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Finite-temperature phases of trapped bosons in a two-dimensional quasiperiodic potential
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We study a system of 2D trapped bosons in a quasiperiodic potential via ab initio path integral Monte Carlo
simulations, focusing on its finite-temperature properties, which have not yet been explored. Alongside the
superfluid, normal fluid, and insulating phases, we demonstrate the existence of a Bose glass phase, which is
found to be robust to thermal fluctuations, up to about half of the critical temperature of the noninteracting
system. Local quantities in the trap are characterized by employing zonal estimators, allowing us to trace a phase
diagram; we do so for a set of parameters within reach of current experiments with quasi-2D optical confinement.
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Introduction. Quasiperiodic potentials have attracted the
interest of the scientific community in recent years. Their
peculiar geometrical and physical properties [1-3] promise
to, or have already begun to, give contributions to topics
such as topological states of matter [4,5], quantum many-body
localization [6], and several others. Originally discovered
in solid state systems [7], quasicrystalline phases have also
been realized with ultracold atoms in optical traps [8,9] and
in various photonics setups [10]. Recent experimental work
has characterized a system of 3D bosons confined by a 2D
quasiperiodic potential [11,12], showing proof of a transition
from an extended to a localized state for free and interacting
bosons alike. These studies opened the way for a more de-
tailed analysis of the nature of the localized phase.

The Bose glass (BG) [13] is an insulating phase with rare
superfluid puddles [14,15]. This leads to the absence of global
superfluidity, just as in an insulating phase, accompanied by
a finite compressibility, which can be related to excitations
in the puddles. Such a phase cannot appear in periodic sys-
tems, where rare regions are intrinsically absent, but it is
predicted to emerge in the presence of disorder [16]; the
main example is the disordered Bose-Hubbard model [17,18],
where it has been proved that a direct SF-MI transition can-
not take place [14]. Quasiperiodic potentials, which present
long-range order but are not translationally invariant, offer
an alternative geometry, capable of birthing rare regions of
local superfluidity which are deterministic and constrained by
long-range order.

Recently, a number of studies have investigated the proper-
ties of interacting bosons in two-dimensional quasicrystalline
potentials on quasicrystalline lattices in continuous space
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[19], in the tight-binding limit [20], and on a square lattice
through the 2D Aubry-André model [21,22]. Some of these
works have delineated phase diagrams in the mean-field ap-
proximation, and for strongly interacting particles; they have
shown that regions of BG appear between the superfluid (SF)
and Mott insulator (MI) phases, similarly to the disordered
case. Most of these investigations have dealt with homoge-
neous systems, without considering the possible effects of
harmonic trapping. Until now, only ground-state properties
have been determined: the behavior of the system at finite
temperature, which is to say the effect of thermal fluctuations
on the localization transition and on the BG phase, has not yet
been explored.

In this letter, we address the question of characterizing
the BG phase in trapped two-dimensional systems, and we
investigate its fate at finite temperature. Since the number of
particles is fixed, we do not speak of phases in the sense of
a thermodynamic limit. Nonetheless, their determination is
of experimental interest, and we focus on parameters which
could be accessed by current experiments [23-25]. In this
context, for a fixed value of the interaction, we trace an exact
“phase diagram” [Fig. 1(d)], showing that a BG phase can still
be identified in the presence of the harmonic trap and that it
is, up to a certain point, resilient to thermal fluctuations.

Model. We study a continuous two-dimensional model of
N bosons of mass m, subjected to an isotropic harmonic trap-
ping of frequency w and to an external quasiperiodic potential
Ve (r). The many-body Hamiltonian reads

Yopr ome?
H = ; (ﬁ + Tri + ch(ri)> + Zvinl(lri - rj|)’

i<j
(D

where r; is the position of the ith particle, p; its momentum,
and Vi is the interaction potential between two particles. The
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FIG. 1. Phase diagram. [(a)—(c)] Snapshots of three configura-
tions at T'/T. = 0.25, corresponding to (a) Vo = 1.5E,, (b) 2.5E,,
and (c¢) 3.5E,. Colors illustrate different phases, as discussed below.
(d) Phase diagram in the harmonic trap as a function of temperature
T and potential strength Vj. The interaction is fixed at § = 0.0217.
Each circle corresponds to a simulation point, and colors mark the
corresponding phase: superfluid (blue), Bose glass (green), insula-
tor (orange), or normal fluid (white). Shaded areas are a guide for
the eye.

quasiperiodic potential reads

4
Vae(r) = Vp ) _ cos’(k; - 1), 2)
i=1

where the wave vectors k; are given by k; = ki (1 0),k, =
ka/V2(1 1), ks = k(0 1), and ky = kie/v2(1 - =1),
while Vj is a parameter that regulates the strength of the
potential. This potential exhibits eightfold rotational symme-
try, and it takes values between 0 and 4V;, with a global max-
imum at r = 0, which coincides with the center of the trap,
see Figs 2(a) and 2(b). Its quasiperiodic nature arises from the
superposition of wave vectors at angles of 7 /4, which causes
the components of their wave vectors to be incommensurate.
We express lengths in units of [y = +/i/mw, and energies in
units of the recoil energy E, = }izklzat /2m. Temperatures are
scaled to the superfluid critical temperature of the noninter-

acting trapped boson gas, kT, = liw,/ %N [26].
We model interactions via a hard-core potential of scatter-
ing length a,p. In two spatial dimensions, physical effects of
interactions can be observed for exponentially small values of

the scattering length [27]. For this reason, we introduce the
dimensionless parameter

1 —1
g=2m (m ) , (3)

arp

which is related to the 2D mean-field parameter g by g =
i?/mg when g < 1. In the same limit, it coincides with

2 @] (s (0) [ Vacn) —VaelD ~Vosc(n)
PR e 1.50 2 i
b _ 7," “r e 125 -
S o .’{)"Z/ w W
Sapgsoas b T
24 Lo b
-2-10 1 2 %.O 05 1.0 15 20
Xllosc osc
Vo/lE,=1.5 VolE,=2.5 Vo/E,=3.5
(c) (d) 4 (e)
2
§0.5
< 1 2
0.0 n2 n 3n22 O 0 n2 n 3n2 6 0 n2 n 3n2 6
4
L 2
®
ii 0
X

-4 -2 0
kx/klat

2 4 -4 -2 0

kx/klat

2 4 —4-20

kx/klat

2 4

FIG. 2. Geometric features. (a) 2D plot of the quasiperiodic
potential V. (r)/E, for V, = 0.5E,. White regions correspond to
peaks and shaded ones to wells. Two directions are highlighted,
corresponding to & = 0 (orange) and 6 = 7 /8 (brown). The deepest
local minima lie on the 6 = 7 /8 line. Two circles are highlighted,
crossing the eight local minima closer to the trap center (blue) and
farther away (magenta). These sixteen sites are the most relevant
to localization properties at the chosen value of the interaction.
(b) V() is plotted along the two directions highlighted in (a), again
at a value of V, = 0.5 E,. The vertical lines mark the deepest local
minima, corresponding to the circles highlighted in (a). The dotted
black line line represents the harmonic potential. [(c)—(e)] Plots of the
boson density as a function of the angle, along the circles highlighted
in (a), at T/T, = 0.25. Different pictures correspond to different
choices of the potential, V; = 1.5 E, (left), 2.5 E, (middle), and 3.5E,
(right). [(f)—(h)] Diffraction patterns, normalized to the peak density
and in a logarithmic scale. The respective values of V; are the same
as in the density profiles above.

the effective interaction parameter used for trapped ultracold
atoms in the quasi-two-dimensional regime, which is usually
given as g = +/8xl./asp, asp being the three-dimensional
scattering length of the gas, and I, the trapping along the
z axis. Both quantities play no role in our model, which is
purely two-dimensional, but the parameter g serves as a bridge
between the two approaches. In our simulations we set the
trap in such a way as to obtain a trap-center density close to
experimental values. To draw a phase diagram in Figure 1(d),
we choose a specific value of g = 0.0217 within reach of cur-
rent experimental setups with quasi-2D Bose gases (see, e.g.,
Ref. [24]).

Simulation methods and estimators. We make use of
continuous-space Path Integral Monte Carlo (PIMC) for a
number of particles up to N = 500. The PIMC method can
provide exact estimates of thermodynamic observables for
quantum systems at finite temperature [28—31]. Each quantum
particle is mapped into a classical polymer, and observ-
ables are sampled in the classical system. Polymers can then
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FIG. 3. Global superfluid fraction. (a) n; as a function of the
potential strength Vp, at fixed temperature 7/7. = 0.1. Lines are
guides for the eye. The three sets of points are at interaction § = 0
(black circles), g = 0.0217 (green squares), and § = 2.1704 (brown
diamonds). (b) n, against the potential parameter Vj, at fixed in-
teraction parameter g = 0.0217. Different sets of points correspond
to different temperatures, 7/7,. = 0.1 (squares), 0.25 (upward trian-
gles), 0.4 (downward triangles), and 0.7 (octagons). The points at
T/T. = 0.1 are also displayed in (a) as green squares.

connect to each other, representing coherence and the emer-
gence of superfluidity. In Figs. 1(a)-1(c), we show three PIMC
shapshots of the superfluid, the BG, and the insulating phase,
respectively. Corresponding angular densities, along the cir-
cles in Fig. 2(a), are reported in Figs. 2(c) and 2(d), while
diffraction patterns are shown in Figs. 2(f)-2(h) (a description
of the estimators used, as well as some additional diffraction
patterns at smaller Vp, can be found in Ref. [32]).

The hard-core interaction is implemented through the
pair-product approximation [28,33,34], requiring, in two di-
mensions, the use of tables for the propagator.

In systems with periodic boundary conditions, the super-
fluid fraction is characterized by the well-known winding
number estimator [35], which is not applicable to a trapped
system. Instead, we employ the area estimator [28,36], which
is directly related to the reduction of the moment of in-
ertia associated with the emergence of superfluidity. The
estimator is derived in its entirety in Ref. [37], and can be
written as

_4m? 4) — )’

T ORB Ly ' @

ng
where A is the total area enclosed by the polymers. Cus-
tomarily, the (A)? term is neglected on the grounds of
temporal invariance of the system dynamics. In the local-
ized phase, as a symptom of ergodicity breaking, this term
does not necessarily average to 0; it must then be kept into
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FIG. 4. Zonal estimators. (a) 2D plot of the quasiperiodic po-
tential; different regions correspond to r < r, (blue), r, <r <r,
(purple), and r > r, (red). [(b)—(j)] Zonal quantities at § = 0.0217,
at varying temperature and potential. Points mark simulation results.
Lines are guides for the eye. Plots (b)—(d) display the zonal superfluid
fraction n¥; [(e)—(g)] display the average number of particles in each
region, (N@); (h)-(j) display the zonal compressibility. Note that
k@/B = (ND?) — (N®)2, The scale of «@/8 in (h) is marked on
the left, while (i) and (j) share the same scale, marked on the right.
In all plots, the three sets of points correspond to the three regions
depicted in (a): r < r, (blue circles), r, < r < r, (purple squares),
and r > r, (red diamonds).

account, to give a meaningful estimate of the superfluid
fraction.

Due to the presence of a harmonic trap, observables such
as superfluid fraction and compressibility stop being homoge-
neous across the system. In order to investigate their behavior,
local estimators have been introduced; one example is found
in Ref. [38], where a local superfluid density and a local
compressibility are used on-lattice to characterize a trapped
Bose-Hubbard model. The extension of these local observ-
ables to the continuous case presents technical difficulties due
to the noisy character of the estimators.

Instead, we have chosen to focus on zonal estimators,
which aim at approximating the behavior of physical ob-
servables in finite portions of the system. We separate the
simulation space into three regions, as depicted in Fig. 4(a).
The choice is made based on the arrangement of the sixteen
central sites, which are the most relevant for localization. In
each of the three regions, we measure a zonal compressibility,

K9 = BUND?) — (NF)%), 5)

and a zonal superfluid fraction, n{®), which is obtained by
integration of the local estimator. A detailed discussion of the
latter can be found in Ref. [32].

Global superfluidity. In Fig. 3(a), we show the re-
sults for the global superfluid fraction at different values
of g, at T/T, =0.1. We find that stronger interactions
tend to increase the superfluid fraction at a given value
of Vy, while also increasing the localization potential to
higher values. At low temperature, this observable acts as
a signature of the localization transition [11]. We observe
that the presence of a weak harmonic potential does not
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significantly alter the localizing behavior with respect to the
homogeneous case.

The question, then, is whether the transition persists at
higher temperatures, when thermal fluctuations are not neg-
ligible, see Fig. 3(b). As the temperature rises, in the absence
of the quasiperiodic potential, the superfluid fraction de-
creases. The same behavior is visible for low strengths of
the quasiperiodic potential. Distinctions between different
temperatures appear as we move to larger values of V. At
T/T. = 0.25, the reduction of superfluidity by confinement is
still essentially the same, indicating that ground-state physics
is still dominant in the localization process. As we approach
T., the superfluid signal reduces significantly; we will argue
in the next section that this coincides with the reduction of
superfluidity in the inner regions of the trap, and with the
disappearance of the glass phase.

Zonal estimators. In a homogeneous system, in the grand
canonical ensemble, it is possible to directly measure the
compressibility; at the same time, the global superfluid frac-
tion can be accessed through the winding number estimator,
exploiting the presence of periodic boundary conditions. To-
gether, these two quantities allow us to discriminate between
the BG and the MI phases. With this method, it is not possible
to directly characterize superfluid puddles; the reason being
that the winding number estimator relies on particle paths
crossing the whole system, so that a bounded superfluid region
produces no signal. Conversely, in a finite system, superfluid-
ity is related to the response to an applied angular velocity
rather than to a linear velocity, the very principle that the
area estimator is based on. If a region of local superfluidity
is rotationally symmetric around the center of the trap, it is
then possible to measure a finite superfluid response locally,
even when its contribution to the global superfluid response is
negligible. The use of zonal estimators enables us, to a certain
extent, to identify superfluid puddles. Crucially, in the chosen
geometry, one such puddle is expected to appear in the central
region of the trap.

Zonal compressibility, as defined in Eq. (5), measures
particle fluctuations in different regions. Since we are work-
ing in the canonical ensemble, fluctuations are only due
to translations and not to the creation and destruction of
particles. The zonal estimator, then, effectively acts as a
measure of particle localization in each region. The dis-
crimination between different phases proceeds as follows.
In the SF phase, the superfluid fraction and the zonal com-
pressibility are finite in all regions; bosons are superfluid
in the whole trap, and they are able to move freely across
it. In the insulating phase, on the other hand, both esti-
mators are zero in all regions, as particles become fully
localized and superfluidity is depleted. The BG phase presents
a strongly suppressed compressibility, indicating that parti-
cles are unable to move between different regions, but the
zonal superfluid fraction remains larger than zero in the
central region.

Our results for g = 0.0217 are reported in Figs 4(b)—4(j).
Upto T /T, = 0.4, the reduction in compressibility (third line)
happens at the same values of V|, as the depletion of the
global superfluidity, and of the zonal superfluid fraction in
the outer regions. The superfluid fraction in the inner region,
on the contrary, remains small but distinctly larger than zero,

signaling the presence of the BG, up to some higher value of
Vo. The information thus obtained is used to draw the “phase
diagram” in Fig. 1(d). The configurations of Figs. 1(a)-1(c)
represent snapshots of the particle paths at a given simula-
tion step, with connected particle paths giving an indication
of coherence. It is again possible to distinguish between a
SF phase, where coherence is established among a large
number of particles; an insulating phase that exhibits full
localization in lattice sites; and the BG, which displays co-
herence only in the central region.

At finite T, it is known that depletion of the superfluid
begins from the edges and proceeds to the center of the trap,
so that, close to T, only the bosons in the central region are
superfluid. This behavior is well characterized by the zonal
superfluid fraction: while, at 7 /T, = 0.1, all three regions are
equally superfluid, as 7" increases we see that superfluidity is
depleted starting from the outer region (green lines). Nonethe-
less, we have chosen to label these points as “superfluid” in
Fig. 1(d).

Discussion and conclusions. We employed PIMC simula-
tions at finite temperature to determine the “phase diagram”
of 2D trapped bosons in quasiperiodic potentials. We point
out that, as shown in Fig. 2(b), the harmonic potential is
much weaker than the quasiperiodic one; while it enforces
a circular symmetry on the system, and it selects a certain
region of space, it has no impact on the actual distribution
of the bosons in the minima within this region. In this re-
spect, our results could be compared with those obtained in
homogeneous systems of similar spatial extensions. We found
a superfluid and an insulating phase, as well as a normal
fluid at high temperatures. At intermediate strengths of the
quasicrystalline potential, the system exhibits a BG phase.
The values of densities and interaction strengths chosen are
comparable with those used in state-of-the-art experimental
setups with ultracold atoms. Notably, the BG is stable up to
relatively high temperatures 7' /T, >~ 0.4.

A physical implementation of this proposal can be realized
using 23Na as done in Ref. [24], where values of g~ 0.01 have
been reached with a longitudinal trapping frequency w, =
2 x 370 Hz, leading to [, &~ 840 nm. Setting § = 0.0217 as
in the simulations of Fig. 4, with the same harmonic confine-
ment, we get azp ~ 70 ay. Alternatively, 3°K can be employed
[11]. Concretely, using Ay = 725 nm, loe =~ 1.15 um, and
setting & = 0.0217 as above, in the Thomas-Fermi limit,
this leads to the center-trap density n(0) ~ 0.68 x 10'* m~2,
comparable to peak density in the experiment, where nex, =~
1.24 x 10 m~2[11].

Regarding the access to zonal quantities in real platforms,
we expect that single-site resolution in lattice geometries
should allow to extract local particle number fluctuations, to
measure the zonal compressibility. The measurement of the
zonal superfluid fraction is clearly more challenging. At the
present time, global superfluidity has been measured in a very
limited number of experimental setups [39,40].

In conclusion, our work offers a strong motivation for
further investigation of interacting quasicrystalline phases in
current ultracold atom platforms, as well as a benchmark
for future studies into the thermodynamics and dynamics
of systems in quasiperiodic potentials at finite temperature.
Further exploration of quasicrystalline properties induced by
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an external potential will proceed in parallel with the study
of excitation spectra [41] and exotic self-assembled quan-
tum many-body phases with nonlocal interaction potentials
[42—46].
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