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When three particles in three dimensions interact with a short-range potential fine-tuned to an infinite
scattering length, they form an infinite sequence of loosely bound states obeying discrete scale invariance known
as Efimov states. Here we show that analogous states are formed by three charged particles carrying two equal
charges and one opposite charge in one, two, and three dimensions without any fine-tuning. Our finding is
based on the Born-Oppenheimer approximation, where an effective inverse-square attraction is induced as a
consequence of the dipole-charge interaction between a hydrogenlike heavy-light atom and a far-separated heavy
particle. Because the resulting Efimovian states emerge toward the second or higher dissociation threshold, they
are to be realized as quasibound states and may be observed by exciting hydrogen molecular ions and trions
in excitonic systems. We also consider the same system but with a logarithmic Coulomb potential relevant to
quantum vortices in two-dimensional superfluids, where the Efimovian states are shown to emerge as genuine
bound states toward the first dissociation threshold.
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I. INTRODUCTION

When particles interact with a short-range potential at a
large scattering length, their low-energy physics becomes uni-
versal, i.e., independent of details of the short-range potential
[1]. The most remarkable phenomenon is the Efimov effect,
predicting that three particles in three dimensions form an
infinite sequence of loosely bound states obeying discrete
scale invariance [2,3]. Although the Efimov effect was the-
oretically discovered in the context of nuclear physics, it was
experimentally observed with ultracold atomic gases [4] and
helium atoms [5]. Because of its universality, the Efimov ef-
fect has also been studied in diverse systems such as nucleons
[6], pions [7], halo nuclei [8], magnons [9], and even at the
Kardar-Parisi-Zhang roughening transition [10].

The Efimov effect is understood most transparently based
on the Born-Oppenheimer approximation assuming that two
particles are much heavier than the other particle [11]. When
the light particle is bounded by the two heavy particles, its
binding energy serves as an effective interaction between the
two heavy particles. With a short-range potential between the
heavy and light particles fine-tuned to an infinite scattering
length, the resulting effective interaction at a large separation
R compared to the potential range must be a scale-invariant
attraction of 1/R2, which leads to an infinite sequence of
loosely bound states obeying discrete scale invariance [12].
Because short-range potentials are essential to the low-energy
universality, long-range potentials such as Coulomb are usu-
ally regarded as obstacles to the Efimov effect [13].

What we show in this paper is that an infinite sequence
of states analogous to the Efimov states is actually formed
by three charged particles carrying two equal charges and
one opposite charge in one, two, and three dimensions with-
out any fine-tuning. This is accomplished not only for a

three-dimensional Coulomb potential depending inversely
on an interparticle separation (Sec. II) but also for a two-
dimensional Coulomb potential depending logarithmically on
an interparticle separation (Sec. III). Although our derivations
of such “Efimovian states” based on the Born-Oppenheimer
approximation are rather elementary, they shall be described
in a self-contained manner so as to make the underlying
physics transparent.

II. THREE-DIMENSIONAL COULOMB POTENTIAL

A. Born-Oppenheimer approximation

Let us study two heavy particles with masses M1 and M2

and charge +q and one light particle with m and −q in d = 1,
2, and 3 dimensions, which are described by

E�(R1, R2, r3) =
(

−
∑
i=1,2

h̄2∇2
Ri

2Mi
− h̄2∇2

r3

2m
+ keq2

|R2 − R1|

−
∑
i=1,2

keq2

|r3 − Ri|

)
�(R1, R2, r3). (1)

Here ke = 1/4πε0 is the Coulomb constant and the Born-
Oppenheimer approximation for a large mass ratio M1, M2 �
m factorizes the wave function as

�(R1, R2, r3) = ψR1,2 (r3)�(R1, R2) (2)

and neglects ∇R1 and ∇R2 acting on ψR1,2 (r3). Consequently,
the light particle adjusts its wave function according to

ER1,2ψR1,2 (r3) =
(

− h̄2∇2
r3

2m
−

∑
i=1,2

keq2

|r3 − Ri|

)
ψR1,2 (r3) (3)
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FIG. 1. Schematic configuration where heavy (M1) and light (m)
particles form a hydrogenlike atom and its binding energy is lowered
by a far-separated heavy particle (M2) due to the linear Stark effect.
The resulting energy shift scales as −1/R2, leading to the dipole-
charge interaction.

for given positions of the heavy particles, whereas the heavy
particles slowly move according to

E�(R1, R2) =
(

−
∑
i=1,2

h̄2∇2
Ri

2Mi
+ keq2

|R2 − R1| + ER1,2

)

× �(R1, R2) (4)

under an effective interaction of ER1,2 induced by the light
particle [12].

B. Linear Stark effect

When the two heavy particles are far separated, |R2 −
R1| → ∞, the light particle is localized around one of them,
r3 ∼ R1, so as to form a hydrogenlike atom. The Schrödinger
equation (3) for the light particle in this limit is reduced to

ERψR(r) =
[

− h̄2∇2
r

2m
− keq2

r
− keq2

R

− keq2

R2
R̂ · r + O(R−3)

]
ψR(r) (5)

with R ≡ R2 − R1 and r ≡ r3 − R1, where the light particle
is subjected to a uniform electric field produced by the far-
separated heavy particle (see Fig. 1). The binding energy
of the light particle up to O(R−2) corrections can be ob-
tained with the first-order perturbation theory by regarding
(keq2/R2)R̂ · r as a small perturbation, which is none other
than the linear Stark effect for a hydrogenlike atom [12].
We introduce the Bohr radius via a0 ≡ h̄2/(mkeq2), and the
bound-state solutions to the hydrogenlike problems in all d =
1, 2, and 3 dimensions are reviewed in the Appendix.

The nondegenerate ground state does not exhibit the linear
Stark effect because its wave function is isotropic. The first ex-
cited states for d = 3 are fourfold degenerate and spanned by
|n, �, m�〉 = |2, 0, 0〉, |2, 1, 0〉, and |2, 1,±1〉, where n refers
to the principal quantum number, and � and m� refer to the
angular momenta. By choosing R̂ = ẑ, the perturbation term
is diagonalized on the basis of

|2, 0, 0〉 ± |2, 1, 0〉√
2

⇒ 〈R̂ · r〉 = ∓3a0, (6a)

|2, 1,±1〉 ⇒ 〈R̂ · r〉 = 0. (6b)

Similarly, the first excited states for d = 2 are threefold de-
generate and spanned by |n, �〉 = |2, 0〉 and |2,±1〉, where �

refers to the angular momentum [14]. By choosing R̂ = x̂, the
perturbation term is diagonalized on the basis of

√
2 |2, 0〉 ± (|2,+1〉+|2,−1〉)

2
⇒ 〈R̂ · r〉 = ∓9a0

4
, (7a)

|2,+1〉 − |2,−1〉√
2

⇒ 〈R̂ · r〉 = 0. (7b)

Finally, the first excited states for d = 1 are twofold degener-
ate and spanned by |n, �〉 = |2, 0〉 and |2, 1〉, where � = 0 and
1 refer to even and odd parity, respectively [15]. By choosing
R̂ = x̂, the perturbation term is diagonalized on the basis of

|2, 0〉 ± |2, 1〉
2

⇒ 〈R̂ · r〉 = ∓3a0

2
. (8)

Although the same analysis can be carried out for every higher
excited state [12], it is not pursued here.

Therefore, the lowest-energy state at n = 2 in each dimen-
sion has 〈R̂ · r〉 = 3(d + 1)a0/4, corresponding to the light
particle mostly on the side of the far-separated heavy particle
(see Fig. 1), and its binding energy is found to be

ER = En=2 − keq2

R
− 3(d + 1)h̄2

4mR2
+ O(R−3). (9)

Here the first term on the right-hand side is the unperturbed
excited-state energy of a hydrogenlike atom presented in
Eq. (A6), whereas the rest originate from the Coulomb poten-
tial produced by the far-separated heavy particle. In particular,
the third term is the energy shift due to the linear Stark effect.

C. Efimovian states

With Eq. (9) substituted into the Schrödinger equation (4)
for the heavy particles, we obtain

E�(R) =
[
− h̄2∇2

R

2M
+ En=2−3(d + 1)h̄2

4mR2
+ O(R−3)

]
�(R),

(10)

where the center-of-mass motion is separated and M ≡
M1M2/(M1 + M2) is the reduced mass. We note that the
Coulomb potentials ∼1/R cancel out and the residual effective
interaction induced by the light particle is dominated by the
scale-invariant attraction of 1/R2 at a large separation R � a0.
This is none other than the dipole-charge interaction with the
dipole always pointing to the charge as a consequence of fast
motion of the light particle.

It is now straightforward to show that the two heavy
particles form an infinite sequence of loosely bound states
obeying discrete scale invariance [12]. By separating the ra-
dial and angular variables as in Eq. (A2) with the angular
momentum (parity for d = 1) denoted by L, the radial wave
function for E < En=2 is provided by the modified Bessel
function in the form of �L(R) = R1−d/2KisL (κR), where κ ≡√

2M(En=2 − E )/h̄2 and

sL =
√

3(d + 1)M

2m
−

(
L + d − 2

2

)2

. (11)

Because of �L(R) → R1−d/2|	(isL )| cos[sL ln(κR/2) −
arg 	(isL )] for κ → 0, any boundary condition imposed on
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�L(R) at R ∼ a0 can be satisfied by an infinite sequence of
κ ∼ a−1

0 e−πN/sL (N ∈ Z), so that the binding energies are
found to be

EN = En=2 − h̄2κ∗2
L

2M
e−2πN/sL (N � 1). (12)

Here the scaling exponent sL depends on the dimensionality,
the mass ratio, and the angular momentum, whereas the pref-
actor κ∗

L ∼ a−1
0 defined up to multiplicative factors of eπ/sL can

be determined by computing the binding energies with the full
effective interaction for an arbitrary R [16,17].

Each sequence emergent for L satisfying |L + (d −
2)/2| <

√
3(d + 1)M/2m is twofold degenerate except for

possible degeneracies due to magnetic and spin quantum num-
bers. This is because the light atom can be localized around
either R1 or R2 and the exchange energy splitting between
gerade and ungerade orbitals is exponentially small. On the
other hand, when the two heavy particles are identical bosons
or fermions with M1 = M2, each sequence becomes nonde-
generate because only gerade or ungerade orbital is allowed
depending on the parity of L. We also note that all the re-
sults presented so far hold even in the case where the one
heavy particle at R2 has the opposite charge of −q provided
that 〈R̂ · r〉 = −3(d + 1)a0/4 is chosen. In this case, each
sequence is nondegenerate.

The resulting infinite sequence of loosely bound states
obeying discrete scale invariance constitutes our Efimovian
states of three charged particles. It should be remarked that
they actually emerge above the first dissociation threshold at
En=1 corresponding to the hydrogenlike atom in its ground
state and the unbound heavy particle. Therefore, the Efi-
movian states beyond the Born-Oppenheimer approximation
are to be realized as quasibound states embedded in the
continuum, which are similar to four-body Efimov states
[18,19] and atomic collapse states [20,21]. Because the Born-
Oppenheimer approximation is supposed to be valid for a
sufficiently large mass ratio, we expect that the Efimovian
states have small widths and are thus observable as sharp
resonances. In fact, the width to binding energy ratio of Efi-
mov states was found to be exponentially small as 	N/EN ∼
e−#

√
M/m, as well as being independent of N so as to keep the

discrete scale invariance intact [22].

III. TWO-DIMENSIONAL COULOMB POTENTIAL

A. Born-Oppenheimer approximation

It is known that charged particles with a logarithmic
Coulomb potential are realized by quantum vortices in two-
dimensional superfluids [23], three of which carrying two
equal charges and one opposite charge are described by

E�(R1, R2, r3)

=
[

−
∑
i=1,2

h̄2∇2
Ri

2Mi
− h̄2∇2

r3

2m

− KQ2 ln

( |R2 − R1|
δ

)
+

∑
i=1,2

KQ2 ln

( |r3 − Ri|
δ

)]

× �(R1, R2, r3). (13)

Here the effective Coulomb constant K and the charge Q for
d = 2 correspond to the mass density of a superfluid and the
circulation of a quantum vortex, respectively, whereas all d =
1, 2, and 3 dimensions shall be considered for generality. δ is
an arbitrary length scale and irrelevant to physics because it
only provides a constant energy shift. Therefore, we set δ =
b0 with b0 ≡

√
h̄2/(mKQ2) being the effective Bohr radius,

which is equivalent to shifting the total energy as E → E +
KQ2 ln(b0/δ).

Again, within the Born-Oppenheimer approximation for a
large mass ratio M1, M2 � m, the above Schrödinger equa-
tion for three charged particles is separated into those for the
one light particle,

ER1,2ψR1,2 (r3) =
[
− h̄2∇2

r3

2m
+

∑
i=1,2

KQ2 ln

( |r3 − Ri|
b0

)]

× ψR1,2 (r3), (14)

and for the two heavy particles,

E�(R1, R2) =
[

−
∑
i=1,2

h̄2∇2
Ri

2Mi
− KQ2 ln

( |R2 − R1|
b0

)

+ ER1,2

]
�(R1, R2), (15)

where ER1,2 serves as an effective interaction induced by the
light particle.

B. Quadratic Stark effect

When the two heavy particles are far separated, |R2 −
R1| → ∞, the light particle is localized around one of them,
r3 ∼ R1, so as to form a heavy-light atom. The Schrödinger
equation (14) for the light particle in this limit is reduced to

ERψR(r) =
[

H + KQ2 ln

(
R

b0

)
+ V + O(R−3)

]
ψR(r),

(16)

where the unperturbed Hamiltonian is

H ≡ − h̄2∇2
r

2m
+ KQ2 ln

(
r

b0

)
(17)

and

V ≡ −KQ2 R̂ · r
R

+ KQ2 r2 − 2(R̂ · r)2

2R2
(18)

is regarded as a small perturbation. The first term in V is
a uniform electric field produced by the far-separated heavy
particle, and the binding energy of the light particle up to
O(R−2) corrections can be obtained with the second-order
perturbation theory.

The ground state of the unperturbed Hamiltonian is de-
termined by solving Hχ (r) = Eχ (r) for � = 0, where the
ground-state energy is numerically found to be

En=1 = KQ2 ×
⎧⎨
⎩

0.6978 (d = 3),
0.1799 (d = 2),
−0.8764 (d = 1),

(19)
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FIG. 2. χ (r) and w(r) (inset) as functions of r in units of KQ2 =
b0 = 1 for d = 3 (red line), d = 2 (green line), and d = 1 (blue line),
where χ (r) is normalized as

∫
dr[χ (r)]2 = 1.

and the corresponding wave function is plotted in Fig. 2.
The first-order correction to the ground-state energy is then
provided by

E ′
n=1 = 〈V 〉 = KQ2

R2

d − 2

2d
〈r2〉 (20)

with

〈r2〉 = b2
0 ×

⎧⎨
⎩

2.399 (d = 3),
1.091 (d = 2),
0.2858 (d = 1).

(21)

On the other hand, the second-order correction to the ground-
state energy is none other than the quadratic Stark effect and
reads

E ′′
n=1 = −

∑
n �=1

〈χ |V |n〉〈n|V |χ〉
En − En=1

(22)

= − (KQ2)2

R2
〈(R̂ · r)W (r)〉 + O(R−3), (23)

where an auxiliary function of coordinates is introduced via
[H,W (r)]|χ〉 = R̂ · r|χ〉 [12,24]. The resulting differential
equation for W (r),

− h̄2

2m
∇2W (r) − h̄2

m

χ ′(r)

χ (r)
r̂ · ∇W (r) = R̂ · r, (24)

is solved numerically by substituting W (r) = (R̂ · r)w(r),
whose solution plotted in Fig. 2 leads to 〈(R̂ · r)W (r)〉 =
〈r2w(r)〉/d with

〈r2w(r)〉 = b2
0

KQ2
×

⎧⎨
⎩

3.935 (d = 3),
1.230 (d = 2),
0.1720 (d = 1).

(25)

Finally, with all the results put together, the binding energy
of the light particle is found to be

ER = En=1 + KQ2 ln
( R

b0

)
− h̄2

mR2
×

⎧⎨
⎩

0.9117 (d = 3)
0.6152 (d = 2)
0.3149 (d = 1)

+ O(R−3). (26)

Here the first term on the right-hand side is the unperturbed
ground-state energy of a heavy-light atom in Eq. (19), whereas
the rest originate from the logarithmic Coulomb potential
produced by the far-separated heavy particle. In particular, the
third term is the energy shift solely due to the quadratic Stark
effect for d = 2 because of the vanishing first-order correction
in Eq. (20), leading to the induced dipole-charge interaction.

C. Efimovian states

With Eq. (26) substituted into the Schrödinger equa-
tion (15) for the heavy particles, we obtain

E�(R) =
[

− h̄2∇2
R

2M
+ En=1 − h̄2Cd

mR2
+ O(R−3)

]
�(R),

(27)

where the center-of-mass motion is separated and Cd =
0.3149, 0.6152, and 0.9117 for d = 1, 2, and 3, respectively,
are the numerical constants. We note that the logarithmic
Coulomb potentials ∼ ln R cancel out and the residual effec-
tive interaction induced by the light particle is dominated by
the scale-invariant attraction of 1/R2 at a large separation R �
b0. Consequently, as described in Sec. II C, the two heavy
particles form an infinite sequence of loosely bound states
for L satisfying |L + (d − 2)/2| <

√
2Cd M/m. Their binding

energies are provided by

EN = En=1 − h̄2κ∗2
L

2M
e−2πN/sL (N � 1), (28)

obeying discrete scale invariance under the scaling exponent
of

sL =
√

2Cd M

m
−

(
L + d − 2

2

)2

. (29)

We note that all the remarks in Sec. II C regarding the degen-
eracy of each sequence also apply here. More importantly, the
Efimovian states resulting from the logarithmic Coulomb po-
tential prove to be realized as genuine bound states emergent
below the first dissociation threshold at En=1.

IV. SUMMARY AND PROSPECTS

In summary, we showed that three charged particles carry-
ing two equal charges and one opposite charge form an infinite
sequence of quasibound states obeying discrete scale invari-
ance in all dimensions without any fine-tuning. Our finding
of such Efimovian states is based on the Born-Oppenheimer
approximation assuming that two particles are much heavier
than the other particle, which is potentially relevant to diverse
systems in atomic and molecular physics, condensed matter
physics, and nuclear and hadron physics. Promising candi-
dates include trions, i.e, bound states of an electron-hole pair
with another electron or hole in excitonic systems [25], not to
mention hydrogen molecular ions [26].

In particular, the high-precision spectroscopy of H2
+

with its ground-state energy being EH2
+ = −0.597 Eh

(Eh ≡ h̄2/ma2
0 = 27.21 eV) may reveal the Efimovian

states as a sequence of resonances at EN = −0.125 Eh −
(h̄2κ∗2

L /2M ) e−2πN/sL for each L � 73 with the discrete
scaling factor in Fig. 3, which accumulate toward the
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FIG. 3. Discrete scaling factor e−2π/sL for a hydrogen molecular
ion obtained from Eq. (11) with d = 3 and M1/m = M2/m = 1836,
which ranges from 0.919 at L = 0 to 0.544 at L = 73 within the
allowed angular momentum.

second dissociation threshold corresponding to (H)n=2 + H+.
Similarly, multiple sequences of Efimovian resonances
accumulating toward every dissociation threshold at
En�3 = −Eh/2n2 corresponding to (H)n�3 + H+ are also
expected. We plan to study their observability in detail as
future work. Furthermore, it is interesting to point out that
a hydrogen molecular ion has an extremely shallow s-wave
bound state, which makes the scattering length between a
hydrogen atom and a proton as large as 750a0 [27]. Therefore,
the Efimov effect of two hydrogen atoms and one proton may,
in principle, be discussed [28], so that the hydrogen molecular
ion constitutes a unique system possibly linked to both Efimov
and Efimovian physics.

We also showed that the same system but with a logarith-
mic Coulomb potential forms an infinite sequence of loosely
bound states obeying discrete scale invariance, which are now
realized as genuine bound states accumulating toward the
first dissociation threshold from below. Provided that such
Efimovian states for a large mass ratio survive even down to
equal masses, they may be observed with quantum vortices in
two-dimensional superfluids [29,30]. Our findings hopefully
pioneer Efimovian physics emergent from long-range poten-
tials of charged particles.
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APPENDIX: HYDROGENLIKE ATOM

Here we review the bound-state solutions to the hydrogen-
like problems,

E ψ (r) =
(

− h̄2∇2
r

2m
− h̄2

ma0r

)
ψ (r), (A1)

in all d = 1, 2, and 3 dimensions [12,14,15]. By separating
the radial and angular variables as

ψ (r) = X (r) ×

⎧⎪⎨
⎪⎩

Y m�

� (θ, φ) (d = 3, � ∈ N0, |m�| � �),
ei�φ√

2π
(d = 2, � ∈ Z),

[sgn(x)]�√
2

(d = 1, � = 0, 1),

(A2)

the radial wave function solves

κ2X (r) =
[

d2

dr2
+ d − 1

r

d

dr
− �(� + d − 2)

r2
+ 2

a0r

]
X (r),

(A3)

where κ ≡
√

−2mE/h̄2. Then, by substituting X (r) =
ρ|�|e−ρ/2Z (ρ) with ρ ≡ 2κr, the radial Schrödinger equa-
tion can be brought into the Laguerre differential equation in
the form of[

ρ
d2

dρ2
+ (2|�| + d − 1 − ρ)

d

dρ

−
(

|�| + d − 1

2

)
+ 1

κa0

]
Z (ρ) = 0. (A4)

In order for the bound-state wave function to be convergent
at r → ∞,

1

κa0
−

(
|�| + d − 1

2

)
= ν ∈ N0 (A5)

must be a non-negative integer [31], so that the binding energy
is found to be

En = −
(

n − 3 − d

2

)−2 h̄2

2ma2
0

, (A6)

where the principal quantum number is introduced via n ≡
ν + |�| + 1. The corresponding wave function reads

Zn�(ρ) =
√

(2κ )d (n − |�| − 1)!

(2n + d − 3)(n + |�| + d − 3)!
L2|�|+d−2

n−|�|−1 (ρ),

(A7)

which is normalized as [31]∫ ∞

0
dr rd−1Xn�(r)Xn′�(r) = δnn′ . (A8)

The ground state at n = 1 takes � = 0 only and is non-
degenerate, whereas the excited states at n � 2 are n2-fold
degenerate for d = 3, 2n−1-fold degenerate for d = 2, and
twofold degenerate for d = 1. We note that the ground-state
energy for d = 1 is divergent because the Coulomb potential
is singular at the origin, which is made finite by removing the
singularity, for example, with the replacement of keq2/r →
keq2/

√
r2 + δ2 [15,32]. Although the twofold degeneracy at

n � 2 is lifted by the regularized Coulomb potential, it is to
be restored in the limit of δ → 0.
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