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Nonclassical correlations of radiation in relation to Bell nonlocality
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We analyze nonclassical correlations between outcomes of measurements conducted on two spatial radiation
modes. These correlations cannot be simulated with statistical mixtures of coherent states or, more generally, with
non-negative phase-space functions of quantum states and measurements. We argue that nonclassical correlations
are naturally related to Bell nonlocality, the former being a more general class of quantum correlations.
Indeed, it is known that local realistic as well as noncontextual models correspond to non-negative solutions
to a system of linear equations for the joint probability distributions of all observables. We demonstrate that
nonclassical correlations correspond to a particular solution to this system, which may have negative values
even if local realism is not violated. A modification of Bell inequalities enables us to test such correlations.
At the same time, our approach leads to a formulation of Bell inequalities applicable also to continuous
variables. The results are illustrated with two-mode squeezed vacuum states and with hybrid entangled states
(Schrödinger-Cat states), one mode being analyzed by balanced and the other one by unbalanced homodyne
detection.
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I. INTRODUCTION

Unusual properties of correlations between spatially sep-
arated parts of quantum systems are of great interest since
the pioneering work by Einstein, Podolsky, and Rosen [1].
Their ideas had been formalized by Bell [2] by introducing
the principles of local realism, which naturally describe clas-
sical correlations. Quantum states violating these principles
exhibit the phenomenon of Bell nonlocality [3], representing
the strongest type of quantum correlations [4–6]. This means
that the violation of local realism implies the presence of other
correlations but not necessarily the other way around. Lower
levels at the hierarchical structure of these correlations are
represented successively by quantum steering [4] and quan-
tum entanglement [7,8].

Typically one characterizes quantum states by their princi-
pal abilities to manifest correlations. A more specific approach
consists in characterization of quantum states together with
particular measurements conducted independently by two par-
ties, Alice and Bob. In this case we deal with the probability
distributions P (A, B|a, b), also referred to as the behavior
[3,9], to get the values A and B given the measurement-device
settings a and b for Alice and Bob, respectively. It is also
important that the device settings are chosen independently
and randomly.

The core idea of local realism consists in the assumption
that system states can be characterized by non-negative prob-
ability distributions ρ(ω) � 0 for a set of variables ω ∈ �. In
turn, the considered measurement devices are characterized

by the response functions FA(A|a; ω) � 0 and FB(B|b; ω) � 0
being the probabilities to get the values A and B given the
variables ω and the settings a and b, respectively. This yields
the expression

P (A, B|a, b) =
∫

�

dωρ(ω)FA(A|a; ω)FB(B|b; ω) (1)

for the behavior. The nonexistence of non-negative con-
stituents at the right-hand side of Eq. (1) for a given behavior
implies that the corresponding quantum state and measure-
ments cannot be explained within the framework of local
realism. Equivalently, local realism implies that the ele-
ments of the behavior can be considered as marginals of a
non-negative joint probability distribution for all observables
(JPDAO) [10–13]. If such a distribution exists, then the be-
havior can be explained by a local realistic model. As it has
been discussed in Ref. [13], such an interpretation is closely
related to the concept of quantum contextuality [14,15]. The
concept of JPDAO has also been discussed in the context of
classical phase-space distributions [16].

In order to prove the existence of a local realistic model,
it is sufficient to find a non-negative JPDAO corresponding to
the given behavior. The nonexistence of local realistic models
means that non-negative JPDAOs do not exist. For a given
behavior, this fact can be proven via solving the dual form
[3] of a linear-programming problem leading to Bell inequal-
ities [2,17]. Their violation implies the presence of strong
quantum correlations corresponding to Bell nonlocality. Orig-
inally, these inequalities have been presented for dichotomic
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observables with two settings for Alice and Bob. Further, they
have been generalized to different configurations; see, e.g., the
corresponding list in Ref. [3].

A different type of quantum correlations in quantum optics
has been discussed in Refs. [18,19]. They are based on the
fact that, similar to the single-mode scenario, any two-mode
quantum state described by the density operator ρ̂ can be
expanded by coherent states |αA〉 and |αB〉,

ρ̂ =
∫
C2

d2αAd2αBP(αA, αB)|αA〉〈αA| ⊗ |αB〉〈αB|, (2)

where P(αA, αB) is the Glauber-Sudarshan P function [20,21].
If P(αA, αB) � 0, then the corresponding state can be sim-
ulated by a statistical mixture of coherent states. Otherwise,
the state is considered as nonclassical [22–44]. A particular
interest is attracted to cases for which the reduced local states
for Alice and Bob are classical but the whole two-mode state
is nonclassical. In this case, the impossibility of simulations
with coherent states is caused solely by correlations between
two parts of the quantum state. As it has been discussed
in Refs. [18,19,45], such correlations may be inherent even
for separable states as well as for states with zero quantum
discord [46–48].

In this paper we show that nonclassical correlations of
radiation related to negativities of the Glauber-Sudarshan
P function and to negativities of the more general
s-parameterized Cahill-Glauber distributions [49,50] can be
naturally linked to Bell nonlocality. Such correlations corre-
spond to a particular form of the JPDAO, which may not
be positive semidefinite even for states and measurements
exhibiting local realism. We have shown that such correla-
tions can be tested with modified Bell inequalities. Although
we consider a nonlocal state, particular measurement proce-
dures applied to it can still be described with local realistic
models. We demonstrate that nonclassical correlations of ra-
diation in such cases can still be tested with the derived
inequalities.

The rest of the paper is organized as follows. In Sec. II
we consider the general statement of the Bell-nonlocality
problem expressed as a system of linear equations for the
JPDAO. A mathematical formulation for the problem of non-
classical correlations for radiation is considered in Sec. III. In
Sec. IV we derive standard Bell inequalities and inequalities
for nonclassical correlations of radiation as the dual forms of
linear-programming problems. In Sec. V we consider hybrid
measurements, wherein continuous (quadratures) and discrete
(displaced numbers of photons) variables are measured at
Alice’s and Bob’s side, respectively. A necessary and suffi-
cient condition for the presence of Bell nonlocality in such a
measurement scenario is considered in Sec. VI. Section VII
is devoted to an example of the two-mode squeezed vacuum
states (TMSVS). We demonstrate that for such states Bell
nonlocality cannot be verified by conducting hybrid measure-
ments, while nonclassical correlations introduced here in such
a scenario still exist. An example of hybrid entangled states
leading to violation of local realism with the scenario of a
hybrid measurement scheme is considered in Sec. VIII. A
summary and some concluding remarks are given in Sec. IX.

FIG. 1. Scheme of the Bell-like experiment in the case of two
settings at each side. The measurement outcomes for Alice and
Bob take values A and B with the settings {a1, a2} and {b1, b2},
respectively. Four possible pairs of measurements are shown by
lines. The corresponding conditional probabilities are designated as
P (A, B|ai, bj ).

II. BELL-NONLOCALITY PROBLEM

As discussed in the Introduction, the concept of local real-
ism requires the presence of at least two observers, Alice and
Bob, conducting measurements at their sides with outcomes A
and B, respectively. Alice and Bob randomly change settings
of their measurement devices, ai and b j , correspondingly.
Each setting implies measurement of a particular observable.
For the sake of simplicity, we restrict our consideration to
two settings at each side, also noting that generalizations
to any number of settings and to their continuous set are
straightforward.

Let us consider the measurement scheme sketched in
Fig. 1. In the framework of local realism, the conditional prob-
abilities P (A, B|a, b), cf. Eq. (1), are considered as marginals
of a non-negative JPDAO W (A1, A2, B1, B2) ≡ W (A, B),
which is a function of the sets of values A = {A1, A2} and
B = {B1, B2} given the settings {a1, a2} and {b1, b2}, respec-
tively. This can be formalized as

P (A, B|ai, b j ) =
∑
A,B

W (A1, A2, B1, B2)δA,AiδB,Bj , (3)

where δA,Ai and δB,Bj are Kronecker deltas. Equation (3) can
be considered as a system of linear algebraic equations for the
JPDAO. If at least one observable takes continuous values,
the corresponding sum is replaced with the integral and the
Kronecker delta is replaced with the Dirac delta function.
In that scenario, Eq. (3) becomes a system of linear inte-
gral equations. The behavior P (A, B|ai, b j ) can be explained
within the framework of a local realistic model iff this system
has at least one non-negative solution W (A1, A2, B1, B2) � 0.

Equation (3) is a typical example of the inhomogeneous
systems of linear equations. Its general solution can be given
by, cf. Ref. [51],

W (A1, A2, B1, B2)

= Wh(A1, A2, B1, B2) + Wp(A1, A2, B1, B2). (4)

Here Wh(A1, A2, B1, B2) is the general solution to the corre-
sponding homogeneous system, when the left-hand side of
Eq. (3) is zero. The function Wp(A1, A2, B1, B2) is a particular
solution to the original inhomogeneous system. The function
Wh(A1, A2, B1, B2) depends also on arbitrary constants or,
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in the case of continuous variables, on arbitrary functions.
If the local realistic model corresponding to the given be-
havior P (A, B|ai, b j ) exists, then these constants (functions)
can be chosen such that the function W (A1, A2, B1, B2) is
non-negative. A particular solution Wp(A1, A2, B1, B2), how-
ever, may have non-negative values. In the next section we
will consider an important special case of Wp(A1, A2, B1, B2)
corresponding to phase-space nonclassical correlations.

III. NONCLASSICAL CORRELATIONS OF RADIATION

In order to analyze nonclassical correlations of radiation
[18,19], we remind ourselves that the behavior P (A, B|a, b)
can be obtained from Born’s rule [52] as

P (A, B|a, b) = Tr[ρ̂ �̂A(A|a)�̂B(B|b)], (5)

where ρ̂ is the density operator characterizing the quantum
state of the light modes, and �̂A(A|a) and �̂B(B|b) are the
positive operator-valued measures (POVM) [53] characteriz-
ing measurements at Alice’s and Bob’s sides, respectively.
Equation (5) can be rewritten in the phase-space representa-
tion, cf. Refs. [49,50]:

P (A, B|a, b) =
∫
C2

d4αP(αA, αB; sA, sB)

× �A(A|a; αA; −sA)�B(B|b; αB; −sB). (6)

Here d4α = d2αAd2αB, P(αA, αB; sA, sB) is the
Cahill-Glauber s-parameterized quasiprobability distribution,
and �A(A|a; αA; −sA), �B(B|b; αB; −sB) are (−s)-
parameterized symbols of the POVM; see also Appendix A
for details. The parameter s ∈ [−1, 1] describes the operator
ordering. For example, the cases of s = −1, s = 0, and s = 1
correspond to antinormal, symmetric, and normal ordering,
respectively.

Let us consider the case of sA = sB = 1. This implies
that P(αA, αB; sA, sB) = P(αA, αB) is the Glauber-Sudarshan
P function. The POVM symbols in this case are Q symbols,

�A(A|a; αA) = 〈αA|�̂A(A|a)|αA〉 � 0, (7)

�B(B|b; αB) = 〈αB|�̂B(B|b)|αB〉 � 0. (8)

They can be interpreted as probability distributions to get
values A/B given the settings a/b and the coherent states
|αA〉/|αB〉 at Alice’s/Bob’s side, respectively. If P(αA, αB) �
0, then Eq. (6) is a particular case of Eq. (1), i.e., it represents
a local realistic model. This means that the measurement out-
comes of such a state can be simulated by statistical mixture
of coherent states.

As it has been discussed in Ref. [54] for single-party sce-
narios, simulations of measurement outcomes with coherent
states may be possible even if P(αA, αB) � 0. In order to
demonstrate that, consider Eq. (6) as a system of integral
equations with respect to the unknown function P(αA, αB)
given �B(B|b; αB), �A(A|a; αA), and P (A, B|a, b). If the
measurement is not informationally complete [55–59], then
the Glauber-Sudarshan P function is not the single solution
to this system of equations. Non-negative functions can be
among other solutions, and thus the measurements can be
simulated with coherent states.

Negativities of the function P(αA, αB) can be associated
with both nonclassical correlations and nonclassicality of lo-
cal states at Alice’s/Bob’s sides. Similar to considerations in
Refs. [18,19], the uncorrelated density operator,

ρ̂u = TrBρ̂ ⊗ TrAρ̂, (9)

can be assigned to the density operator ρ̂. Here TrB/A is the
partial trace of the mode B/A, respectively. If simulations with
coherent states are impossible for the state ρ̂ but possible
for the state ρ̂u, nonclassical phenomena are solely related to
correlations between modes [18,19].

One can also consider a more general type of correla-
tions. For each type of measurements, there exist thresh-
old values of s = sth such that �A(A|a; αA; −sth ) � 0 and
�A(A|a; αA; −s) � 0 for s < sth. If Eq. (6) has non-negative
solutions P(αA, αB; sA, sB) for sA and sB equal to or exceeding
the corresponding threshold values, this equation determines
a local realistic model. If such a model does not exist for the
threshold values, it does not exist for all values of sA and sB.
This means that phase-space classical simulations for such
states are impossible [54].

Phase-space representation can be used for finding a partic-
ular solution to Eq. (3). Particularly, it can be used in Eq. (4)
to find the general solution for the Bell-nonlocality problem.
In order to demonstrate it, we consider a family of functions

Wp(A1, A2, B1, B2)

=
∫
C2

d4αP(αA, αB; sA, sB)

× �A(A1|a1; αA; −sA)�A(A2|a2; αA; −sA)

× �B(B1|b1; αB; −sB)�B(B2|b2; αB; −sB), (10)

where P(αA, αB; sA, sB) is a solution to Eq. (6) includ-
ing phase-space quasiprobability distributions. Evidently, the
functions Wp(A1, A2, B1, B2) represent a family of particular
solutions to Eq. (3). This fact can be proven by using the
normalization conditions for the POVM,∑

A

�A(A|a; αA; −sA) =
∑

B

�B(B|b; αB; −sA) = 1. (11)

Possibilities of phase-space classical simulations,
including simulations with coherent states, imply that
Wp(A1, A2, B1, B2) � 0. The quantum state and the measure-
ments, i.e., the behavior P (A, B|a, b), cannot be simulated
with phase-space functions if Wp(A1, A2, B1, B2) � 0. In
particular, this is related to nonclassical correlations of
radiation.

Since the function (10) is a particular solution to Eq. (3),
Bell nonlocality always implies the presence of nonclassical
correlations of radiation. The inverse statement is, in general,
untrue. For example, nonclassical correlations of radiation can
be found in separable states, cf. Refs. [18,19]. Local realistic
models for such states exist for any measurement.

For another scenario, we refer to nonlocal states. However,
particular measurements applied to them can still be described
with a local realistic model. This corresponds to local realistic
behaviors P (A, B|a, b) for Bell nonlocal states. In the follow-
ing we will show that such behaviors can also be nonclassical,
including the case of nonclassical correlations of radiation.
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Classical

behaviors

Local realistic

behaviors

FIG. 2. The Venn diagram demonstrate relations between the sets
of local realistic and classical behaviors.

In general, we consider nonclassicality and nonlocality of
behaviors P (A, B|a, b). The classical behaviors, for which
non-negative solutions to Eq. (6) exist, are always local re-
alistic, i.e., they can be explained by Eq. (1). The inverse
statement is not true. The corresponding relations between
these sets are shown in Fig. 2. A more complicated relation
occurs if we consider also locally classical behaviors. In order
to define this notion, we first assign the factorized behavior

Pu(A, B|a, b) = P (A|a)P (B|b) (12)

to each behavior P (A, B|a, b), where

P (A|a) =
∑

B

P (A, B|a, b) (13)

P (B|b) =
∑

A

P (A, B|a, b) (14)

are marginal probability distributions. The behavior
P (A, B|a, b) is locally classical if Eq. (6) with the
corresponding Pu(A, B|a, b) has a non-negative solution.
The relation between the sets of Bell nonlocal, nonclassical,
and locally classical behaviors is shown in Fig. 3. Intersection
of the sets of locally classical and nonclassical behaviors
corresponds to behaviors demonstrating nonclassical
correlations of radiation [18,45].

Bell nonlocal

behaviors

Nonclassical

behaviors

Locally

classical

behaviors

FIG. 3. The Venn diagram demonstrates relations between the
sets of Bell nonlocal, nonclassical, and locally classical behaviors.
The behaviors demonstrating nonclassical correlations and no local
nonclassicality belong to the intersection of sets of locally classical
and nonlocal behaviors.

IV. DUAL FORM OF QUANTUM-CORRELATION
PROBLEMS

If we aim to explain the given behavior P (A, B|a, b) with a
local realistic model, we have to find at least one non-negative
solution to Eq. (3). In order to prove that such models do not
exist, we can employ the dual form of this problem [3], ex-
pressed in the form of the Bell inequalities directly following
from the hyperplane separation theorem [60]. Their violations
imply the nonexistence of local realistic models related to the
considered behavior.

A similar situation takes place for nonclassical correlations
of radiation. When we aim to prove their nonexistence, it suf-
fices to show that one of the particular phase-space solutions
(10) to Eq. (3) is non-negative, or one can find a non-negative
solution P(αA, αB; sA, sB) to Eq. (6). The presence of such
correlations requires one to prove the fact that all such solu-
tions have negativities, which can be a complicated task, also
in the case of real experimental data. Similar to the case of
Bell nonlocality, we can apply here the hyperplane separation
theorem. This leads to an analog of Bell inequalities. Their
violations imply the presence of nonclassical correlations of
radiation.

A. General formulation

The direct forms of the problems of Bell nonlocality and
nonclassical correlations of radiation can be both formulated
as the linear equation

P = MW. (15)

Here P is the vector (also from a function space) com-
posed from all values of the behavior. The vector W is
composed from all values of the JPDAO in the case of the
Bell-nonlocality problem, cf. Eq. (3). For the problem of non-
classical correlations of radiation this vector is given by the set
of all values of P(αA, αB; sA, sB), cf. Eq. (6). With the symbol
M, we denote the mapping from W to P . This mapping has
a specific form for each problem.

As it follows from Eq. (15), all P corresponding to
non-negative W form a convex set. Hence, the hyperplane
separation theorem resulting in Bell-like inequalities can be
applied here. Let us consider an arbitrary vector f . If all com-
ponents of W are non-negative, then fT · W � sup f (1 · W),
where all components of the vector (values of the function)
1 are unity.1 In fact, this means that the upper bound of
the left-hand side of this inequality is obtained by replacing
each component of the vector (each value of the function) f
with its supremum. Normalization of W implies (1 · W) = 1.
This yields fT · W � sup f . Taking the scalar product for both
sides of Eq. (15) with an arbitrary vector λ and considering
fT = λTM we arrive at the inequalities

λT · P � sup λTM. (16)

1Here sup f means supremum of f as a function of a discrete,
continuous, or hybrid set of variables [61]. For example, in the case
of discrete finite sets of variables, it corresponds to the maximal
component of the vector.
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If there exist a λ such that these inequalities are violated, then
the given behavior manifests Bell nonlocality or nonclassical-
ity of radiation, depending on the used mapping M. It can also
be shown that the inverse statement is true: if a non-negative
W does not exist, then there exist λ such that these inequalities
are violated, cf. Refs. [3,62].

B. Bell inequalities

In this section we recall the standard Bell inequalities used
for testing local realism [2,3]. In this case, the matrix (integral
kernel) M is given by δA,AiδB,Bj in Eq. (3). Applying this
particular form in Eq. (16), one gets∑

i, j

E (λ|ai, b j ) � sup
A,B

∑
i, j

λ(Ai, Bj, ai, b j ), (17)

where

E (λ|ai, b j ) =
∑
A,B

λ(A, B, ai, b j )P (A, B|ai, b j ) (18)

is the expected value of λ(A, B, ai, b j ) over the random vari-
ables A and B given the settings ai, b j . The supremum at the
right-hand side of this equation is evaluated over all compo-
nents of the vectors A = {A1, A2} and B = {B1, B2}. In the
case that at least one observable takes continuous values, the
corresponding sum in Eq. (18) is replaced by integration.

Inequality (17) represents the most general form of linear
Bell inequalities. If there exists λ(A, B, ai, b j ) such that these
inequalities are violated, then the behavior P (A, B|ai, b j ) ex-
hibits Bell nonlocality. Particular choices of λ result in Bell
inequalities for different measurement configurations. For
example, a special choice of λ in the case of dichotomic vari-
ables leads to the well-known Clauser-Horn-Shimony-Holt
(CHSH) inequalities [17], see Appendix B. They represent
a necessary and sufficient condition for existence of a local
realistic model in the appropriate measurement configuration.
In the most general case, finding such complete and tight sets
of λ, cf. Ref. [3], is a computationally hard problem. However,
for the given behavior P (A, B|ai, b j ), it can be reformulated:
we may look for a special λ violating inequality (17).

The expected values E (λ|ai, b j ) at the left-hand side of
Bell inequalities (17) can be directly obtained from exper-
imental data. Typically, such data are given by M pairs
of measured observables, (A(k), B(k) ), where k = 1 . . . M,
for each setting ai, b j . Thus the expected values can be
estimated as

E (λ|ai, b j ) ≈ 1

M

M∑
k=1

λ(A(k), B(k), ai, b j ). (19)

Therefore, while the right-hand side of Bell inequalities (17)
is fixed by a particular choice of λ, its left-hand side is given
by the measurement outcomes.

C. Bell-like inequalities for nonclassical correlations
of radiation

In this section we generalize the approach of Bell-like
inequalities for phase-space classical simulations [54] to the
case of nonclassical correlations of radiation. For this pur-
pose we will use the integral kernel M in the form of

�A(A|a; αA; −sA)�B(B|b; αB; −sB), and the role of the vec-
tor W from a function space is played by the functions
P(αA, αB; sA, sB). Inequality (16), following from the hyper-
plane separation theorem, in this case is reduced to the form∑

i, j

E (λ|ai, b j ) � sup
α

∑
i, j

E (λ|ai, b j ; α; sA, sB), (20)

where the left-hand side is still given by Eq. (18). The sum
components at the right-hand side of this inequality are given
by the expression

E (λ|ai, b j ; α, sA, sB)

=
∑
A,B

λ(A, B, ai, b j )

× �A(A|ai; αA; −sA)�B(B|b j ; αB; −sB). (21)

In both equations we use the vector α = (αA, αB).
Inequalities (20) have a form which is similar to stan-

dard Bell inequalities (17) but with a modified right-hand
side. Their violations imply the impossibilities of phase-space
classical simulations for the given behavior P (A, B|ai, b j ).
Among others, this means that the particular solution (10) for
the Bell-nonlocality problem (3) is not positive semidefinite
for any P(αA, αB; sA, sB), being a solution to Eq. (6). This
can be caused by both nonclassicality of local states and by
the presence of nonclassical correlations of radiation. For the
latter case, such inequalities are not violated with the factor-
ized behavior Pu(A, B|a, b) given by Eq. (12). In particular,
this implies that replacing E (λ|ai, b j ) with its uncorrelated
counterpart,

Eu(λ|ai, b j ) =
∑
A,B

λ(A, B, ai, b j )Pu(A, B|ai, b j ), (22)

does not result in violation of inequalities (20). Fulfillment
of inequalities (20) with Eu(λ|ai, b j ) for a given λ is only
a necessary condition for the fact that their violation with
E (λ|ai, b j ) is caused solely by nonclassical correlations. A
sufficient condition of this fact is given by the existence of
a non-negative solution of Eq. (6) with the left-hand side
replaced by Pu(A, B|a, b).

Let us consider the special case of sA = sB = 1. As it
has been already discussed, this scenario corresponds to the
possibility of simulating correlations with coherent states. If
inequality (20) is violated, then the measurement outcomes
cannot be simulated by a statistical mixture of coherent states.
It is worth noting that in this case the right-hand side of this
inequality can be estimated from the experimental data as
well. Taking into account Eqs. (7) and (8), we conclude that
E (λ|ai, b j ; α; 1, 1), cf. Eq. (21), is the expected value of the
quantity λ(A, B, ai, b j ) given the coherent state |αA〉 ⊗ |αB〉.
This implies that the values given by Eq. (21) can be esti-
mated in the same way as it is described by Eq. (19) but with
coherent states at the source. If we are interested in check-
ing the inequalities for other values of sA, sB, the value of
E (λ|ai, b j ; α, sA, sB) can be obtained from E (λ|ai, b j ; α; 1, 1)
with the standard deconvolution formula connecting different
phase-space symbols [49,50].

As mentioned, inequalities (20) are a generalization of the
inequalities derived in Ref. [54]. In turn, the latter can be
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LO1 LO2

FIG. 4. The scheme of hybrid measurements. Alice (A) and
Bob (B) conduct balanced and unbalanced homodyne detection,
respectively. Measurement-device settings are controlled by local
oscillators LO1 and LO2. The measurement outcomes for Alice and
Bob take values x ∈ R and n ∈ {0, 1} with the settings ϕi and γ j ,
respectively, where i, j = 1, 2.

considered as a generalization of inequalities presented in
Ref. [38]. They are also related to the CHSH-like inequalities
for testing nonclassicality discussed in Refs. [41,42].

V. HYBRID MEASUREMENT SCHEME

In this paper we consider two archetypal measurement
procedures: balanced [28,63–68] and unbalanced [69,70] ho-
modyne detection. Balanced homodyne detection is described
by the POVM symbols given by

�(x|ϕ; α; −s) = 1√
πs

exp

{
−

[
x−√

2Re(αe−iϕ )
]2

s

}
, (23)

where s ∈ [0, 1], x ∈ R is the field quadrature with the phase
ϕ, playing the role of the observable and the measurement-
device setting, respectively. The POVM symbol of the
unbalanced homodyne detection reads

�(n|γ ; α) = (1 − e−|α−γ |2 )ne−|α−γ |2(1−n). (24)

Here the ordering parameter may take only a single value
s = 1, the observable n ∈ {0, 1} corresponds to no-click and
click events at the detector, and the local-oscillator amplitude
γ plays the role of the measurement-device setting.

Measurement outcomes of the balanced and unbalanced
homodyne detection are given by continuous and discrete
variables, respectively. In the schemes checking Bell non-
locality, one usually considers identical measurements from
each side. Typically, it is given by discrete variables, as, for
example, in the original Bell proposal [2,17]. Continuous
variables are commonly analyzed via discretization of the
outcomes [71,72]. Another approach [73] applied inclusively
to continuous variables, using inequalities of the probability
theory for functions of all observables. Bell inequalities (17)
considered in this paper can also be directly applied to contin-
uous variables.

We concentrate on a hybrid measurement scheme, Fig. 4,
which uses balanced and unbalanced homodyne detection for
Alice’s and Bob’s sides, respectively. This implies that Alice
obtains continuous outcomes while Bob obtains discrete ones.
The measurement-device settings ϕi and γ j determined by the
corresponding local oscillators take two discrete values, i.e.,
i, j = 1, 2.

Specifying the measurement outcomes for Eq. (3) as (A =
x, a = ϕ) and (B = n, b = γ ), one gets

P (x, n|ϕi, γ j )

=
1∑

n1=0

1∑
n2=0

∫
R

dx1

∫
R

dx2δ(x − xi )δn,n jW (x1, x2, n1, n2).

(25)

The general solution to the homogeneous system in this case
is given by

Wh(x1, x2, n1, n2)

= (−1)n1+n2C(x1, x2) + δn1,0δn2,0C00(x1, x2)

+ δn1,0δn2,1C01(x1, x2) + δn1,1δn2,0C10(x1, x2). (26)

It depends on the arbitrary function C(x1, x2) and on the
functions C00(x1, x2), C01(x1, x2), C10(x1, x2) obeying the
conditions∫

R

dx1 Ci j (x1, x2) =
∫
R

dx2 Ci j (x1, x2) = 0. (27)

A particular solution to the inhomogeneous system can be
found in the form of Eq. (10).

VI. GENERALIZED CHSH INEQUALITIES FOR THE
HYBRID MEASUREMENT SCHEME

Here we apply the technique developed in previous
sections and ideas of Ref. [74] regarding generalized CHSH
inequalities to derive a necessary and sufficient condition of
locality for the hybrid measurement scheme. In particular, we
will specify a set of test functions λ(k)(x, n|ϕ, γ ), k = 1, 2
such that any nonlocal behavior violates at least one cor-
responding inequality (17). These functions depend on the
behavior P (x, n|ϕi, γ j ). Therefore, given the behavior, one
can define the corresponding test functions and then check
whether it is nonlocal.

The considered test functions correspond to a discretiza-
tion of the outcomes xi with nontrivial subsets. In order to
describe them properly, we use the indicator function of a
subset X ∈ R,

I(xi; X ) =
{

1 if xi ∈ X
0 if xi /∈ X

. (28)

A necessary and sufficient condition for the locality of a given
behavior P (x, n|ϕi, γ j ) can be formulated as the following
statement.

Statement 1. The behavior P (x, n|ϕi, γ j ) for the hybrid
measurement scheme is local iff it satisfies inequalities (17)
with the two test functions λ(k)(x, n|ϕ, γ ), k = 1, 2, given by

λ(k)(x, n|ϕi, γ j )

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−I
(
x; X (k)

1

)
δn,1 if i = 1, j = 1

I
(
x; X (k)

1

)
δn,0 if i = 1, j = 2

−I
(
x; X (k)

1

)
δn,0 if i = 2, j = 1

1 − I
(
x; X (k)

2

)
δn,0 if i = 2, j = 2

, (29)
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where

X (k)
1 ={x ∈ R|P (x, 0|ϕk, γ1) + P (x, 0|ϕk, γ2)

−P (x|ϕk ) � 0}, (30)

X (k)
2 ={x ∈ R|P (x, 0|ϕl , γ2) � P (x, 0|ϕl , γ1)}. (31)

In these relations l = 1 if k = 0, l = 0 if k = 1, and

P (x|ϕ) =
1∑

n=0

P (x, n|ϕ, γ ) (32)

is the marginal distribution of P (x, n|ϕ, γ ) for the quadrature
x given the phase ϕ.

Proof. The necessity of this condition is obvious. Indeed,
inequalities (17) are fulfilled for any local behavior. In order to
prove sufficiency we will show that if these inequalities with
the test function (29) are fulfilled, then it is always possible to
construct a non-negative JPDAO.

First, we note that the right-hand side of inequality (17)
with the test function (29) is zero. This gives a possibility to
rewrite the considered Bell inequalities in the form

〈m〉ϕ1 � 〈M〉ϕ2 , (33)

〈m〉ϕ2 � 〈M〉ϕ1 . (34)

Here we use the notations

〈m〉ϕ1 =
∫
R

dx m(x, ϕ1), (35)

〈M〉ϕ2 =
∫
R

dx M(x, ϕ2), (36)

where

m(x, ϕ) = max{P (x, 0|ϕ, γ1) + P (x, 0|ϕ, γ2)

− P (x|ϕ), 0}, (37)

M(x, ϕ) = min{P (x, 0|ϕ, γ1),P (x, 0|ϕ, γ2)} (38)

are non-negative functions of the quadrature x and its phase ϕ

for the given settings γ1 and γ2.
Next we consider a class of the possible JPDAO for which

the condition

W (xi|n1, n2, x j ) = W (xi|n1, n2) (39)

holds true, where i, j = 1, 2 and i 	= j. This enables us to
present W (x1, x2, n1, n2) as

W (x1, x2, n1, n2) = w1(x1, n1, n2)w2(x2, n1, n2)

w(n1, n2)
. (40)

Here w1(x1, n1, n2) � 0, w2(x2, n1, n2) � 0, and w(n1, n2) �
0 are joint probability distributions for the observables pre-
sented by their arguments. In particular, this implies that the
conditions

w(n1, n2) =
∫
R

dx wi(x, n1, n2), i = 1, 2, (41)

1∑
n1,n2=0

wi(x, n1, n2)δn,n j = P (x, n|ϕi, γ j ), (42)

are fulfilled and the probabilities P (x, n|ϕ, γ ) are in-
deed marginals of the JPDAO W (x1, x2, n1, n2), as stated
by Eq. (3).

Let us specify a particular form of the non-negative func-
tions w1(x1, n1, n2), w2(x2, n1, n2), and w(n1, n2). We chose
them such that

w1(x, 0, 0) = κm(x, ϕ1) + (1 − κ)M(x, ϕ1), (43)

w2(x, 0, 0) = κM(x, ϕ2) + (1 − κ)m(x, ϕ2), (44)

where m(x, ϕ1) and M(x, ϕ1) are given by Eqs. (37) and (38),
respectively. In order to specify the parameter κ, we succes-
sively substitute Eqs. (43) and (44) into Eq. (41) and equate
the results. This yields

κ〈m〉ϕ1 + (1 − κ)〈M〉ϕ1 = κ〈M〉ϕ2 + (1 − κ)〈m〉ϕ2 . (45)

Solving this equation with respect to κ, we obtain the
expression

κ =
(

1 + 〈M〉ϕ2 − 〈m〉ϕ1

〈M〉ϕ1 − 〈m〉ϕ2

)−1

, (46)

which specifies the parameter κ.
Fulfillment of Bell inequalities in the form (33) and (34)

implies that κ ∈ [0, 1]. Thus, as it follows from Eqs. (43)
and (44), w1(x, 0, 0) and w2(x, 0, 0) are convex combinations
of non-negative quantities m(x, ϕ1), M(x, ϕ1) and m(x, ϕ2),
M(x, ϕ2), respectively, which guarantees their non-negativity.
Other values of the probability distributions w1(x1, n1, n2) and
w2(x2, n1, n2) can be constructed as

wi(x, 1, 0) = P (x, 0|ϕi, γ2) − wi(x, 0, 0), (47)

wi(x, 0, 1) = P (x, 0|ϕi, γ1) − wi(x, 0, 0), (48)

wi(x, 1, 1) = P (x|ϕi) − P (x, 0|ϕi, γ1)

− P (x, 0|ϕi, γ2) + wi(x, 0, 0). (49)

As it is shown in Appendix C, they are non-negative if κ ∈
[0, 1], i.e., in all cases when inequalities (43) and (44) are
satisfied. �

Nontrivial discretization of the continuous variables xi,
corresponding to the special choice of the test function (29),
defines the generalized CHSH inequalities. The fact that x
belongs or does not belong to the subset X (k)

i can be inter-
preted as ascribing dichotomic values to the quadrature, see
Appendix B. With our approach we determine these subsets
for each behavior P (x, n|ϕi, γ j ) but not an infinite set of tight
Bell inequalities, involving continuous variables.

VII. EXAMPLE: TWO-MODE SQUEEZED VACUUM STATE

In this section we consider an application of the developed
approach to the two-mode squeezed vacuum state (TMSVS)
given by

|r〉 = 1

cosh r

∞∑
n=0

(− tanh r)n|n〉A ⊗ |n〉B. (50)

Here r � 0 is the squeezing parameter and |n〉A(B) is a
Fock state for the A(B) mode. Experimental procedures for
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generating this state are widely discussed in literature; see,
e.g., Refs. [75,76].

For our purpose, some remarkable properties of this state
are of importance: (i) this is an entangled state; (ii) this state
has a positive Wigner function in the form of a Gaussian
distribution; (iii) this state is nonclassical since its P function
is not positive semidefinite; and (iv) local reduced states for
each mode are classical thermal states. Two latter properties
imply that this state can manifest nonclassical correlations of
radiation and no local nonclassicality.

Bell nonlocality for this state without its modification by
non-Gaussian operations cannot be verified with balanced
homodyne detection alone [71,72]. Indeed, since its Wigner
function and the POVM symbols for sA(B) = 0 [cf. Eq. (23)]
are non-negative, a local realistic model is given by phase-
space functions, such as in Eq. (6). However, for sA(B) � 0,
nonclassical correlations of radiation with such a measure-
ment layout are still possible. Particularly, such measurement
outcomes cannot be simulated by statistical mixtures of
coherent states. Bell nonlocality for this state can be veri-
fied if both modes are analyzed with unbalanced homodyne
detection [77–79]. Consequently, nonclassical correlations of
radiation in such a configuration exist as well.

Here we consider the hybrid measurement scheme consid-
ered in Sec. V. The corresponding behavior in this case is
given by

P (x, n|ϕ, γ ) = n
exp

[− x2

cosh 2r

]
√

π cosh 2r

+ exp
{− |γ |2

cosh2 r
− [x + √

2Re(γ eiϕ ) tanh r]2
}

(−1)n
√

π cosh2 r
.

(51)

First, we will demonstrate that for such a configuration there
exist a local realistic model. Hence, Bell inequalities (17) in
this case cannot be violated. However, inequalities (20) are
violated for all appropriate values of the ordering parameters,
including the case of sA = 1 and sB = 0. Hence, Eq. (6) does
not have non-negative solutions, and the partial solution (10)
is not non-negative.

A. Local realistic model

In this section we prove that a non-negative JPDAO can
always be constructed for the behavior (51). It can be shown
analytically that inequalities (33) and (34) are fulfilled for
any measurement settings γ1, γ2 and ϕ1, ϕ2 if the squeezing
parameter r � 1.66. In order to demonstrate this, we rewrite
Eq. (37) as

m(x, ϕ) = P (x|ϕ) max{P (0|γ1; x; ϕ) + P (0|γ2; x; ϕ) − 1, 0},
(52)

where we have used Bayes’ formula P (x, 0|ϕ, γ ) =
P (x|ϕ)P (0|γ ; x; ϕ). The conditional probability P (0|γ ; x; ϕ)

in the case of the TMSVS reads as

P (0|γ ; x; ϕ)

=
√

cosh 2r

cosh2 r
exp

{
−cosh 2r

cosh2 r

[
Re(γ e−iϕ ) + x√

2
tanh 2r

]2}

× exp

{
− [Im(γ e−iϕ )]2

cosh2 r

}
. (53)

This probability cannot exceed its maximum√
cosh 2r/ cosh2 r. As it follows from Eq. (52), one gets

m(x, ϕ) = 0 for any ϕ, x and for the values of r satisfying the
condition

√
cosh 2r/ cosh2 r � 1/2. (54)

This implies that Eqs. (33) and (34) take the form

0 � 〈Mi〉, (55)

where i = 1, 2. This inequality is always fulfilled due to the
construction of 〈Mi〉. Therefore, for r satisfying the condition

(54), i.e., for r � arcosh
√

2
√

3 + 4 ≈ 1.66, a non-negative
JPDAO always exists.

In order to confirm the local character of the behavior
(51) for other values of r, we use the technique of numerical
optimization. The corresponding optimization problem can be
formulated via rewriting Eqs. (33) and (34) as

F (ϕ1, ϕ2, γ1, γ2; r) = 〈m1〉 − 〈M2〉 � 0. (56)

If the maximum value of F (ϕ1, ϕ2, γ1, γ2; r) is positive, the
inequality (56) is violated for the corresponding values of ϕ1,
ϕ2, γ1, γ2, and r, and, consequently, the behavior is nonlo-
cal. Similarly, if the maximum value of F (ϕ1, ϕ2, γ1, γ2; r) is
non-negative, the behavior does not exhibit nonlocality in the
aforementioned scenario. Applying the simplicial homology
global optimization method [80], we obtain that the maximum
value of F (ϕ1, ϕ2, γ1, γ2; r) is exactly zero. This implies that
the considered hybrid measurement scheme with the TMSVS
can be treated within a local realistic model. In particular, this
means that Bell inequalities (17) in the given scenario cannot
be violated.

The JPDAO (40) can also be presented in the form of
Eq. (4), where Wh and Wp are given by Eqs. (26) and (10), re-
spectively. In this case the functions C(x1, x2) and Ci j (x1, x2)
are reduced to the form

C(x1, x2) = H(x1, x2, 1, 1), (57)

C00(x1, x2) = H(x1, x2, 0, 0) − C(x1, x2), (58)

C01(x1, x2) = H(x1, x2, 0, 1) + C(x1, x2), (59)

C10(x1, x2) = H(x1, x2, 1, 0) + C(x1, x2). (60)

Here the function

H(x1, x2, n1, n2) = W (x1, x2, n1, n2) − Wp(x1, x2, n1, n2)

(61)

is obtained as a difference of the function (40) and the partic-
ular solution (10).
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B. Nonclassical correlations of radiation

Despite that the hybrid measurement scheme discussed in
Sec. V cannot be used for testing nonlocal properties of the
TMSVS, it is still capable for testing nonclassical correla-
tions of radiation. This implies that no non-negative solutions
P(αA, αB; sA, sB) of Eq. (6) exist for all appropriate values
of sA = 1 and sB ∈ [0, 1]. In this section we will prove this
fact via demonstrating violations of Bell-like inequality (20)
for the scenario of the TMSVS analyzed with the hybrid
measurement scheme.

Let us choose the test function λ in inequality (20) as

λ(x, n, ϕ, γ ) = δ(x − x0)δϕ,ϕ0

(
δn,0χ (γ ; α0) − D

2

)
, (62)

where δ(x) and δn,k are the Dirac delta function and the
Kronecker delta, respectively. In particular, such a choice
means that we can consider only a single local-oscillator phase
at Bob’s side. The coefficient D is given by

D = sup
α

2∑
j=1

χ (γ j ; α0)�(0|γ j ; α). (63)

The argument γ of the function χ (γ ; α0) takes only two real
values, γ ∈ {γ1, γ2}. The corresponding values of the function
are chosen as

χ (γ1; α0) = −(α0 − γ2)e−|α0−γ2|2 , (64)

χ (γ2; α0) = (α0 − γ1)e−|α0−γ1|2 . (65)

The real constants x0 and α0 are adjusted to optimize viola-
tions of inequality (20), and ϕ0 is an arbitrary phase.

The left-hand side of inequality (20) with the chosen func-
tion (62) is reduced to the form

2∑
i, j=1

E (λ|ϕi, γ j ) =
2∑

j=1

χ (γ j ; α0)P (x0, 0|ϕ0, γ j ) − DP (x0|ϕ0).

(66)

Here P (x0, 0|ϕ0, γ j ) is the particular value of the behavior and
P (x0|ϕ0) is the marginal distribution for the quadrature given
by Eq. (32). It can be directly checked that the right-hand side
of inequality (20) with the function (62) is zero:

sup
α

2∑
i, j=1

E (λ|ϕi, γ j ; α; 0, 1) = 0. (67)

Therefore, Bell-like inequality (20) is reduced to the form

2∑
j=1

χ (γ j ; α0)P (x0, 0|ϕ0, γ j ) � DP (x0|ϕ0). (68)

Both sides of this inequality can be directly sampled from the
measurement data. It is also important that this inequality does
not depend on the ordering parameter sA. Hence, its violation
implies both facts: the impossibility of simulation of the mea-
surement outcomes with statistical mixtures of coherent states
and the impossibility of more general simulations with any
s-parameterized phase-space function.

FIG. 5. The relative violation R, cf. Eq. (69), of inequality (68)
is shown as a function of the squeezing parameter r for the TMSVS
(50). The measurement-device settings are chosen as ϕ0 = 0, γ1 = 0,
γ2 = 1. Solid, dashed, and dotted lines correspond to the detection
efficiencies (ηA = 0.7, ηB = 0.6), (ηA = 0.7, ηB = 0.7), and (ηA =
0.8, ηB = 0.7), respectively.

We consider the relative violation of inequality (68) as the
ratio of difference of its left- and right-hand sides to the latter:

R =

2∑
j=1

χ (γ j ; α0)P (x0, 0|ϕ0, γ j ) − DP (x0|ϕ0)

DP (x0|ϕ0)
. (69)

It is shown in Fig. 5 as a function of the squeezing parameter
r for different values of the detection efficiencies. The param-
eters x0 and α0 are chosen to maximize the relative violation
and fulfill the condition P (x|ϕ) > 0.1/

√
π cosh 2r. Here we

consider different detection efficiencies. These efficiencies are
included in the behavior (51) as it is discussed in Appendix D.
Violations can be clearly verified for accessible conditions of
experiments. This means that despite the existence of a local
realistic model, the obtained correlations cannot be simulated
with statistical mixture of coherent states and, more generally,
with phase-space functions.

Testing nonclassical correlations of radiation with Bell-
like inequalities (20) is based on a finite number of
measurement-device settings. Hence, with our method we
check nonclassical correlations for behaviors. Alternative ap-
proaches [18,45] deal with tomographic reconstruction of the
regularized P function [81] and test nonclassical correlations
for quantum states.

VIII. EXAMPLE: SCHRÖDINGER-CAT STATE

In this section we introduce an example, leading to viola-
tions of local realism for the hybrid measurement scheme. For
this purpose we consider a hybrid entangled state [82] also
known as a Schrödinger-cat state [83] given by

|�〉 = 1√
2

(|α0〉A ⊗ |0〉B + |−α0〉A ⊗ |1〉B), (70)

where |α0〉, |0〉, and |1〉 indicate coherent, vacuum, and single-
photon Fock states, respectively. The generation scheme of
this state has been discussed in Refs. [82,83].
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FIG. 6. The absolute violation V , cf. Eq. (73), of inequalities (33)
and (34) are shown as a function of α0 for Imα = 0. The phases of
local oscillator at Alice’s side are chosen as ϕ1 = 0, ϕ2 = π

2 . The
values of phase-space displacement at Bob’s side are γ1 = i

4 , γ2 =
− i

4 . The detection efficiencies have the values ηA = 0.95, ηB = 0.95.
The shaded area indicates the negative values of V , for which the
corresponding behavior is local realistic.

Let Alice and Bob perform balanced and unbalanced ho-
modyning with detection efficiencies ηA and ηB, respectively.
The corresponding behavior reads

P (x, 0|ϕ, γ ) = e−|γ |2

2

{
�(x|ϕ;

√
ηAα0; −1)

+�(x|ϕ; −√
ηAα0; −1)(1 − ηB + ηB|γ |2)

+ 2√
π

√
ηB exp(−2|α0|2)

× Re[γ exp(−(x − i
√

2ηAImα0e−iϕ )2)]

}
.

(71)

Here

P (x|ϕ) =1

2
[�(x|ϕ,

√
ηAα0; −1)

+�(x|ϕ; −√
ηAα0; −1)] (72)

is the marginal behavior at the Alice side, and �(x|ϕ; α; −1)
is given by Eq. (23) for (−s) = −1.

We consider the absolute violation of inequalities
(33) and (34),

V = max {〈m〉ϕ1 − 〈M〉ϕ2 , 〈m〉ϕ2 − 〈M〉ϕ1}, (73)

as a function of α0 for Imα0 = 0. The corresponding de-
pendence is shown in Fig. 6 for particular settings at both
sides. One can observe that nonlocality can be indicated
for α0 � 0.8.

IX. CONCLUSIONS

To conclude, we have studied a fundamental link between
Bell nonlocality and nonclassical correlations of radiation.
Both phenomena are described within the framework of one
mathematical formulation. Indeed, the existence of a local
realistic model implies that a system of linear inhomogeneous
equations for the JPDAO has at least one non-negative so-
lution. The right-hand side of this system is given by the
behavior—the probability distribution for pairs of measure-

ment outcomes directly sampled from the experimental data.
A particular solution to this system is naturally expressed via
phase-space quasiprobability distributions and phase-space
symbols of the POVMs. The impossibility to classically sim-
ulate the measurement outcomes with statistical mixtures of
coherent states or, more generally, with phase-space functions
implies that this solution has negative values. Negativity of
the considered particular solution does not mean the nonexis-
tence of another solution, which can be non-negative. For this
reason, nonclassical correlations of radiation can be feasible
even in the cases when measurement outcomes are explained
within a local realistic model.

We have demonstrated that Bell nonlocality and nonclas-
sical correlations of radiation can also be checked with a
similar mathematical tools. The tests of these phenomena are
expressed in terms of inequalities. In the case of testing local
realism, these are Bell inequalities, which can be violated
if the behavior is nonlocal. In the case of testing nonclas-
sical correlations of radiation, the right-hand side of Bell
inequalities should be modified. Our inequalities are naturally
formulated for any type of measurement outcomes, including
the case of continuous variables and hybrid measurement
schemes involving both discrete and continuous outcomes.

Our results are demonstrated within an example of the
TMSVS. These states demonstrate nonclassical correlations
of radiation and no local nonclassicality. It is known that
Bell nonlocality for these states can be verified with un-
balanced homodyne detection and cannot be verified with
balanced homodyne detection. We have analyzed a hybrid
scheme involving both types of the measurements. It has been
shown that the corresponding measurement data can also be
explained with a local realistic model. However, they cannot
be simulated by a statistical mixture of coherent states or by
phase-space functions.

ACKNOWLEDGMENTS

S.R. and A.A.S. thank K. Pregracke for fruitful discus-
sions. W.V. and A.A.S. would also like to thank J. Sperling
for his valuable comments on the manuscript. V.S.K., I.S.Y.,
and A.A.S. acknowledge support from the National Research
Foundation of Ukraine through the Project No. 2020.02/0111,
“Nonclassical and hybrid correlations of quantum systems
under realistic conditions.”

APPENDIX A: PHASE-SPACE FUNCTIONS

In this Appendix we briefly refer to relations between
operators and phase-space functions [49,50]. For two opti-
cal modes, the Cahill-Glauber quasiprobability distribution
parametrized by two ordering parameters sA and sB is ex-
pressed via the density operator ρ̂ as

P(αA, αB; sA, sB) = Tr[ρ̂P̂(αA; sA) ⊗ P̂(αB; sB)]. (A1)

Similarly, the phase-space symbols of the POVMs are related
to the POVMs as

�A(A|a; αA; sA) = 1

π
Tr[�̂A(A|a)P̂(αA; sA)], (A2)

�B(B|b; αB; sB) = 1

π
Tr[�̂B(B|b)P̂(αB; sB)]. (A3)
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In these relations, the operator kernel reads

P̂(α; s) = 2

π (1 − s)
: exp

[
− 2

1 − s
(â† − α∗)(â − α)

]
:,

(A4)

where â and â† are field annihilation and creation operators,
respectively.

APPENDIX B: STANDARD AND GENERALIZED
CHSH INEQUALITIES

In this Appendix we analyze two issues related to CHSH
inequalities [17]. First, we refer to relations between the
general form (17) of Bell inequalities and their particu-
lar case—CHSH inequalities. Second, we analyze the test
function (29) in order to demonstrate its connection with a
generalization of CHSH inequalities.

The standard Bell-CHSH scenario is a particular case of the
scheme depicted in Fig. 1 with Ai, Bj taking two discrete val-
ues, say 0 and 1. We consider four CHSH inequalities indexed
by numbers m = a1, a2 and n = b1, b2. The corresponding
four test functions are given by

λmn(A, B, a, b) = (2δA,B − 1)(1 − 2δa,mδb,n). (B1)

In this case, the expected value (18) is given by

E (λmn|ai, b j )

= [1 − 2δai,mδb j ,n][P(same|ai, b j ) − P(different|ai, b j )],

(B2)

where

P(same|ai, b j ) = P(0, 0|ai, b j ) + P(1, 1|ai, b j ), (B3)

and

P(different|ai, b j ) = P(0, 1|ai, b j ) + P(1, 0|ai, b j ) (B4)

are probabilities to get the same and different values of A and
B, respectively. The right-hand side of Eq. (17) for this test
function,

sup
A,B

∑
i, j

λmn(Ai, Bj, ai, b j ) = 2. (B5)

This yields the set of four CHSH inequalities,

2∑
i, j=1

E (λmn|ai, b j ) � 2. (B6)

The other four inequalities can be obtained by changing the
sign of the chosen test function λmn(A, B, a, b).

In order to show the relation between standard and general-
ized CHSH inequalities, we rewrite the latter ones in terms of
dichotomized quadratures. Let us start with the test function
λ(1)(x, n|ϕ, γ ) from Eq. (29). The corresponding Bell inequal-
ity can be expressed as

P̃ (0, 0|ϕ1, γ1) − P̃ (0, 1|ϕ1, γ2)

− P̃ (0, 0|ϕ2, γ1) − P̃ (1, 0|ϕ2, γ2) � 0, (B7)

where

P̃ (x̃, n|ϕi, γ j ) =(1 − x̃)
∫

X (1)
i

dx P (x, n|ϕi, γ j )

+ x̃
∫
R\X (1)

i

dx P (x, n|ϕi, γ j ) (B8)

is the joint probability distribution of a dichotomized quadra-
ture x̃(ϕi ) ∈ {0, 1}, i = 1, 2, given by

x̃(ϕi ) = 1 − I
(
x; X (1)

i

)
(B9)

and n(γ ). In fact, Eq. (B7) is the CHSH inequality associated
with λa2b1 (A, B, a, b). One can verify this by expressing the
16 probabilities P (A, B|a, b) present in Eq. (B6) via eight
linearly independent ones, P (0, 0|a1, b1), P (0, 0|a1, b2),
P (0, 1|a1, b2), P (0, 0|a2, b1), P (1, 0|a2, b1), P (0, 0|a2, b2),
P (1, 0|a2, b2), P (0, 1|a2, b2):

P (0, 1|a1, b1) = P (0, 0|a1, b2) + P (0, 1|a1, b2)

− P (0, 0|a1, b1), (B10)

P (1, B|a1, b j ) = P (0, B|a2, b j ) + P (1, B|a2, b j )

− P (0, B|a1, b j ), (B11)

P (0, 1|a2, b1) = P (0, 0|a2, b2) + P (0, 1|a2, b2)

− P (0, 0|a2, b1), (B12)

P (1, 1|a2, b j ) = 1 − P (0, 0|a2, b2) − P (0, 1|a2, b2)

− P (1, 0|a2, b j ), (B13)

where B = 0, 1 and j = 1, 2. For the remaining test func-
tion λ(2)(A, B, a, b), one can similarly introduce dichotomized
quadrature by replacing X (1)

i with X (2)
i in Eq. (B9).

APPENDIX C: ASYMMETRIC BELL CORRELATIONS

In this Appendix we show that particular values of the
probability distributions w1(x1, n1, n2) and w2(x2, n1, n2), cf.
Eqs. (47), (48), and (49), are non-negative if the parameter
κ, defined by Eq. (46) belongs to the interval [0,1]. Without
loss of generality, let us consider w1(x, 1, 0). The restriction
w1(x, 1, 0) � 0 yields

P (x, 0|ϕ1, γ2) � w1(x, 0, 0). (C1)

Note that if κ ∈ [0, 1], then w1(x, 0, 0) ∈
[m(x, ϕ1), M(x, ϕ1)], since this function is a convex combina-
tion of the bounds of this interval. Equation (38) implies that
P (x, 0|ϕ1, γ2) � m(x, ϕ1). Therefore P (x, 0|ϕ1, γ2) is greater
than the upper bound of the interval to which w1(x, 0, 0)
belongs. Thus the condition from Eq. (C1) is satisfied.
Similarly, one can show that w1(x, 0, 1), w2(x, 1, 0), and
w2(x, 0, 1) are non-negative as well.

For w1(x, 1, 1) and w2(x, 1, 1), defined by Eq. (49), to be
non-negative, the inequality

wi(x, 0, 0) � P (x, 0|ϕi, γ1) + P (x, 0|ϕi, γ2) − P (x|ϕi )

(C2)
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must hold, where i = 1, 2. Considering that wi(x, 0, 0) ∈
[m(x, ϕi ), M(x, ϕi )] if κ ∈ [0, 1], the right-hand side of
Eq. (C2) is always greater than or equal to m(x, ϕi ), according
to Eq. (37).

APPENDIX D: BEHAVIOR FOR THE HYBRID
MEASUREMENT SCHEME WITH DETECTOR LOSSES

In this Appendix we introduce the explicit form for a par-
ticular value of the behavior (51) in the presence of detector
losses. It is given by

P (x, 0|ϕ, γ ) = 1√
πσ1σ3

exp

[
−σ2

σ1

(
Reγ e−iϕ + x

√
ηAηB

2

sinh 2r

σ2

)2
]

exp

[
− (Imγ e−iϕ )2

σ3

]
exp

[
− x2

σ2

]
, (D1)

where

σ1 = ηB cosh2 r + (1 − ηB)(1 + 2ηA sinh2 r), (D2)

σ2 = 1 + 2ηA sinh2 r, (D3)

σ3 = 1 + ηB sinh2 r, (D4)

and ηA and ηB are the detection efficiencies for balanced and
unbalanced homodyne detection, respectively. The marginal
distribution (32) in this case reads

P (x|ϕ) = 1√
πσ2

exp

[
− x2

σ2

]
. (D5)

Other values of the behavior do not appear in inequality (68).
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