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Single-photon sources based on asymmetric spatial multiplexing with optimized inputs
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We develop a statistical theory describing the operation of multiplexed single-photon sources equipped with
photon-number-resolving detectors that includes the potential use of different input mean photon numbers in each
of the multiplexed units. This theory accounts for all relevant loss mechanisms and allows for the maximization
of the single-photon probabilities under realistic conditions by optimizing the different input mean photon
numbers unit-wise and the detection strategy that can be defined in terms of actual detected photon numbers.
We apply this description to analyze periodic single-photon sources based on asymmetric spatial multiplexing
realized with general asymmetric routers. We show that optimizing the different input mean photon numbers
results in maximal single-photon probabilities higher than those achieved by using optimal identical input mean
photon numbers in this setup. We identify the parameter ranges of the system for which the enhancement in
the single-photon probability for the various detection strategies is relevant. An additional advantage of the
unit-wise optimization of the input mean photon numbers is that it can result in the decrease of the optimal
system size needed to maximize the single-photon probability. We find that the highest single-photon probability
that our scheme can achieve in principle when realized with state-of-the-art bulk optical elements is 0.935. This
is the highest one to our knowledge that has been reported thus far in the literature for experimentally realizable
single-photon sources.
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I. INTRODUCTION

Single-photon sources (SPS) are the key elements in nu-
merous applications in the field of quantum information
processing [1–14] and photonic quantum technology [15–19].
Heralded single-photon sources (HSPS) based on spontaneous
parametric down-conversion (SPDC) [20–27] and sponta-
neous four-wave mixing (SFWM) [28–31] are promising
candidates for realizing periodic SPS. In such sources the
detection of one member (called the idler) of a correlated
photon pair generated in these nonlinear processes heralds the
presence of its twin photon (termed as the signal).

Though HSPS can yield highly indistinguishable single
photons [21,23,24,32] that are required for applications, the
generation of photon pairs in such nonlinear sources is
probabilistic by nature posing a limit on the achievable single-
photon probability. To overcome the problem of multiphoton
events that occasionally occur in the pair generation, vari-
ous techniques of multiplexing, namely spatial multiplexing
[33–39] and time multiplexing [40–52] were proposed in the
literature. In multiplexed SPS, heralded photons generated in
a set of multiplexed units realized in time or in space are
rerouted to a single output mode by a switching network.
In order to suppress the multiphoton noise, the mean photon
number of the generated photon pairs should be kept low in
a multiplexed unit, while the use of several multiplexed units
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guarantees the high probability of successful heralding in all
the multiplexed units so that high single-photon probabilities
can be achieved.

In the case of time multiplexing, idler photons originating
from a nonlinear photon pair source are detected in well-
defined time slots within the planned time period. After a
successful detection event the heralded signal photons are
delayed to leave the system at the end of this period. The nec-
essary delay can be realized by using a binary division strategy
[42,43,51,52] or by a switchable optical storage cavity or loop
[40,41,46,49].

The idea of spatial multiplexing is based on using several
individual pulsed HSPS in parallel. After a detection event in
the idler arm of a photon pair source, a set of binary photon
routers (2-to-1) is used to direct the corresponding heralded
signal photons to a single output. The routers can be arranged
into a symmetric (binary tree) or asymmetric (chain) structure
[53,54].

Experimental realizations of spatial multiplexing have
been reported up to four multiplexed units by using SPDC
in bulk crystals [35,39] and waveguides [37], and by using
SFWM up to two multiplexed units in photonic crystal fibers
[36,38]. As of time multiplexing, delay-loop-based arrange-
ments have been realized up to four time slots in fiber-based
systems with SFWM [47,48]. SPS were realized in experi-
ments using optical storage cavities and SPDC sources via
large-scale time multiplexing up to 40 time slots [45,50].

In principle, the increase of the number of multiplexed
units and the simultaneous decrease of the mean photon
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number of the photon pairs in an ideal lossless multiplexed
system lead the single-photon probability to tend to one
asymptotically. This does not hold in real multiplexed systems
as the losses of the optical elements in both the heralding
stage and the multiplexing system limit the performance of
multiplexed SPS [53,54]. In order to analyze such systems, a
full statistical theory has been developed that takes all relevant
loss mechanisms into account [55–57]. Such a theory was
developed in Ref. [55] for the description and optimization
of both spatially and time-multiplexed systems using thresh-
old detectors. This theoretical framework was extended in
Ref. [56] to describe SPS based on combined spatial and
time multiplexing in a single setup [58–60]. The theory in
Ref. [55] was further generalized in Ref. [57] to cover the case
of multiplexed SPS operated with photon-number-resolving
detectors (PNRDs).

Using PNRDs in multiplexed SPS enables the application
of a broad range of detection strategies: detecting suitably
chosen sets of predefined number of photons in the idler arm
for which the generated signal photons are allowed to enter
the multiplexer. Allowing more than one photons to enter into
the multiplexing system can be advantageous for multiplexers
having higher losses, as it has been shown in Ref. [56]. Single-
photon detectors with photon-number-resolving capabilities
were already used in recent multiplexed periodic SPS experi-
ments [36,38,39,45,47,48,50] in order to avoid the occurrence
of multi-photon events at the heralding stage of these systems.
Meanwhile, various realizations of high-efficiency inherent
PNRDs have been developed including transition edge sensors
[61–69], quantum dot optically gated field-effect transistors
[70,71], superconducting nanowire detectors [72,73], and fast-
gated avalanche photodiodes [74,75]. This progress motivates
the development of theoretical frameworks for multiplexed
SPS equipped with PNRDs.

The significance of full statistical treatments is that they
make it possible to optimize SPS: to determine, for a given
set of loss parameters, the optimal system size and a mean
photon number of the photon pairs in the multiplexed units
for which the output single-photon probability is maximal. In
Ref. [57] the optimization results for SPS based on symmetric
spatial multiplexing realized with symmetric routers, binary
bulk time multiplexing, and storage loop time multiplexing
were presented; in all of these cases the results for either
single-photon detectors or threshold detectors were discussed.

In Ref. [53] an asymmetric architecture was proposed
for the spatially multiplexed SPS instead of the symmetric
structure discussed previously in the literature. In this archi-
tecture the constituent routers are arranged into a chain-like
structure instead of the binary-tree-like structure of the sym-
metric arrangement. A special property of these asymmetric
architectures is that the single-photon probability increases
with the increase of the number of routers, provided that
on multiple detection events the arm with the highest total
transmission coefficient is chosen. In this respect this struc-
ture is similar to the time multiplexing schemes based on
a switchable optical storage cavity or loop operated with
a similar logic. The idea of using increasing mean photon
numbers of photon pairs in the subsequent multiplexing units
instead of identical ones was also proposed in the cited pa-
per in order to compensate for the increasing losses, that is,

for the decreasing total transmission coefficients characteriz-
ing the subsequent arms in the chain structure. However, no
detailed analysis of the question was performed. Instead of
optimizing the mean photon numbers unit-wise, only a simple
scaling function was used to address this problem. Besides,
the analysis was restricted to SPS based on asymmetric spatial
multiplexing realized with symmetric routers and threshold
detectors.

In this paper we develop the statistical theory for mul-
tiplexed SPS equipped with PNRDs that incorporates the
use of different mean photon numbers of the photon pairs
at the different multiplexed units. This theory, which is a
generalization of the previous statistical model introduced in
Ref. [57], includes all relevant loss mechanisms and allows
for the maximization of the single-photon probabilities under
realistic conditions by optimizing the different mean photon
numbers unit-wise. We apply our description to analyze SPS
based on general asymmetric spatial multiplexing realized
with asymmetric routers and PNRDs. As an appropriate tool
to determine the optimal different mean photon numbers at the
different multiplexed units, we apply a genetic algorithm. We
show that, in principle, this scheme can produce the highest
single-photon probability when realized with state-of-the-art
bulk optical elements.

This paper is organized as follows: in Sec. II we describe
the system realizing asymmetric spatial multiplexing with
asymmetric routers. In Sec. III we introduce the theoreti-
cal framework for multiplexed SPS equipped with PNRDs
incorporating the use of different mean photon numbers at
the different multiplexed units that can be applied to per-
form the optimization and analysis of such systems. The
results of the optimization for asymmetric spatial multiplexing
are presented in Sec. IV. Finally, conclusions are drawn in
Sec. V.

II. ASYMMETRIC SPATIAL MULTIPLEXING

The idea of asymmetric spatial multiplexing is to reroute
heralded photons generated in a set of multiplexed units by
a chained architecture of photon routers [53]. The schematics
of this multiplexing is presented in Fig. 1(a). In the figure the
MUi’s (i = 1, . . . , N) denote multiplexed units. Each of them
contains a nonlinear photon pair source, a detector placed in
the path of the idler mode and a delay line optionally placed
in the path of the signal mode of the source. The delay line
can be needed to ensure enough time for the operation of the
necessary control logic governing the routers. A signal photon
of a pair generated by a nonlinear source in a multiplexed unit
is allowed to enter the multiplexer provided that its twin, the
idler photon, is detected. The idler photon can be detected
either with a threshold detector, a single-photon detector, or,
generally, a photon-number-resolving detector (PNRD) with
arbitrary detection strategy. The periodicity of this single-
photon source is ensured by pulsed pumping of the nonlinear
photon pair sources.

In the studied setup the N − 1 photon routers (PRs) form-
ing the asymmetric spatial multiplexer are assumed to be
identical. The binary routers used in spatial multiplexers are
usually considered to be symmetric, but it is not necessar-
ily the case. Hence we consider general, asymmetric routers

063721-2



SINGLE-PHOTON SOURCES BASED ON ASYMMETRIC … PHYSICAL REVIEW A 105, 063721 (2022)

MU1 MU2 MU3 MUN−1 MUN

PR1

PR2

PR3

PRN−1

out

(a)

PRi

PBS PBS

PC PC

Input1 Input2

Next Level

(b)

Control Signal

VrVt

FIG. 1. (a) Schematic figure of a periodic single-photon source based on asymmetric spatial multiplexing. MUis denote multiplexed units
and PRis denote 2-to-1 photon routers. (b) Scheme of the bulk optical photon routers PRi. PCs denote Pockels cells, PBSs denote polarizing
beam splitters. Vt and Vr denote transmission coefficients that characterize the losses for Input1 and Input2, respectively.

in our analysis. One possible bulk optical realization of an
asymmetric router is presented in Fig. 1(b). This router has
two input ports, a single output, and it contains two Pockels
cells (PCs) and two polarizing beam splitters (PBSs). As the
signal photons are generated with a known polarization, a
priority logic can control the PCs so that a single input mode
reaches the output of the router. The chosen mode is selected
by the PBSs according to the polarization set by the control
logic via the PCs. If signal photons are heralded in more
than one multiplexed units, a reasonable choice for the control
logic is to direct photons to the output from the multiplexed
unit having the smallest loss, that is, from the one closest to
the output of the multiplexer. In the arrangement presented in
Fig. 1(a) this is the unit with the smallest index.

The operation of an asymmetric router can be characterized
with two transmission coefficients Vt and Vr corresponding
to the transmissions of the photons entering the router at
Input1 and Input2, respectively. In the case of the bulk optical
asymmetric router presented in Fig. 1(b) the transmission Vt

quantifies the losses due to the transmission through a PC
and a PBS and the possible propagation loss in the router.
The transmission Vr describes the losses introduced by the
transmission through a PC and the two reflections in the PBSs,
and the possible propagation loss in the router. We refer to
the coefficients Vt and Vr as the transmission and reflection
efficiencies, respectively, in what follows.

The total transmission probability Vn of the nth arm of the
asymmetric spatial multiplexer built from the proposed bulk
optical asymmetric routers reads

Vn = VbVtV
n−1

r if n < N,

Vn = VbV
n−1

r if n = N,
(1)

where N is the number of multiplexed units. The parame-
ter Vb is a general transmission coefficient characterizing all
the losses experienced by the heralded photons while they
propagate to the input of the multiplexer, such as the losses
of the involved passive optical elements. The presented spa-
tially multiplexed SPS can be operated assuming identical
values of the mean number of the generated photon pairs λ

in each of the multiplexed units. Choosing different mean
photon numbers λn in each of the multiplexed units as it has
been suggested in Ref. [53] is, however, a reasonable way to
compensate for the effect of the different total transmission
efficiencies Vn of the subsequent arms of the multiplexer. The
use of different mean photon numbers can be implemented
in experiments by the proper adjustment of the pumps of
the nonlinear photon pair sources in each of the multiplexed
units.

III. STATISTICAL FRAMEWORK

In Ref. [57] we have introduced a full statistical framework
capable of describing spatially or time-multiplexed periodic
SPS equipped with PNRDs. In the following we generalize
this framework to incorporate the possibility of using dif-
ferent mean photon numbers λn in each of the multiplexed
units.

Let us consider a single-photon source containing N mul-
tiplexed units. Assume that the nonlinear source in the nth
multiplexed unit generates l photon pairs and the detection of
a predefined number of photons j ( j � l) by a PNRD during
a heralding event causes the opening of the corresponding
input port of the multiplexer. Under these assumptions one
can express the probability that the output of the multiplexer

063721-3



ADAM, BODOG, KONIORCZYK, AND MECHLER PHYSICAL REVIEW A 105, 063721 (2022)

is reached by i signal photons as

P(S)
i =

N∏
k=1

[
1 −

∑
j∈S

P(D)
k ( j)

]
δi,0 +

N∑
n=1

{
n−1∏
k=1

[
1 −

∑
j∈S

P(D)
k ( j)

](1−δ1,n ) ∞∑
l=i

∑
j∈S

P(D)( j|l )P(λn )
n (l )Vn(i|l )

}
. (2)

In this formula the probability of detecting exactly j pho-
tons in the nth multiplexed unit is denoted by P(D)

n ( j), while
P(D)( j|l ) stands for the conditional probability of registering
j photons provided that l photons arrive at the detector, and
P(λn )

n (l ) denotes the probability of generating l photon pairs
in the nth multiplexed unit when the mean photon number
of the generated photon pairs is λn in that unit. Vn(i|l ) is
the conditional probability of the event that the output of the
multiplexer is reached by i photons provided that the number
of signal photons arriving from the nth multiplexed unit into
the system is l .

Equation (2) contains a summation over the elements of the
set S: this set comprises the predetermined number of detected
photons in a single multiplexed unit for which the generated
signal photons are allowed to enter the multiplexer. Therefore
this set describes the application of an optional detection strat-
egy that can be realized only by PNRDs. The set S can contain
any combination of the elements of the set of positive integers
Z+ up to a predefined value Jb determined by the applied
PNRD. This number corresponds to the maximum number of
detected photons that can be distinguished by the detector. The
case S = Z+ corresponds to ignoring the number of detected
photons when the PNRD actually acts as a threshold detector.
When the mean photon numbers λn are chosen to be the same
for all the multiplexed units (that is, λn = λ) Eq. (2) reduces
to the respective formula of Ref. [57].

Equation (2) comprises two terms. The first term corre-
sponds to the case when the photon number registered by
the detectors in the multiplexed system is not in the set S.
As in this case no photon enters the multiplexed system, this
term contributes to the probability P(S)

0 only, describing the
case in which no photon reaches the output. The second term
describes the case when, even though there are l photons
entering the multiplexer from the n-th multiplexed unit after
heralding, only i of these reach the output due to the losses of
the multiplexer. In this second term the product expresses the
fact that no photon arrives in the first n − 1 multiplexed units.

Assuming that the PNRD has a detector efficiency VD, the
conditional probability P(D)( j|l ) describing the case when the
detector detects j out of l photons ( j � l) in a multiplexed
unit in the second term of Eq. (2) reads

P(D)( j|l ) =
(

l

j

)
V j

D (1 − VD)l− j . (3)

Then the total probability P(D)
n ( j) of detecting j photons in the

nth multiplexed unit can be written as

P(D)
n ( j) =

∞∑
l= j

P(D)( j|l )P(λn )
n (l ). (4)

We note that beside the finite detector efficiency VD our
analysis does not take into account other possible detector
imperfections such as dark counts and the miscategorization

of the actual photon count values of PNRDs. This does not
pose any significant limitation against the realistic nature of
our model; consult Ref. [57] for a detailed justification.

We assume that the probability distribution of pair genera-
tion P(λn )

n (l ) is Poissonian, that is,

P(λn )
n (l ) = λl

ne−λn

l!
, (5)

where λn is the mean photon number of the photon pairs
generated in the nth multiplexed unit. This quantity is the
input of the heralding process, therefore we use the term
input mean photon number to refer to it in the following. The
number of the generated photon pairs follows this statistics
in the case of multimode SPDC or SFWM processes, that
is, when weaker spectral filtering is applied in the system
[36,39,76–80]. This assumption on the distribution enables us
to compare the results with those presented in a significant
part of the experimental and theoretical literature related to
SPS, which were also achieved by considering the Poissonian
distribution [34,35,41,42,52,53,55,56]. We note that Eq. (2)
remains valid for any input distributions such as thermal distri-
bution that occurs for photon pairs produced in single-mode,
that is, spectrally narrow-filtered, SPDC or SFWM processes
[36,39,76–80]. The actual photon distribution of photon pair
generation can be straightforwardly derived from the entan-
gled two-mode output state of these systems [77].

The conditional probability Vn(i|l ) of the event that i signal
photons reach the output of the multiplexer given that l signal
photons enter the multiplexer at the nth multiplexed unit can
be calculated as

Vn(i|l ) =
(

l

i

)
V i

n (1 − Vn)l−i, (6)

where Vn is the total probability of transmission of the nth
arm of the multiplexer. For the considered setup of Fig. 1 Vn

is defined in Eq. (1).
A quantity widely used for characterizing the performance

of single-photon sources is the normalized second-order au-
tocorrelation function g(2)(0) of the generated field. This
quantity measures the multiphoton components of the output
state with respect to the single-photon component. Knowing
the output probability P(S)

i defined in Eq. (2) for all photon
numbers i, the second-order autocorrelation function can be
calculated as [59]

g(2)(0) =
∑∞

i=2 Pii(i − 1)( ∑∞
i=1 Pii

)2 . (7)

Finally, we remark that the statistical model in Eq. (2)
can describe both spatial and time multiplexing with differ-
ent input mean photon numbers of the photon pairs in the
multiplexed units, though in the case of time multiplexers the
realization of such an input is not trivial.
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IV. OPTIMIZED SPS BASED ON ASYMMETRIC
SPATIAL MULTIPLEXING

In this section we present our results regarding the opti-
mization of the SPS based on asymmetric spatial multiplexing
described in Sec. II. Our aim is to analyze the system for ex-
perimentally feasible loss parameters. Accordingly, the upper
boundaries of the considered ranges of the loss parameters in
our model are determined by assuming optical elements in the
system with the best parameters available with state-of-the-art
technology. Polarizing beam splitters with 99.9% reflectivity
for S-polarized light and 99.3% transmittivity for P-polarized
light were already used in Ref. [81]. Pockels cells with 99.2%
transmission were reported in Ref. [50]. Taking into account
these parameters and that the propagation losses in the bulk
optical router in Fig. 1(b) can be very low, the highest values
of the reflection and transmission efficiencies of the router are
chosen to be Vr = 0.99 and Vt = 0.985, respectively. Detector
efficiencies as high as VD = 0.98 have already been reported
with almost ideal photon number discrimination at low photon
numbers using transition edge sensors in the near-infrared
regime [67]. The general transmission coefficient Vb strongly
depends on actual experimental realization of the system; we
assume the value of Vb = 0.98 for its highest feasible value.
The lower boundaries of the ranges of the loss parameters
are chosen so that the characteristic behavior of the system
can be revealed, hence we set the lower boundaries for the
coefficients Vr , VD, and Vb to 0.8. Let us note that in the
proposed setup the total transmission coefficient Vn does not
scale with the transmission efficiency Vt , its role in the first
n − 1 terms is similar to the role of the general transmission
coefficient Vb. For this reason, we fix its value to be Vt = 0.985
in all calculations.

The optimization procedure within the statistical frame-
work presented in Sec. III can be accomplished in the
following way. We fix the reflection and transmission efficien-
cies Vr and Vt , the general transmission coefficient Vb, and
the detector efficiency VD. We fix the detection strategy by
defining the set S as well. We consider sets which contain
numbers from 1 up to J � Jb. Thus the maximum accepted
photon number J exactly defines the set S.

The next step is to determine the different optimal in-
put mean photon numbers λn,opt for each of the sequential
numbers n identifying the multiplexed units up to an over-
all number of multiplexed units N that yields the highest
single-photon probability PS,λn

1,N achievable for the given N
adopting the detection strategy defined by S. This proce-
dure must be performed from N = 1 up to a high enough
value whose choice will be clarified in detail later. This
task can be accomplished by using a genetic algorithm
[82,83].

A genetic algorithm is a randomized search algorithm that
can be used for solving both constrained and unconstrained
optimization problems [82]. In this multistep method to ev-
ery step (or generation) a number of random points (called
population) are assigned in the parameter space and a set
of the best values of the objective function (also termed the
fitness function) are selected around which a new population
is chosen. This procedure is repeated until a certain constraint
is fulfilled.

In our optimization procedure the objective function is
the single-photon output probability P1 while the variables of
the optimization are the input mean photon numbers λn in the
multiplexed units. The parameters of the optimization such as
the number of generations, the populations, and the function
tolerance are chosen appropriately to yield a reproducible and
stable solution.

As it will be shown later, in the considered SPS the
achievable single-photon probabilities PS,λn

1,N for any detection
strategy S are monotonically increasing functions of the num-
ber of multiplexed units N and they saturate with the increase
of the number of multiplexed units. Therefore, in order to
determine a reasonable value of the optimal number of mul-
tiplexed units Nopt we first choose a reference value for the
maximal single-photon probability PS,λn

1,Nref
calculated at a high

number of multiplexed units Nref. We have found that for the
choice of Nref = 100 the single-photon probability practically
saturates, that is, it reaches its maximum in all our considered
cases. Then we choose the value of Nopt to be equal to the
smallest N so that the difference between the corresponding
single-photon probability PS,λn

1,Nopt
and the reference probability

PS,λn
1,Nref

becomes less than 10−3. In the following, instead of

PS,λn
1,Nopt

, we will use the notation PS,λn
1,max because this value is the

maximal single-photon probability that can be achieved by the
given system using Nopt multiplexed units and it is practically
equal to the saturated single-photon probability.

First, we analyze the case when single-photon detection
(SPD) is used for the heralding of the signal photons in
the multiplexed units for all the considered ranges of the
parameters Vr , VD, and Vb. Next we repeat the optimization
procedure for the detection strategy S = {1, 2}, that is, when
the maximum accepted photon number is J = 2. We increase
the value of J until the maximal single-photon probability
with the current detection strategy becomes less than the
maximal single-photon probability achieved with the previous
one. We also perform the optimization assuming threshold
detection (ThD), that is, for S = Z+. In addition, we deter-
mine the maximal single-photon probabilities PS,λ

1,max that can
be achieved in SPS with all the considered detection strategies
assuming identical input mean photon numbers λn = λopt for
each of the multiplexed units in order to clarify the advantage
of optimizing the input mean photon numbers unit-wise.

In Fig. 2(a) we have plotted the achievable single-photon
probabilities P1,N as a function of the number of multiplexed
units N for the SPD and ThD strategies assuming different and
identical optimal input mean photon numbers λn,opt and λopt,
respectively, for each of the multiplexed units for the reflec-
tion efficiency Vr = 0.99, the general transmission coefficient
Vb = 0.98, and the detector efficiency VD = 0.9. From the
figure one can deduce that the achievable single-photon proba-
bility P1,N saturates with the increasing number of multiplexed
units N , as we already noted. The figure shows that regarding
the achievable maximal single-photon probability P1,N SPD
outperforms the ThD strategy for all considered values of
the number of multiplexed units N . As it can be expected,
using different optimal input mean photon numbers λn,opt for
each of the multiplexed units results in higher achievable
single-photon probabilities P1,N compared to the case of using
identical optimal input mean photon numbers λopt unit-wise
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FIG. 2. (a) Achievable single-photon probabilities P1,N as a function of the number of multiplexed units N for the SPD and ThD strategies
assuming different and identical optimal input mean photon numbers λn,opt and λopt, respectively, for each of the multiplexed units for the
reflection efficiency Vr = 0.99, the general transmission coefficient Vb = 0.98, and the detector efficiency VD = 0.9. (b) Optimal input mean
photon numbers λn,opt as a function of the sequential number n of the multiplexed units for the considered detection strategies up to the
corresponding optimal numbers of multiplexed units Nopt and for the parameters of Fig. 2(a). The values of the identical optimal input mean
photon numbers λSPD

opt and λThD
opt are indicated by horizontal lines up to the optimal numbers of multiplexed units Nopt.

for the considered detection strategies. The enhancement that
can be observed is significant only in the case of the ThD
strategy, for SPD the increase is moderate.

The optimal input mean photon numbers λn,opt are pre-
sented in Fig. 2(b) as a function of the sequential number n
of the multiplexed units, for the considered detection strate-
gies, up to the corresponding optimal numbers of multiplexed
units. The values of the optimal input mean photon numbers
λSPD

opt and λThD
opt under the assumption of being identical for

all the units are indicated by continuous and dashed lines,
respectively, up to the optimal numbers of multiplexed units.
From the data plotted in Fig. 2(b) one can conclude that
with increasing sequential number n, i.e., increasing losses the
optimal input mean photon numbers λn,opt also increase. For
the first few multiplexed units the optimal input mean photon
numbers λn,opt remain below the value λopt (i.e. the optimal
one assuming all λ’s are identical). For higher sequential num-
bers n, however, there are higher input mean photon numbers
that compensate for higher losses, in case of all the considered
strategies.

In Fig. 3(a) we have plotted the difference �
SPD,λn,λ
P =

PSPD,λn
1,max − PSPD,λ

1,max between the maximal single-photon prob-
abilities for the SPD strategy obtained by assuming both
different and identical optimal input mean photon numbers
λn,opt and λopt, respectively, in each of the multiplexed units,
as a function of the detector efficiency VD and the reflection
efficiency Vr for the general transmission coefficient Vb =
0.98. With the decrease of the detector efficiency VD and
the reflection efficiency Vr the difference �

SPD,λn,λ
P increases.

This effect can be intuitively explained as follows. Even in
the case of the SPD strategy the decrease of the detector
efficiency VD leads to an increase in the probability of more
than one photons entering the multiplexer. This can be ad-
vantageous in the case of higher losses, that is, multiplexed

units with higher sequential numbers n and in systems with
lower reflection efficiencies Vr . This advantage can be fully
exploited by optimizing the input mean photon numbers λn

for each of the multiplexed units separately. In the considered
parameter ranges of the reflection and detector efficiencies Vr

and VD, respectively, the largest difference was found to be
�

SPD,λn,λ
P � 0.006 at Vr = 0.8 and VD = 0.8, that is, for the

lowest values of the reflection and detector efficiencies of the
considered ranges.

In Fig. 3(b) we have plotted the corresponding difference
�

ThD,λn,λ
P = PThD,λn

1,max − PThD,λ
1,max of the maximal single-photon

probabilities for the ThD strategy. The difference �
ThD,λn,λ
P ,

that is, the enhancement in the maximal single-photon prob-
abilities PThD

1,max using different optimal input mean photon
numbers λn,opt instead of identical ones λopt for each of the
multiplexed units is always higher than the corresponding
difference �

SPD,λn,λ
P for SPD strategy for the whole parameter

ranges of the reflection and detection efficiencies Vr and VD,
respectively. In the range 0.8 � VD � 0.98 and 0.8 � Vr �
0.86 the enhancement is above 1%, the highest enhancement
is �

ThD,λn,λ
P = 0.0225 at Vr = 0.8 and VD = 0.8.

Let us now address the question of the optimal choice
of the detection strategy. As an example illustrating the role
of the strategy, in Fig. 4(a) we have plotted the achiev-
able single-photon probabilities P1,N as a function of the
number of multiplexed units N for the SPD and S = {1, 2}
detection strategies assuming different and identical optimal
input mean photon numbers λn,opt and λopt, respectively, for
each of the multiplexed units. The reflection efficiency is
Vr = 0.8, the general transmission coefficient is Vb = 0.8, and
the detector efficiency is VD = 0.85 here, which are smaller
than those used in Fig. 2. Obviously, the achievable single-
photon probabilities P1,N obtained with this set of parameters
are also smaller than the values presented in Fig. 2. In the
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FIG. 3. (a) The difference �SPD,λn,λ
P = PSPD,λn

1,max − PSPD,λ
1,max between the maximal single-photon probabilities for the SPD strategy obtained

by assuming different and identical optimal input mean photon numbers λn,opt and λopt, respectively, in each of the multiplexed units, as a
function of the detector efficiency VD and the reflection efficiency Vr for the general transmission coefficient Vb = 0.98. (b) The corresponding
difference �ThD,λn,λ

P = PThD,λn,

1,max − PThD,λ
1,max between the maximal single-photon probabilities for ThD as a function of the detector efficiency VD

and the reflection efficiency Vr for the general transmission coefficient Vb = 0.98.

presented case the values of the achievable single-photon
probabilities PS={1,2},λn

1,N for the detection strategy S = {1, 2}
obtained at different optimal input mean photon numbers
λn,opt are the highest. From Fig. 4(a) one can also deduce
that in the case of the S = {1, 2} detection strategy larger
enhancements can be achieved in the maximal single-photon
probabilities by the unit-wise optimization of the input mean
photon numbers λn than the enhancements achievable for the
SPD strategy.

Interestingly, for the number of multiplexed units N < 7
the single-photon probabilities PS={1,2},λ

1,N achievable by ap-

plying the S = {1, 2} detection strategy and using identical
optimal input mean photon numbers λopt in each of the multi-
plexed units is also higher than the corresponding probabilities
PSPD,λ

1,N or PSPD,λn
1,N achievable by applying the SPD strategy

with either identical or different input mean photon numbers,
respectively. However, above this value (N � 7) the relation-
ship between these quantities is reversed, that is, PSPD,λ

1,N >

PS={1,2},λ
1,N and PSPD,λn

1,N > PS={1,2},λ
1,N . In brief, given a number

of multiplexed units, the choice of the optimal strategy can
depend on whether the input photon numbers are identical or
different.

FIG. 4. (a) The achievable single-photon probabilities P1,N as a function of the number of multiplexed units N for the SPD and S = {1, 2}
detection strategies assuming different and identical optimal input mean photon numbers λn,opt and λopt, respectively, for each of the multiplexed
units for the reflection efficiency Vr = 0.8, the general transmission coefficient Vb = 0.8, and the detector efficiency VD = 0.85. (b) Optimal
input mean photon numbers λn,opt as a function of the sequential number n of the multiplexed units for the considered detection strategies up
to the corresponding optimal numbers of multiplexed units and for the parameters of Fig. 4(a). The values of the identical optimal input mean
photon numbers λSPD

opt and λ
S={1,2}
opt are indicated by horizontal lines up to the optimal numbers of multiplexed units.
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FIG. 5. The difference �S,λn
P = PS={1,2},λn

1,max − PSPD,λn
1,max between the

maximal single-photon probabilities obtained by assuming different
optimal input mean photon numbers λn,opt in each of the multiplexed
units with two types of detection strategies: for those defined by
the set S = {1, 2} and for SPD, as a function of the detector effi-
ciency VD and the reflection efficiency Vr for the general transmission
coefficient Vb = 0.8. Below the dashed line the detection strategy
S = {1, 2} outperforms the SPD strategy.

In Fig. 4(b) we present the optimal input mean photon
numbers λn,opt as a function of the sequential number n of the
multiplexed units for the considered detection strategies up to
the corresponding optimal numbers of multiplexed units and
for the parameters of Fig. 4(a). The values of the identical
optimal input mean photon numbers λSPD

opt and λ
S={1,2}
opt are

indicated by horizontal lines up to the optimal numbers of
multiplexed units. An interesting feature of the values of the
input mean photon numbers λn,opt is that, in contrast to the
similar curve presented in Fig. 2(b), in this case a well-defined
peak (maximum) can be observed at n = 6 for the strategy
S = {1, 2}, and at n = 8 for SPD. A plausible explanation for
this behavior is that for high values of the sequential numbers
n the total transmission coefficient Vn of the nth multiplexed
unit is so low that it is more advantageous to decrease the
probability of the detection events for units with high se-
quential numbers n, thus suppressing their participation in the
multiplexing process.

After analyzing in detail a case where the detection strat-
egy S = {1, 2} outperforms the SPD strategy, in Fig. 5 we
show the difference �

S,λn
P = PS={1,2},λn

1,max − PSPD,λn
1,max between the

maximal single-photon probabilities obtained by assuming
different optimal input mean photon numbers λn,opt in each
of the multiplexed units with the given detection strategies
as a function of the detector efficiency VD and the reflection
efficiency Vr for the general transmission coefficient Vb = 0.8.
Below the dashed line in the figure the detection strategy
S = {1, 2} outperforms the SPD strategy. At the reflection
efficiency Vr = 0.8 the difference is �

S,λn
P > 0.005 for the

whole range of VD, and the highest difference is �
S,λn
P = 0.007

at VD = 0.8. When analyzing the effect of the general trans-
mission coefficient Vb we have found that as we replot the
figure with an increased value of Vb, the dashed line in the
figure gets shifted towards the horizontal axis, that is, towards

smaller values of Vr . As we reach the value Vb = 0.837 there
are no more points left in the figure for which �

S,λn
P � 0. This

implies that for values of the general transmission coefficient
Vb > 0.837 SPD is the optimal detection strategy. We note
that over the considered ranges of the parameters Vr , VD, and
Vb there are no cases where the detection strategy defined
by the set S = {1, 2, 3} would lead to higher single-photon
probabilities than the ones that can be obtained by using either
the SPD or the S = {1, 2} detection strategies.

Let us now assess the performance of our scheme in more
detail. In Table I we have presented the maximal single-
photon probabilities PSPD,λn

1,max for the SPD strategy obtained
at different optimal input mean photon numbers λSPD

n,opt, and

the required number of multiplexed units NSPD,λn
opt for various

values of the general transmission coefficient Vb, the detector
efficiency VD, and the reflection efficiency Vr . We have also
displayed the optimal number of multiplexed units NSPD,λ

opt re-

quired to achieve maximal single-photon probabilities PSPD,λ
1,max

obtained at identical optimal input mean photon numbers
λSPD

opt , and the optimal input mean photon numbers λSPD
opt at

which these probabilities can be achieved. The second-order
autocorrelation function g(2)(0) defined in Eq. (7) quantifying
the multiphoton components of the output state with respect
to the single-photon component is also presented in the table.
The value of this quantity is equal to zero for an ideal single-
photon source.

From the data in Table I one can deduce that the highest
single-photon probability PSPD,λn

1,max that can be achieved by SPS
based on asymmetric spatial multiplexing using SPD strategy
obtained at different optimal input mean photon numbers
λSPD

n,opt is PSPD,λn
1,max = 0.935. This single-photon probability is,

to our knowledge, the highest one reported in the literature
that, in principle, can be produced by multiplexed SPS using
state-of-the-art experimental parameters. It can be achieved at
the best experimentally realizable parameter values that are
the reflection efficiency Vr = 0.99, the general transmission
coefficient Vb = 0.98, and the detector efficiency VD = 0.98.
We note that the single-photon probabilities shown in the
table are higher than the ones reported for isolated quan-
tum emitter-based single-photon sources [1]. Among these
systems the most promising ones seem to be those based
on quantum dots for which the highest overall single-photon
probability communicated to date is 0.57 [84,85]. From the
data presented in Table I one can also conclude that the values
of the second-order autocorrelation function g(2)(0) are quite
low. The obtained smallest values appearing for low losses
and high detector efficiencies correspond to the best values
achieved in single-photon source experiments thus far [1].

In order to better understand the operation of the proposed
scheme, let us discuss the behavior of the optimized param-
eters of the system. Table I shows that the optimal numbers
of multiplexed units NSPD,λn

opt and NSPD,λ
opt increase by increas-

ing the values of the general transmission coefficient Vb or
the reflection efficiency Vr , while an increase in the detector
efficiency VD leads to a decrease in them. This property is not
unexpected because in the case of smaller losses, that is, for
higher transmissions, larger optimal multiplexed system sizes
can be used to increase the maximal single-photon probability.
However, if the detector efficiency VD increases, that is, the
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TABLE I. Maximal single-photon probabilities PSPD,λn
1,max and the second-order autocorrelation function (g(2)(0))SPD,λn for the SPD strategy

obtained at different optimal input mean photon numbers λSPD
n,opt and the optimal number of multiplexed units NSPD,λn

opt for various values of
the general transmission coefficient Vb, the detector efficiency VD, and the reflection efficiency Vr . The optimal number of multiplexed units
NSPD,λ

opt required to achieve maximal single-photon probabilities PSPD,λ
1,max obtained at identical optimal input mean photon numbers λSPD

opt and the
optimal identical input mean photon numbers λSPD

opt at which these probabilities can be achieved are also displayed. The notations “SPD” of the
quantities are omitted.

Vb = 0.8 Vb = 0.9 Vb = 0.98

Vr VD Pλn
1,max Nλn

opt Nλ
opt λopt (g(2)(0))λn Pλn

1,max Nλn
opt Nλ

opt λopt (g(2)(0))λn Pλn
1,max Nλn

opt Nλ
opt λopt (g(2)(0))λn

0.90 0.80 0.622 13 13 0.859 0.153 0.681 13 14 0.771 0.141 0.728 13 14 0.717 0.133
0.90 0.85 0.634 12 13 0.891 0.123 0.698 13 13 0.815 0.114 0.749 13 13 0.765 0.109
0.90 0.90 0.646 12 12 0.929 0.088 0.716 12 13 0.868 0.084 0.771 13 13 0.826 0.080
0.90 0.92 0.651 12 12 0.943 0.073 0.723 12 13 0.892 0.070 0.781 13 13 0.856 0.067
0.90 0.94 0.656 12 12 0.958 0.056 0.731 12 12 0.919 0.054 0.790 12 13 0.888 0.053
0.90 0.96 0.661 12 12 0.973 0.039 0.739 12 12 0.945 0.038 0.801 12 13 0.923 0.037
0.90 0.98 0.666 12 12 0.987 0.020 0.747 12 12 0.973 0.020 0.811 12 12 0.962 0.020

0.95 0.80 0.670 15 16 0.671 0.121 0.737 15 17 0.592 0.110 0.790 16 18 0.543 0.102
0.95 0.85 0.682 14 15 0.722 0.100 0.754 15 16 0.643 0.091 0.810 15 17 0.593 0.085
0.95 0.90 0.695 14 14 0.793 0.075 0.771 14 15 0.719 0.069 0.832 15 16 0.670 0.065
0.95 0.92 0.700 14 14 0.825 0.063 0.779 14 15 0.757 0.058 0.841 14 15 0.714 0.055
0.95 0.94 0.706 14 14 0.862 0.050 0.787 14 14 0.807 0.047 0.851 14 15 0.764 0.045
0.95 0.96 0.712 13 14 0.904 0.035 0.796 14 14 0.861 0.034 0.863 14 14 0.830 0.033
0.95 0.98 0.718 13 13 0.952 0.019 0.806 14 14 0.926 0.018 0.875 14 14 0.907 0.018

0.99 0.80 0.732 23 28 0.344 0.065 0.814 25 32 0.295 0.057 0.880 28 35 0.267 0.051
0.99 0.85 0.739 20 25 0.383 0.055 0.824 23 28 0.331 0.048 0.892 25 31 0.298 0.043
0.99 0.90 0.748 18 21 0.455 0.044 0.836 20 24 0.391 0.038 0.905 21 26 0.355 0.035
0.99 0.92 0.752 18 20 0.494 0.038 0.841 19 22 0.431 0.033 0.911 20 24 0.391 0.031
0.99 0.94 0.756 17 18 0.558 0.032 0.846 18 20 0.486 0.028 0.918 19 22 0.440 0.026
0.99 0.96 0.761 16 17 0.637 0.024 0.853 17 18 0.570 0.022 0.925 17 19 0.526 0.021
0.99 0.98 0.767 15 15 0.781 0.015 0.860 16 16 0.714 0.014 0.935 16 17 0.667 0.013

probability that the detectors select the single-photon events
correctly increases, then the detectors are sufficient them-
selves to exclude the multi-photon events, thus suppressing
these events via decreasing the intensity and increasing the
system size becomes less crucial.

Table I also shows that the optimal numbers of multiplexed
units NSPD,λn

opt obtained at different optimal input mean photon
numbers λn,opt are less than or equal to the corresponding
quantity NSPD,λ

opt obtained at identical optimal input mean pho-

ton numbers λopt, that is, NSPD,λn
opt � NSPD,λ

opt . This observation
is in accordance with the findings related to Figs. 2(b) and
4(b). Hence, the unit-wise optimization of the input mean
photon numbers can result in the decrease of the optimal
system size needed to maximize the single-photon probability.
This can be an advantage in an experimental realization of
the system. Larger differences between the optimal system
sizes occur for smaller values of the detector efficiency VD and
for larger values of the reflection efficiency Vr . The potential
decrease of the system size justifies the application of this kind
of optimization, in spite of not resulting in dramatic improve-
ment in the achievable maximal single-photon probability for
the SPD strategy.

Concerning the optimal identical input mean photon num-
ber λSPD

opt , with the increase of the value of either the
reflection efficiency Vr or the general transmission coefficient
Vb the value of λSPD

opt decreases while its value increases with

increasing the detector efficiency VD. Intuitively, in the case of
fewer multiplexed units NSPD,λ

opt increasing the optimal input
mean photon number λSPD

opt guarantees that at least one herald-
ing event occurs in the whole multiplexed system.

Let us also address the advantage that can be achieved by
the unit-wise optimization of the input mean photon num-
bers λn in the case of suboptimal numbers of multiplexed
units N . This is the typical situation in the experiments re-
alized so far [35–39]. To address this question, in Fig. 6(a)
we have plotted the difference �

SPD,λn,λ
P = PSPD,λn

1,N − PSPD,λ
1,N

between the achievable single-photon probabilities for SPD
obtained by assuming different and identical optimal input
mean photon numbers λn,opt and λopt, respectively, in each of
the multiplexed units, as a function of the number of mul-
tiplexed units N for the reflection efficiency Vr = 0.99 and
the detector efficiency VD = 0.8 in the case of three different
general transmission coefficients Vb. The figure shows that
for these parameters the enhancements �

SPD,λn,λ
P depending

on the number of multiplexed units N have maxima that in-
crease with increasing the values of the general transmission
coefficient Vb and the locations of the peaks for Vb = 0.8 and
Vb = 0.9 are at N = 10 while for Vb = 0.98 it is at N = 11.
At this number of multiplexed units the achievable single-
photon probability is PSPD,λn

1,N=11 = 0.846. For Vb = 0.98 the

enhancement is �
SPD,λn,λ
P � 0.01 for the range 9 � N � 13.

Hence, though the enhancement in the maximal single-photon

063721-9



ADAM, BODOG, KONIORCZYK, AND MECHLER PHYSICAL REVIEW A 105, 063721 (2022)

FIG. 6. (a) The difference �SPD,λn,λ
P = PSPD,λn

1,N − PSPD,λ
1,N between the achievable single-photon probabilities for SPD obtained by assuming

different and identical optimal input mean photon numbers λn,opt and λopt, respectively, in each of the multiplexed units, as a function of
the number of multiplexed units N for the reflection efficiency Vr = 0.99 and the detector efficiency VD = 0.8 in the case of three different
values of the general transmission coefficients Vb. (b) The same quantity �SPD,λn,λ

P as a function of the reflection efficiency Vr and the detector
efficiency VD for the general transmission coefficient Vb = 0.98, and the number of multiplexed units N = 11.

probabilities PSPD
1,max due to the unit-wise optimization of

the input mean photon numbers is generally moderate [cf.
Fig. 3(a)], for the given set of suboptimal system sizes an
observable enhancement can be obtained in the achievable
single-photon probabilities at the considered parameters of the
setup.

Figure 6(b) presents the same difference �
SPD,λn,λ
P as a

function of the reflection efficiency Vr and the detector ef-
ficiency VD for the general transmission coefficient Vb =
0.98 and the number of multiplexed units N = 11. The
figure shows that the highest differences �

SPD,λn,λ
P in the

achievable single-photon probabilities can be achieved for
high values of the reflection efficiency Vr and low values of the
detection efficiency VD. Thus the most notable improvement is
achieved in the case of better routers. Let us now consider the
range for which the S = {1, 2} detection strategy is optimal. In
Fig. 7(a) we show the difference �

S={1,2},λn,λ
P = PS={1,2},λn

1,N −
PS={1,2},λ

1,N between the achievable single-photon probabilities
for the S = {1, 2} detection strategy obtained by assuming
different and identical optimal input mean photon numbers
λn,opt and λopt, respectively, in each of the multiplexed units,
as a function of the number of multiplexed units N for the
reflection efficiency Vr = 0.8 and the general transmission
coefficient Vb = 0.8 in the case of four different values of
the detector efficiency VD. The figure shows that for these
parameters the enhancements �

S={1,2},λn,λ
P depending on the

number of multiplexed units N have maxima that increase
with decreasing the values of the detector efficiency VD and
the locations of the peaks are at N = 4. At this number of
multiplexed units the achievable single-photon probability is
PS={1,2},λn

1,N=4 = 0.537 for VD = 0.8, and PS={1,2},λn
1,N=4 = 0.569 for

VD = 0.95. For VD = 0.8 the enhancement is �
S={1,2},λn,λ
P �

0.016 for the range 4 � N � 6.
Figure 7(b) presents the difference �

S,λn,λ
P = PS={1,2},λn

1,N −
PSPD,λ

1,N between the achievable single-photon probabilities for

the S = {1, 2} detection strategy obtained by assuming differ-
ent optimal input mean photon numbers λn,opt, and for SPD
obtained by assuming identical optimal input mean photon
numbers λopt, respectively, in each of the multiplexed units,
as a function of the number of multiplexed units N for the
reflection efficiency Vr = 0.8 and the general transmission
coefficient Vb = 0.8 in the case of four different values of
the detector efficiency VD. The figure shows that relevant
enhancement can be achieved by applying the optimal detec-
tion strategy and using different optimal input mean photon
numbers in each of the multiplexed units compared to using
the traditional SPD strategy with identical optimal input mean
photon numbers. The highest differences can be achieved
for small system sizes, e.g., the difference �

S,λn,λ
P > 0.05 for

N = 2 for any considered detector efficiency. For small values
of N the differences are higher for high values of the detector
efficiency. As the number of multiplexed units is increased
this is reversed: for values N � 4 the differences �

S,λn,λ
P are

higher for small values of the detector efficiency VD.
Now let us investigate the relation of our results to the

direct application of the proposal in Ref. [53] to our scheme.
In our notation the functional dependence for the different
input mean photon numbers proposed in that paper can be
expressed as

λref
n = λ

Vn
. (8)

In this formula the subsequent input mean photon numbers
are scaled up by the different total transmission coefficients
Vn corresponding to the different multiplexed units. The op-
timization of the input mean photon numbers λref

n can be
performed by substituting this formula into Eq. (2) and then
applying a standard optimization procedure for the parameter
λ. In Fig. 8 we present the different optimal input mean photon
numbers λn,opt obtained via our optimization procedure, and
λref

n,opt obtained by using Eq. (8) as a function of the sequential
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FIG. 7. (a) The difference �
S={1,2},λn,λ
P = PS={1,2},λn

1,N − PS={1,2},λ
1,N between the achievable single-photon probabilities for the S = {1, 2}

detection strategy obtained by assuming different and identical optimal input mean photon numbers λn,opt and λopt, respectively, in each of
the multiplexed units, as a function of the number of multiplexed units N for the reflection efficiency Vr = 0.8 and the general transmission
coefficient Vb = 0.8 in the case of four different values of the detector efficiency VD. (b) The difference �S,λn,λ

P = PS={1,2},λn
1,N − PSPD,λ

1,N between
the achievable single-photon probabilities for the S = {1, 2} detection strategy obtained by assuming different optimal input mean photon
numbers λn,opt, and for SPD obtained by assuming identical optimal input mean photon numbers λopt, respectively, in each of the multiplexed
units, as a function of the number of multiplexed units N for the reflection efficiency Vr = 0.8 and the general transmission coefficient Vb = 0.8
in the case of four different values of the detector efficiency VD.

number n of the multiplexed units for the SPD strategy up to
the corresponding optimal numbers of multiplexed units. The
data are calculated for two values of the reflection efficiency
Vr = 0.85 and Vr = 0.95, for the detector efficiency VD = 0.9
and the general transmission coefficient Vb = 0.85. The values

FIG. 8. Different optimal input mean photon numbers λn,opt ob-
tained by our optimization procedure, and λref

n,opt obtained by using
Eq. (8) as a function of the sequential number n of the multiplexed
units for the SPD strategy up to the corresponding optimal num-
bers of multiplexed units for two values of the reflection efficiency
Vr = 0.85 and Vr = 0.95, for the detector efficiency VD = 0.9 and
the general transmission coefficient Vb = 0.85. The values of the
identical optimal input mean photon numbers λopt are indicated by
horizontal lines up to the optimal numbers of multiplexed units.

of the identical optimal input mean photon numbers λopt are
indicated by horizontal lines up to the optimal numbers of
multiplexed units. The figure shows that for smaller values
of the reflection efficiency Vr the different optimal input mean
photon numbers λn,opt and λref

n,opt obtained from our full sta-
tistical description and by using Eq. (8), respectively, are
significantly different. For higher values of Vr considerable
differences can be observed only for higher sequential num-
bers n.

The observed differences between the optimal input mean
photon numbers naturally lead to a difference in the corre-
sponding single-photon probabilities. In Fig. 9 we present the

difference �
SPD,λn,λ

ref
n

P = PSPD,λn
1,max − PSPD,λref

n
1,max between the maxi-

mal single-photon probabilities for SPD obtained by assuming
different input mean photon numbers λn,opt and input mean
photon numbers λref

n,opt of Eq. (8), respectively, in each of the
multiplexed units, as a function of the reflection efficiency
Vr and the detector efficiency VD for the general transmission
coefficient Vb = 0.85. Below the continuous black line the dif-
ference �

SPD,λn,λ
ref
n

P is higher than 10−3. The figure shows that
the unit-wise optimization of the input mean photon numbers
λn with the method based on the full statistical treatment as
described in this paper always leads to higher single-photon
probabilities than the ones that can be obtained by the opti-
mization based on Eq. (8). Although for higher values of the
reflection efficiency Vr the two optimization technique leads
to nearly equal single-photon probabilities, for lower values
of Vr the advantage of our procedure is relevant.

Finally, we address the problem of stability: the extent of
the tolerable deviation from the optimal values of the different
input mean photon numbers λn,opt so that the resulting single-
photon probabilities P1 remain higher than the maximal value
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FIG. 9. The difference �
SPD,λn,λref

n
P = PSPD,λn

1,max − PSPD,λref
n

1,max between
the maximal single-photon probabilities for SPD obtained by as-
suming different input mean photon numbers λn,opt and input mean
photon numbers λref

n,opt of Eq. (8), respectively, in each of the mul-
tiplexed units, as a function of the reflection efficiency Vr and the
detector efficiency VD for the general transmission coefficient Vb =
0.85. Below the continuous line the difference �

SPD,λn,λref
n

P is higher
than 10−3.

that can be achieved with identical optimal input mean photon
numbers λopt. In Fig. 10 we present the optimal input mean
photon numbers λn,opt with error bars showing the amount of
allowed uniform deviation from the optimal values of λn, as
a function of the sequential number n for SPD strategy for
two pairs of the reflection and detector efficiencies Vr = 0.99,

FIG. 10. The optimal input mean photon numbers λn,opt as a
function of the sequential number n for the SPD strategy for two
pairs of the reflection and detector efficiencies Vr = 0.99, VD = 0.9,
and Vr = 0.9, VD = 0.8, and for the general transmission coefficient
Vb = 0.98. The error bars show the amount of allowed uniform devi-
ation from the optimal values of λn so that the resulting single-photon
probability is still higher than the one achievable by using identical
optimal mean photon numbers λopt. The values of the identical op-
timal input mean photon numbers λopt are indicated by horizontal
lines.

VD = 0.9, and Vr = 0.9, VD = 0.8, and for the general trans-
mission coefficient Vb = 0.98. For the reflection efficiency
Vr = 0.99 and the detector efficiency VD = 0.9, the maxi-
mal single-photon probability achieved with different and
identical input mean photon numbers are PSPD,λn

1,max = 0.9059

and PSPD,λ
1,max = 0.9052, respectively, and the range defined by

the maximal uniform deviation from the optimal values of
λn is [−0.05, 0.057]. For the other set of parameters, VD =
0.8, Vr = 0.9, the maximal single-photon probabilities are
PSPD,λn

1,max = 0.7281 and PSPD,λ
1,max = 0.7245, and the range defined

by the maximal uniform deviation from the optimal values of
λn is [−0.129, 0.15]. Based on these typical examples one can
conclude that the realization of the unit-wise optimized input
mean photon numbers is likely to be feasible in experiments
with a precision sufficient for improving the performance of
the system compared to the case of using identical optimal
input mean photon numbers.

V. CONCLUSION

We have developed a full statistical description of multi-
plexed single-photon sources equipped with photon-number-
resolving detectors that incorporates the use of different input
mean photon numbers in each of the multiplexed units. This
theory includes all relevant loss mechanisms and enables
the maximization of the single-photon probabilities at the
output under realistic conditions by optimizing the different
input mean photon numbers unit-wise and by determining the
optimal system size. Moreover, embedding photon-number-
resolving detection in the model allows for the optimization
of the detection strategy which is characterized by the set of
number of detected photons for which the generated signal
photons are allowed to enter the multiplexer.

Using this full statistical description we have analyzed in
detail periodic single-photon sources based on asymmetric
spatial multiplexing realized with general asymmetric routers
and photon-number-resolving detectors for experimentally
feasible loss parameters. We have shown that the use of
optimal different input mean photon numbers results in max-
imal single-photon probabilities higher than those that can
be achieved by using optimal identical input mean photon
numbers in this system. A considerable enhancement can be
achieved for threshold detection and for the S = {1, 2} detec-
tion strategy. We have shown that this latter is the optimal
detection strategy for a part of the considered ranges of pa-
rameters. In the case of single photon detection which is the
optimal detection strategy for the remaining, bigger part of the
parameters’ ranges this enhancement is moderate. However,
even in the latter case the enhancement is relatively larger
for suboptimal system sizes, especially for multiplexers with
higher total transmission efficiencies and when detectors with
lower detector efficiencies are used. A special advantage of
the unit-wise optimization of the input mean photon numbers
is that it can result in the decrease of the optimal system size
needed to maximize the single-photon probability.

We have compared our results to those that can be obtained
by the application of a simple functional dependence for deter-
mining the different input mean photon numbers as described
before in the literature. From this we can conclude that the
unit-wise numerical optimization of the input mean photon
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numbers with our method leads to higher single-photon prob-
abilities. The difference is significant in most parts of the
parameters’ ranges.

We have considered the experimental feasibility of the
key ingredient of our scheme, the unit-wise optimized input
mean photon numbers. It appears that these can be realized in
experiments with a precision sufficient to achieve an improved
performance of the system.

The most promising result of our analysis is that the highest
single-photon probability is 0.935 that, in principle, can be
achieved in single-photon sources based on asymmetric spa-
tial multiplexing using state-of-the-art bulk-optical devices.

To our knowledge this value is the highest one reported in any
proposed scheme thus far in the literature.
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