
Krems and Dalgarno [70], m refers to a single-particle angular
momentum projection. The inclusion of the internal structure
of the second collision partner is a key aspect of this work,
which leads to a qualitatively different behavior compared to
the case of structureless atom-molecule collisions considered
before [70]. In particular, �m = 0 implies that a collision is
elastic [70], whereas �m12 = 0 does not.

The physical origin of the unconventional Wigner thresh-
old scaling can be traced back to the threshold behavior of
the T -matrix elements, which depends only on the initial and
final values of collision wave vectors k and k′ and on l and l ′
[see above and Eq. (3) [51]]. As a result, as long as a collision
process remains resonant (k = k′), the threshold dependence
will be governed by �m12, regardless of whether the process
is elastic or inelastic. Thus, as shown above, both the elastic
and inelastic collisions that conserve k and m12 have the same
constant near-threshold scaling, usually characteristic of the
elastic ICS. This explains why the DIS approximation, which
assumes k = k′ for all the incident and final channels [55–57],
gives a constant threshold scaling.

When the internal structure is included, both exothermic
(change of ji) and resonant (only change of projections) pro-
cesses must be considered. For the exothermic processes, the
discussion in the above paragraphs can be straightforwardly
extended. Assuming that k′ is outside of the threshold regime,
the dependence of the T matrix on k′ is negligibly weak and
Tγ l,γ ′l ′ ∝ kl+1/2. As a result, the relaxation ICSs assume their
conventional k−1 scaling with relaxation rates approaching
constant values in the T → 0 limit. Then the theory and
rigorous close-coupling (CC) calculations give a k−1 scaling
for the exothermic processes, while for the resonant processes
(see below for the CC calculations), they give the scaling
predicted above. If one sums these two contributions, only
the k−1 scaling is observed [38], solving the above-mentioned
controversy. Our work also explains why the averaging of
the resonant processes over the initial and final values of
m1 and m2 gives a k0 scaling [39]. In the limit E → 0, the
m12-changing ICSs vanish, so only the m12-conserving contri-
butions, which scale as k0, remain.

Numerical examples: Spin exchange in ultracold O2 +
O2 and Rb + Rb collisions. To verify the unconventional
Wigner threshold scaling of inelastic EE processes derived
above, we carried out numerically exact quantum scatter-
ing calculations of spin exchange in ultracold O2 + O2 and
Rb + Rb collisions. We first consider ultracold collisions of
identical O2(X 3�−) molecules initially in their ground rovi-
brational states |Ni = 0, ji = 1, mi〉, where ji = Ni + Si (i =
1, 2) and mi is the eigenvalue of jiz . Since all ji > 1 states are
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FIG. 1. (a) State-to-state inelastic ICSs for ultracold O2 + O2

collisions plotted as a function of collision energy. The initial and
final values of mi for the O2 molecules are indicated in the legend as
m1m2 to m′

1m′
2. The fits as E 0 and E 2 are represented by dashed lines.

(b) Same as (a) but for the temperature dependence of state-to-state
inelastic collision rates Km1m2→m′

1m′
2
. The fits as T 1/2 and T 5/2 are

represented by dashed lines.

energetically unavailable at ultralow collision energies, the
initial and final two-molecule states can be denoted by
|m1m2〉, with mi = −1, 0, 1 (here we neglect the molecular
hyperfine structure for simplicity).

Figure 1(a) shows the ICS for spin exchange in 17O2 +
17O2 collisions calculated as a function of collision energy
as described in the Supplemental Material [78]. The ICS for
the |�m12|-conserving | − 1,+1〉 → |00〉 transition is seen to
approach a constant value in the limit E → 0, as predicted
by Eq. (6). The corresponding inelastic rate tends to zero as
T 1/2, as illustrated in Fig. 1(b). Note that for j = 1, the only
transition with |�m12| = 0 is between the states |0, 0〉 and
|−1,+1〉.

In Fig. 1(a) we plot the ICS for |�m12|-changing tran-
sitions for two identical bosons in the same internal state
(|0, 0〉 → |+1,+1〉 and |0, 0〉 → |0,+1〉) and for two iden-
tical bosons in different internal states (|−1,+1〉 → |0,+1〉).
As follows from Eq. (6), these three transitions must have the
same E2 scaling, as is indeed observed. The corresponding
inelastic rate tends to zero as T 5/2, as illustrated by the fit in
Fig. 1(b).

We next consider ultracold spin-exchange collisions of
87Rb atoms, which have been the subject of much experi-
mental study (for a review see [2]). The two-atom threshold
states | j1m1〉| j2m2〉 = |F1mF1〉|F2mF2〉, where | jimFi〉 = FimFi〉
are the atomic hyperfine states and ji = Si + Ii are the to-
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FIG. 2. (a) State-to-state inelastic ICSs for ultracold s-wave
87Rb + 87Rb collisions plotted vs collision energy at a magnetic field
of 0.01 G. The initial and final hyperfine states of the Rb atoms FimFi

are indicated in the legend. The fits as E 0 are represented by dashed
lines. (b) Same as (a) but for the state-to-state inelastic collision rates
KmF1 mF2 →m′

F1
m′

F2
as a function of temperature. The fits as T 1/2 are

represented by dashed lines.

tal atomic angular momenta, which are vector sums of the
electron and nuclear spins of the ith atom (i = 1, 2). The
quantum scattering problem for 87Rb + 87Rb is solved using
the standard CC approach as described in, e.g., Ref. [83]
by integrating the CC equations on a grid of R values from
2 to 400a0 with a step size of 5 × 10−3a0. The interaction
potentials for the singlet and triplet states of Rb2 with long-
range scaling proportional to C6

R6 give good agreement with the
experimentally measured positions of Feshbach resonances
for 87Rb-85Rb [83].

The s-wave ICSs for 87Rb + 87Rb spin-exchange collisions
are plotted as a function of collision energy in Fig. 2(a)
for three representative hyperfine transitions |10〉|10〉 →
|1,−1〉|1,+1〉, |20〉|20〉 → |2,−1〉|2,+1〉, and |20〉|20〉 →
|2,−2〉|2,+2〉. As all of these transitions have �m12 = 0,
Eq. (6) establishes that their ICSs should scale as E0 in the
limit of zero collision energy and their rates should decrease
as T 1/2 as T → 0. The predicted trends are clearly observable
in Fig. 2. Interestingly, the cross sections for the spin-
exchange transition |20〉 |20〉 → |2 − 2〉 |2 − 2〉 is strongly
suppressed compared to |20〉 |20〉 → |2 − 1〉 |21〉. This is
caused by the vanishing matrix element of the spin-dependent
Rb-Rb interaction potential 〈20|〈20|V̂ (R)|2 − 2〉|22〉 [in con-
trast, 〈20|〈20|V̂ (R)|2 − 1〉|2 + 1〉 �= 0], making the spin-
exchange transition |20〉 |20〉 → |2 − 2〉 |2 + 2〉 forbidden in

L011302-4



NEAR-THRESHOLD SCALING OF RESONANT INELASTIC … PHYSICAL REVIEW A 105, L011302 (2022)

first order [78]. The minimum near 100 μK in the collision
energy dependence of the |20〉|20〉 → |2 − 2〉|22〉 ICS shown
in Fig. 2(a) is due to the Ramsauer-Townsend effect [84,85],
which occurs due to the scattering phase shift approaching π

(caused by a near-threshold resonance) shifting the onset of
the threshold regime to lower collision energies.

Conclusion. We have shown that the near-threshold scaling
of the ICS for resonant inelastic EE processes (such as spin
exchange) is given by σinel ∝ E�m12 , which only depends on
the difference between the combined angular momentum pro-
jections �m12 in the incident and final collision channels. For
�m12 = 0 the scaling of the inelastic ICS is the same as that of
the elastic ICS, i.e., σinel ∝ E0. This work resolves the uncer-
tainty concerning the threshold behavior of EE cross sections
when the internal angular momentum projection of both col-
lision partners can change. More generally, it suggests that
the k−1 scaling of inelastic transitions is limited to exothermic
processes and must be changed to a �m12-dependent scaling
for resonant processes.

Our results demonstrate a universal T �m12+1/2 suppres-
sion of a wide class of resonant EE processes at ultralow
temperatures. This suppression and the k0 scaling of some
inelastic transitions could be observed experimentally for,
e.g., spin-exchange atom-atom collisions in optical tweezers
[49,86], atom-ion collisions in an optical lattice setup, which
allows for high collision energy resolution [87], and cold
and ultracold collisions of Yb atoms [88], Ti atoms [89],
Rydberg atoms [28,29], and polar molecules [7,11]. Our work
also reveals a subtle deficiency of the DIS approximation
[55–57], which reproduces the correct threshold scaling of
EE cross sections only when the initial and final thresholds
(including the internal structure of the collision partners) are
exactly degenerate.
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