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Interference-induced directional emission from an unpolarized two-level emitter
into a circulating cavity
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Chiral coupling between quantum emitters and evanescent fields allows directional emission into nanopho-
tonic devices and is now considered to be a vital ingredient for the realization of quantum networks. However,
such coupling requires a well-defined circular dipole moment for the emitter—something difficult to achieve for
solid-state emitters at room temperature due to thermal population of available spin states. Here, we demonstrate
that a two-level emitter with a randomly polarized dipole moment can be made to emit directionally into a
circulating cavity if a separate emitter is chirally coupled to the same cavity, for the case when both emitter-cavity
couplings are strong but in the bad-cavity regime. Our analysis of this system first considers a transient scenario,
which highlights the physical mechanism giving rise to the directional emission of the two-level emitter into
the cavity. An alternative setup involving a weak laser field continuously driving the system is also considered,
where the directionality (our proposed figure of merit for this scheme) is shown to be significantly more robust
against noise processes. The results presented here take the form of approximate analytical expressions backed
by complete numerical simulations of the system.
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I. INTRODUCTION

For a number of years it has been recognized that single
quantum emitters (QEs) coupled strongly to an optical cavity
are excellent candidates for nodes in quantum networks where
matter qubits based on QE are interfaced with flying qubits
[1,2]. In particular, protocols exist for the direct quantum state
transfer of qubits from light to atoms and back using such
nodes [3–5]. However, one problem with such cavity-based
nodes is that the inherent left-right symmetry of the cavity
means that photons couple randomly to the left- and right-
propagating cavity modes, meaning that any state transfer
protocol is nondeterministic. Although use of a one-sided cav-
ity solves this problem after a fashion, it also inconveniently
restricts the topology of the network.

Recently, the rise of nanophotonic devices and associ-
ated evanescent light-matter coupling schemes has led to
an elegant work around for the above problem, which goes
as follows: While the total spin angular momentum of the
evanescent field is typically zero, locally it is elliptically polar-
ized and, crucially, this local elliptical polarization is coupled
to the direction of propagation of the waveguide mode. This
property is variously referred to as spin-orbit coupling of
light [6,7] and spin-momentum locking [8,9]. This fact means
that quantum emitters which support a circularly polarized
dipole transition (e.g., a magnetic sublevel) with a suitably
oriented quantization axis will couple strongly only to the
waveguide mode whose local polarization at the position of
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the emitter matches the transition’s polarization, and thus
(due to the coupling of local polarization state and mode
propagation direction) couple strongly to only one direction.
The research field which studies light-matter interactions with
spin-momentum-locked light is known as “chiral quantum
optics” [10–16]. In the past few years, a number of devices
have been proposed and demonstrated using the principles of
chiral quantum optics [13,17–21], and chiral techniques are
now expected to be a novel tool for the realization of quantum
networks [22,23].

One practical problem when it comes to applying chi-
ral coupling techniques is that room-temperature solid-state
quantum emitters typically emit randomly polarized photons
[24]. In this case directional emission of photons using the
spin-momentum locking effect is not possible. Here, we will
demonstrate how it is possible to arrange directional emission
from such an unpolarized quantum emitter into a circulating
cavity mode if a separate emitter is chirally coupled to the
same cavity. Our scheme works as follows: First, assume
that a two-level quantum emitter—which we will refer to
as a quantum dot (QD)—couples equally, with strength gq,
to both counterclockwise- and clockwise-propagating modes
(henceforth referred to as modes a and b, respectively) of
a whispering-gallery-mode (WGM) cavity. Consideration of
such a resonator that exhibits a “ring” geometry is imperative
as, unlike more conventional cavities (i.e., those supporting
standing-wave modes), it will preserve the chirality of the
emitter-resonator interface. That is, it allows for a specific
emitter polarization to map to a specific direction of prop-
agation. Additionally, we assume that the coupling is in the
so-called bad-cavity regime, i.e., gq � κ , with as κ the cavity
field decay rate, but gq is still assumed to be much larger
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than the excited-state spontaneous emission rate γq of the
QD, so that the cooperativity Cq = g2

q/(κγq) � 1. This en-
sures that any emission from the quantum dot takes place
primarily through the cavity modes. Now suppose that another
quantum emitter—which we shall refer to as an atom—is
prepared in a (stable) internal state which couples chirally
to the same cavity, i.e., it has a large coupling strength ga

to mode a but a much smaller coupling strength gb to mode
b. Later, we will consider the concrete example of a 133Cs
atom, for which the ratio ga/gb can be as large as

√
45.

Now, if the atom-cavity coupling is also in the bad-cavity
regime and with large cooperativity (Ca = g2

a/(κγa) � 1),
we will show that the QD excited state decays principally
into just one mode (i.e., one direction) as a result of de-
structive quantum interference between the QD and atomic
dipole fields in one polarization. The direction can be chosen
by the atomic internal state, giving all of the advantages of
chiral coupling even though the quantum dot is randomly
polarized.

We note that an alternative scheme also exists where the
atom is in the strong-coupling regime, i.e., ga � κ, γa; here,
the mechanism is the strong vacuum Rabi splitting of one cav-
ity mode, which simply drives that mode off resonance from
the QD, leading to Purcell enhancement for QD emission just
into the other cavity mode. However, the bad-cavity condition
is less strict than the strong-coupling regime, and, indeed, can
be achieved even for very lossy resonators such as plasmonic
nanostructures. We therefore focus on the scheme in which
both quantum dot and atom are coupled to the cavity in the
bad-cavity regime.

At this point we address the question of why we have
separated the functions of chiral coupling and single-photon
emission within this system. Of course, one could simply
dispense with the quantum dot and investigate how chiral
photons from the atom itself couple with the resonator. Indeed,
this is the fundamental system which the field of chiral quan-
tum optics has been concerned with so far and has therefore
been considered at length in many previous publications (for
a review see Ref. [16]). Aside from the obvious variation on
previous studies, the reason for the extra level of complexity
to our scheme with the addition of the quantum dot essentially
boils down to an argument of practicality.

First, let us point out that the experimental arrangement
of single, cold emitters coupled to micro- or nanophotonic
resonators, as necessary to achieve chirally coupled single
photons, is difficult. This requires either a cryogenic setup in
the case of solid-state emitters or a laser-cooling apparatus
for atoms. Additionally, for the case of a chirally-emitting
atom, the maximum achievable coupling strength is limited
by the fact that it can only be trapped some distance from the
resonator surface.

As a work-around for this, one could envisage a much
simpler scenario to implement in general, whereby the single
chiral emitter is replaced with an ensemble of atoms arranged
to chirally couple to the resonator, as this can feasibly be
achieved with room-temperature atoms as opposed to laser-
cooled ones [25]. There are also advantages here in terms of
a reduction in the required single-emitter coupling strength
[26]. Indeed, although we consider a single chirally coupled

atom in the present work for simplicity, there is actually no
need for a single chirally coupled emitter—our scheme also
works for multiple collectively coupled chiral atoms.

Evidently, in this case the property of single-photon gen-
eration is not achieved from the ensemble of chiral emitters.
This leads naturally to the use of a room-temperature quantum
dot for the production of single photons. Quantum dots can be
deposited from a dilute solution virtually at the maximum of
the resonator field and produce nonclassical light with little
more than an objective lens and a low-power laser diode.
Nonetheless, at room temperature, these solid-state emitters
emit randomly polarized photons and therefore cannot couple
chirally to waveguides or resonators.

In addition to these points, it is useful both conceptually,
and potentially in applications, to separate the functions of
chiral coupling and single-photon emission. This is in line
with the general principle of hybrid quantum systems, wherein
the advantages of individual quantum systems are hybridized
by coupling them. In this case, the convenience of single-
photon emission from a fixed, single quantum dot and the
directionality of coupling for cold atoms are combined to cre-
ate a single system more useful than either of the subsystems
alone.

Given the above facts, it seems to us that if a single scheme
could hybridize the quantum dot and atom ensemble systems
in such a way as to arrange directional coupling of single
photons to a resonator, it would represent a considerable sim-
plification in realizing an effective chiral single-photon source
at room temperature. This is precisely the idea behind the
scheme presented here.

The rest of the paper proceeds as follows: In Sec. II we
introduce our formal model of the system and define the
relevant master equation. In Sec. III we analyze the single-
excitation regime, where the QD starts in the excited state,
the atom is in its ground state, and both cavity modes are in
the vacuum state. We perform a trajectory analysis and derive
the directionality of emission in the ideal case. In Sec. IV we
consider the case where the quantum dot is weakly driven by
an external field. We derive the steady-state system properties
and calculate the directionality in the steady-state limit. The
photon statistics of the cavity output fields are also examined
in detail. Finally, in Sec. V we discuss our results and offer
conclusory remarks.

II. THEORETICAL MODEL

A. Master equation

Referring to Fig. 1, we define our system as being com-
prised of a quantum dot modeled as a two-level system with
ground state |G〉 and excited state |E〉, a three-level atom
with ground state |g〉 and excited states |+〉 and |−〉, and
a circulating cavity with two orthogonal modes a and b
(counterclockwise- and clockwise-propagating, respectively),
to which both the quantum dot and the atom couple. To under-
stand the physics behind this scheme, our study begins with
a master equation to model the dissipative dynamics of our
proposed system. By employing a Born-Markov treatment for
the mechanisms of spontaneous emission and cavity decay, we
find the following equation of motion for the system density
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FIG. 1. Illustration of the system under consideration. A two-
level quantum dot (QD) and a V-type three-level atom (or atoms)
are coupled to the same whispering-gallery-mode (WGM) resonator.
We label the counterclockwise circulating mode (polarization σ+)
of the resonator a and the clockwise circulating mode (polarization
σ−) b. The depicted decay channels are atomic spontaneous emission
at rate γa, quantum dot spontaneous emission at rate γq, and decay
from each cavity mode at rate κ into a waveguide (which could, e.g.,
be a tapered optical fiber). A magnetic field B may also be applied as
shown.

operator ρ̂ (h̄ = 1):

d ρ̂

dt
= −i[Ĥ , ρ̂(t )] + κ (D[â] + D[b̂])ρ̂(t )

× γq

2
D[σ̂q−]ρ̂(t ) + γa

2
(D[σ̂a−] + D[σ̂b−])ρ̂(t ). (1)

Here, we have the usual Lindblad superoperator defined as
D[Ô]• ≡ 2Ô • Ô† − Ô†Ô • − • Ô†Ô, the lowering operators
σ̂q− ≡ |G〉〈E |, σ̂a− ≡ |g〉〈+|, and σ̂b− ≡ |g〉〈−|, where the
former acts on the Hilbert space of the QD and the latter two
act on the Hilbert space of the atom. The bosonic annihilation
operators â and b̂ act on the spaces of the degenerate, counter-
propagating cavity modes a and b, respectively. It is worth
noting here that imperfections in the interface between the
resonator and waveguide caused from scattering and reflec-
tion, for example, will be present in principle. Including these
effects would simply amount to adding an extra cavity decay
channel. However, these imperfections are neglected for the
purposes of this analysis on the basis that evanescent coupling
between a nanofiber and microtoroidal resonator with near-
unit efficiency is routinely achieved in practice [27,28].

We assume that the quantum dot couples to each cavity
mode with strength gq and that the atom couples to mode a
with strength ga and mode b with strength gb. In the rotating
wave approximation and assuming a Jaynes-Cummings-type
interaction between the QD and atom with the quantized ra-
diation fields of the cavity, the Hamiltonian may be expressed
as

Ĥ = �c(â†â + b̂†b̂) + �qσ̂q+σ̂q−

+ �aσ̂a+σ̂a− + �bσ̂b+σ̂b− + (gqσ̂q+(â + b̂)

+ gaσ̂a+â + gbσ̂b+b̂ + H.c.) + �σ̂q+ + �∗σ̂q−, (2)

where H.c. denotes Hermitian conjugate. This Hamiltonian
is written in a frame rotating at a rate ωL, corresponding to
the frequency of the laser driving the QD with strength �.
The detunings listed in this equation are therefore defined as
the difference between ωL and the resonance frequency of the
cavity, ωc, or the transition frequencies between the respective
ground and excited states of the two- (ωq) and three-level
emitters (ω±): �c ≡ ωc − ωL, �q ≡ ωq − ωL, �a ≡ ω+ − ωL,
and �b ≡ ω− − ωL.

B. Cavity output fields

Equations (1) and (2) together describe the evolution of a
system state in the form of a density operator, ρ̂(t ), which is
generally mixed. An alternative yet equally useful approach
to model the behavior may be found by working within the
Heisenberg picture, where a set of Langevin equations may be
derived which describe the temporal evolution of the system
operators. The equations of motion for the two cavity annihi-
lation operators are

dâ

dt
= −i[â(t ), Ĥ ] − κ â(t ) −

√
2κ âin(t )

= −(κ + i�c)â(t ) − igqσ̂q−(t ) − igaσ̂a−(t )

−
√

2κ âin(t ), (3a)

db̂

dt
= −i[b̂(t ), Ĥ ] − κ b̂(t ) −

√
2κ b̂in(t )

= −(κ + i�c)b̂(t ) − igqσ̂q−(t ) − igbσ̂b−(t )

−
√

2κ b̂in(t ), (3b)

where âin(t ) and b̂in(t ) are vacuum input field operators. A
simple formula may then be obtained which relates the system
operators to the fields emitted into and out of the cavity by
employing the input-output formalism developed in Ref. [29]:

âout (t ) =
√

2κ â(t ) + âin(t ), (4a)

b̂out (t ) =
√

2κ b̂(t ) + b̂in(t ). (4b)

Note, however, that in this work we will only be concerned
with properties of the output fields that depend on normally
ordered moments of the output field operators. The vacuum
input field operators will not contribute to these quantities and
can therefore be neglected from here on.

III. SINGLE-EXCITATION REGIME

A. Trajectory analysis

In this section we wish to analyze the transient dynamics
of the system starting from an initial state at time t = 0 with
the quantum dot residing in the excited state, the atom in its
ground state, and the two cavity modes in the vacuum state. It
is assumed that there is no coherent field driving the QD, in
which case the Hamiltonian for this system reduces to

Ĥ = �qσ̂q+σ̂q− + �aσ̂a+σ̂a− + �bσ̂b+σ̂b−

+ [gqσ̂q+(â + b̂) + gaσ̂a+â + gbσ̂b+b̂ + H.c.], (5)

which is now written in a frame rotating with the cavity res-
onance frequency, such that �q ≡ ωq − ωc, �a ≡ ω+ − ωc,
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and �b ≡ ω− − ωc. This Hamiltonian will only couple states
included within the one-quantum manifold, while the action
of a jump operator (â, b̂, σ̂q−, σ̂a−, σ̂b−) on any of these states
will either be zero or project the system into the (zero-
excitation) ground state, |G0〉. Therefore one may effectively
implement a trajectory unraveling of the master equation fol-
lowing the methods outlined in [30]. This is achieved by
decomposing the master equation into the sum of two parts,

d ρ̂

dt
= Lρ̂(t ) ≡ (M + N )ρ̂(t ), (6)

with the superoperator M acting on the one-quantum sub-
space,

M = −i[Ĥ , •] − κ[â†â + b̂†b̂, •]+ − γq

2
[σ̂q+σ̂q−, •]+

− γa

2
[σ̂a+σ̂a−, •]+ − γb

2
[σ̂b+σ̂b−, •]+, (7)

where [•, •]+ denotes the anticommutator, and the superoper-
ator N generating transitions to the ground state,

N = 2κ (â • â† + b̂ • b̂†) + γqσ̂q− • σ̂q+
+ γaσ̂a− • σ̂a+ + γbσ̂b− • σ̂b+. (8)

For times t > 0, the system either emits a photon with a
probability of P(t ), thus collapsing the state into |G0〉, or the
system resides in the pure one-quantum state

|ψ̄ (t )〉 = [Q(t )σ̂q+ + A(t )σ̂a+ + B(t )σ̂b+ + α(t )â†

+ β(t )b̂†]|G0〉, (9)

where Q(t ) is the probability amplitude for the quantum dot
to be excited, A(t ) (B(t )) is the probability amplitude for the
state |+〉 (|−〉) of the atom to be excited, and α(t ) (β(t )) is the
excitation probability amplitude for the a mode (b mode) of
the resonator. The density operator is decomposed in a similar
manner,

ρ̂(t ) = P(t )|G0〉〈G0| + (1 − P(t ))|ψ̄ (t )〉〈ψ̄ (t )|. (10)

Here, |ψ̄ (t )〉 evolves according to a nonunitary Schrödinger
equation,

d|ψ̄〉
dt

= −iĤNH |ψ̄〉, (11)

where ĤNH is the non-Hermitian Hamiltonian

ĤNH = Ĥ − iκ (â†â + b̂†b̂) − i
γq

2
σ̂q+σ̂q−

− i
γa

2
σ̂a+σ̂a− − i

γb

2
σ̂b+σ̂b−, (12)

and the norm of |ψ̄ (t )〉 is equal to [1 − P(t )]. One may then
derive the following set of coupled equations for the excited-
state probability amplitudes:

Ȧ = −(γa/2 + i�a)A(t ) − igaα(t ), (13a)

α̇ = −κα(t ) − igqQ(t ) − igaA(t ), (13b)

Q̇ = −(γq/2 + i�q)Q(t ) − igqα(t ) − igqβ(t ), (13c)

β̇ = −κβ(t ) − igqQ(t ) − igbB(t ), (13d)

Ḃ = −(γb/2 + i�b)B(t ) − igbβ(t ). (13e)

B. Adiabatic elimination of the cavity modes

As alluded to previously, the focus of this analysis cen-
ters on the scheme in which the QD and atom are coupled
to the cavity in the bad-cavity, large-cooperativity regime
(γq,a � gq,a,b � κ). This permits the cavity mode amplitudes
in Eqs. (13a)–(13e) to be adiabatically eliminated from the
dynamics. This is achieved by setting the time derivatives for
α(t ) and β(t ) to zero, which yields a set of equations that
relate the cavity mode amplitudes to the excited-state ampli-
tudes of the QD and atom, i.e.,

α(t ) = −i[gqQ(t ) + gaA(t )]

κ
, (14a)

β(t ) = −i[gqQ(t ) + gbB(t )]

κ
. (14b)

Substituting (14a) and (14b) into (13a), (13c), and (13e) gives
equations of motion for the QD and atomic excited-state prob-
ability amplitudes within this approximation:

Ȧ = −(�a + i�a)A(t ) − g′
aQ(t ), (15a)

Q̇ = −(�q + i�q)Q(t ) − g′
aA(t ) − g′

bB(t ), (15b)

Ḃ = −(�b + i�b)B(t ) − g′
bQ(t ). (15c)

Here, we have introduced the cavity-enhanced spontaneous
emission rates

�q ≡ γq

2

(
1 + 4g2

q

γqκ

)
, �a,b ≡ γa,b

2

(
1 + 2g2

a,b

γa,bκ

)
, (16)

and the effective coupling strengths between the atom and the
quantum dot,

g′
a,b = gqga,b

κ
. (17)

These couplings between the atom and QD are mediated by
the cavity modes a and b, respectively.

C. Directional photon emission: Ideal case

We now address an idealized case where relatively simple
analytic solutions to Eqs. (15a)–(15c) may be found, which
highlights the mechanism which gives rise to directional pho-
ton emission within this system. Here, we assume that gb (the
coupling of the atomic transition to the mode b) is negligible,
so that the atom may be modeled as an ideal chiral-two-level
system. Additionally, all of the transitions within the QD and
atom are assumed to be resonant with the cavity frequency
(�q,a,b = 0), and the coupling of the quantum dot and atom to
the cavity modes far exceeds the spontaneous emission rates,
so that we may set γq,a ≈ 0. In this situation Eqs. (15a)–(15c)
reduce to

Ȧ = −�̃aA(t ) −
√

�̃a�̃q

2
Q(t ), (18a)

Q̇ = −�̃qQ(t ) −
√

�̃a�̃q

2
A(t ), (18b)
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where �̃a = g2
a/κ and �̃q = 2g2

q/κ . The solutions to these
equations are

Q(t ) = 1

2

⎛
⎝1 + �̃a − �̃q√

�̃2
a + �̃2

q

⎞
⎠eλ+t

+ 1

2

⎛
⎝1 − �̃a − �̃q√

�̃2
a + �̃2

q

⎞
⎠eλ−t , (19a)

A(t ) =
√

�̃q�̃a

2
(
�̃2

q + �̃2
a

) (eλ−t − eλ+t ), (19b)

or, in terms of ga and gq,

Q(t ) = 1

2

⎛
⎝1 + g2

a − 2g2
q√

g4
a + 4g4

q

⎞
⎠eλ+t

+ 1

2

⎛
⎝1 − g2

a − 2g2
q√

g4
a + 4g4

q

⎞
⎠eλ−t , (20a)

A(t ) = gagq√(
g4

a + 4g4
q

)(
eλ−t − eλ+t

)
, (20b)

where

λ± =
−(�̃a + �̃q) ±

√(
�̃2

a + �̃2
q

)
2

. (21)

By substituting Eqs. (20a) and (20b) into Eqs. (14a) and (14b),
the cavity mode amplitudes may be expressed as

α(t ) = −igq

2κ

⎛
⎝

⎡
⎣1 − g2

a + 2g2
q√

g4
a + 4g4

q

⎤
⎦eλ+t

+
⎡
⎣1 + g2

a + 2g2
q√

g4
a + 4g4

q

⎤
⎦eλ−t

⎞
⎠, (22a)

β(t ) = −igq

2κ

⎛
⎝

⎡
⎣1 + g2

a − 2g2
q√

g4
a + 4g2

q

⎤
⎦eλ+t

+
⎡
⎣1 − g2

a − 2g2
q√

g4
a + 4g4

q

⎤
⎦eλ−t

⎞
⎠. (22b)

The probability of a certain cavity mode emitting a photon
may then be calculated using

Pa = 2κ

∫ ∞

0
dt ′〈(â†â)(t ′)〉 = 2κ

∫ ∞

0
dt ′|α(t ′)|2, (23a)

Pb = 2κ

∫ ∞

0
dt ′〈(b̂†b̂)(t ′)〉 = 2κ

∫ ∞

0
dt ′|β(t ′)|2. (23b)

That is, Pa (Pb) is the probability of the system emitting a
photon from cavity mode a (mode b) at some time during the
temporal evolution. We then define the directionality as

D ≡ Pb − Pa

Pb + Pa
, (24)

which is a measure of the ability of the system to preferentially
emit a photon from the desired cavity mode (in this case,
mode b).

Using (22a) and (22b), the probabilities Pa and Pb are
readily evaluated as

Pa =
1
2 �̃q

�̃a + �̃q
, Pb = �̃a + 1

2 �̃q

�̃a + �̃q
, (25)

which give

D = �̃a

�̃a + �̃q
. (26)

These results clearly demonstrate how the presence of a chiral
atom can effectively control the emission of the QD into the
cavity modes. In particular, if the atomic coupling strength,
ga, is sufficiently large, such that �̃a � �̃q (i.e., g2

a/(2g2
q) �

1), then Pb � D � 1 and the QD emission is predominantly
through mode b. Note, though, that we still require �̃q =
2g2

q/κ � γq in order for the results from the analysis of this
section to hold.

Physically, this can be interpreted in terms of destructive
quantum interference between QD and atomic dipole fields.
In particular, the dipole field associated with the |g〉 ↔ |+〉
atomic transition is π out of phase with the σ+-polarized
component of the QD, and of the same magnitude, leading
to a much-diminished amplitude for the a-mode field. This
is seen explicitly by noting that, in the limit that we con-
sider above, one has Q(t ) � eλ+t and A(t ) � −(gq/ga)eλ+t , so
α(t ) = −i[gqQ(t ) + gaA(t )]/κ � 0. Having a large value of
the ratio ga/gq means that as soon as some excitation of the
QD is transferred to the a mode it is rapidly taken up by the
|g〉 ↔ |+〉 atomic transition, enabling destructive interference
between the QD and atomic fields over the bulk of the time
evolution. This behavior is highlighted in Fig. 2, where the
excited-state amplitudes for the QD and the |g〉 ↔ |+〉 atomic
transition are plotted as a function of time, along with the
photon emission probabilities from the two cavity modes for
two values of the ratio ga/gq (one relatively small and one
relatively large).

D. Third atomic level and spontaneous emission

The results obtained above are useful to outline the physi-
cal processes within our scheme that cause directional photon
emission from the cavity; however, the parameter choice is
quite removed from what could be achieved within a con-
temporary experimental setup. In particular, it is unrealistic
to neglect the intrinsic process of spontaneous emission from
the quantum emitters, as well as the coupling between the
|g〉 ↔ |−〉 atomic transition and mode b of the cavity. We
therefore shift our attention to a more realistic model, where
we now account for these processes and provide a numerical
analysis to address their influence on the efficiency of this
scheme.

To this end, we base our atomic model on a 133Cs atom,
where the ratio between the coupling strengths of the two
transitions to the counterpropagating cavity modes is as large
as ga/gb = √

45. For simplicity, the spontaneous emission
rate from the excited atomic states is assumed to match that of
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FIG. 2. Top panels: Excited-state amplitudes, Eqs. (20a) and
(20b), plotted as a function of time for two values of the ratio
ga/gq. Bottom panels: Corresponding probability of photon emission
from modes a and b as a function of time as given by Pa(t ) =
2κ

∫ t
0 dt ′|α(t ′)|2 and Pb(t ) = 2κ

∫ t
0 dt ′|β(t ′)|2, respectively. Other

parameters are {gq, �q,a,b, γq,a} = {0.05, 0, 0}, expressed in units
of κ .

the QD, i.e., γa = γq ≡ γ . The left-hand panel in Fig. 3 shows
a density plot for the directionality, as defined in Eq. (24),
against a range of coupling strengths for the QD and atom,
when the spontaneous emission rate is set to a value of γ /κ =
0.001. It is observed here that the directionality is optimized
when the ratio ga/gq � 1, which is consistent with the results
obtained for the ideal case, where the spontaneous emission
rates were neglected. However, the right-hand panel within
this figure gives a better representation of how spontaneous

FIG. 3. Left panel: Directionality, as defined in Eq. (24), plotted
against ga and gq for γ /κ = 0.001, gb = ga/

√
45, and �q,a,b/κ = 0.

Right panel: Photon emission probability of cavity mode b, as de-
fined in Eq. (23b), plotted against ga and γ , with gq/κ = 0.05,
gb = ga/

√
45, and �q,a,b/κ = 0. Each result shown in this figure has

been obtained by solving Eq. (1) with the Hamiltonian (5).

emission will influence this scheme. In this plot, the photon
emission probability from mode b [Eq. (23b)] is given as a
function of the atomic coupling strength and the spontaneous
emission rate. It is clear that by increasing the spontaneous
emission rates, a significant amount of the excitation within
the system will be lost to this scattering process.

Additionally, the emission probability is seen to also de-
crease above values of ga/κ � 0.12. This is due to the fact that
upon allowing for a nonzero coupling to the weaker atomic
transition, a new eigenstate of the Hamiltonian (5) arises,
which takes the form

|CD〉 ∝ (gqgb|G〉|+〉 − gagb|E〉|g〉 + gqga|G〉|−〉)|0〉a|0〉b.

(27)

Because the only cavity states that contribute to |CD〉 are the
vacuum states, |0〉a and |0〉b, this state will be dark to the
cavity modes and will therefore not emit photons into the
cavity modes. The overlap between this state and the initial
system state, |ψ (t = 0)〉 = |E〉|g〉|0〉a|0〉b, is given by

|〈CD|ψ (t = 0)〉|2 = g2
ag2

b

g2
qg2

b + g2
ag2

b + g2
qg2

a

. (28)

This result shows that by increasing the atomic coupling
strengths (ga and gb) the initial state of the system populates
more of this cavity-dark eigenstate. As this eigenstate decays
only via spontaneous emission, the fraction of emission that is
routed into the cavities, and in turn the probability of photon
emission into the desired cavity mode, is reduced. A trade-
off is therefore identified for the engineering of this system,
where an optimal atomic coupling strength should be found
which will achieve the highest possible directionality without
significantly populating this cavity-dark eigenstate. This will
ensure that a maximal amount of excitation initially stored in
the QD will be routed into the desired mode b of the cavity.

However, it is in fact possible for this effect to be reduced
by introducing a finite detuning (�b) of the weaker atomic
transition from cavity resonance. In this situation, the eigen-
state will no longer be dark to the cavity modes, therefore
reducing the amount of light that is lost from the system
via spontaneous emission. As an example, consider the case
corresponding to the top right-hand corner of the plot of Pb in
Fig. 3, where ga/κ = 0.25, gq/κ = 0.05, and γ /κ = 0.001.
With �b = 0, we have Pb = 0.54 and D = 0.87, but with
�b/κ = 0.1 we obtain Pb = 0.79 and D = 0.91, a significant
improvement. Furthermore, note that for the parameters of
this example �̃q/γq = 5, which is not a lot larger than 1 (so
the assumption that γq � 0 is marginal). Doubling the cou-
pling strengths to ga/κ = 0.5 and gq/κ = 0.1, and choosing
�b = 0.1 again, we find further improvement, with Pb = 0.91
and D = 0.92. We consider the effect of detuning the weakly
coupled atomic transition further in the following section,
where we examine the regime in which the QD is driven
continuously by a weak coherent field and we evaluate the
steady-state behavior of the system.

IV. WEAKLY DRIVEN QUANTUM DOT REGIME

The analysis of the transient scenario considered in the pre-
vious section is useful for highlighting important dynamical
aspects of system, although the efficiency of this directional
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emission scheme is reasonably limited by noise processes
that would be typical in practice. In particular, obtaining high
values for the directionality while also maintaining a high
emission probability Pb required the consideration of very low
spontaneous emission rates of the emitters—much lower than
what would be feasible experimentally in the near future. Here
we investigate a slightly altered setup in order to study the
behavior of our system at steady state, in which the directional
emission of the QD into the waveguide is shown to be more
robust against the effects of spontaneous emission from the
emitters. In contrast to the previous section, we now focus on
the situation where the QD is continuously driven by a weak
coherent field, which is to say that the parameter � in Eq. (2)
is nonzero, yet much smaller than the rates gq and κ , such that
a linearized set of equations may be obtained for the relevant
operator expectation values.

A. Steady-state output photon fluxes

Starting from Eqs. (1) and (2), the equation of motion for
the expectation value of a system operator 〈Ô〉 follows from
the formula d〈Ô〉/dt = Tr[Ôd ρ̂/dt]. In a linear regime, the
equations of motion for the relevant system operators follow
as

d〈σ̂a−〉
dt

= −
(

i�a + γa

2

)
〈σ̂a−〉 − iga〈â〉, (29a)

d〈â〉
dt

= −(i�c + κ )〈â〉 − igq〈σ̂q−〉 − iga〈σ̂a−〉, (29b)

d〈σ̂q−〉
dt

= −
(

i�q + γq

2

)
〈σ̂q−〉 − igq〈â〉 − igq〈b̂〉 − i�,

(29c)

d〈b̂〉
dt

= −(i�c + κ )〈b̂〉 − igq〈σ̂q−〉 − igb〈σ̂b−〉, (29d)

d〈σ̂b−〉
dt

= −
(

i�b + γa

2

)
〈σ̂b−〉 − igb〈b̂〉. (29e)

More precisely, this linearized (and complete) set of equa-
tions is derived under the assumption that the strength, �,
of the laser driving the QD is sufficiently small that the
system is only weakly excited and the QD and atom remain
primarily in their ground states throughout the evolution. In
particular, to arrive at Eqs. (29a)–(29e) we have invoked the
approximations 〈σ̂iz〉 ≈ −1, 〈σ̂azâ〉 ≈ −〈â〉, 〈σ̂bzb̂〉 ≈ −〈b̂〉,
and 〈σ̂b+σ̂a−â〉 ≈ 〈σ̂a+σ̂b−â〉 ≈ 0, where 〈σ̂iz〉 = 〈σ̂i+σ̂i−〉 −
〈σ̂i−σ̂i+〉 is the mean inversion of a transition within the QD
or atom.

We are interested in the steady-state behavior and therefore
set the time derivatives in Eqs. (29a)–(29e) to zero. For γ =
γq = γa and �c,q,a,b = 0, a relatively simple set of algebraic
equations is found for the following expectation values of the
system operators at steady state:

〈σ̂q−〉ss = −2i�

γ
(
1 + 2Cq

[
1

1+2Ca
+ 1

1+2Cb

]) , (30a)

〈σ̂a−〉ss = −2gqga

κγ (1 + 2Ca)
〈σ̂q−〉ss, (30b)

〈σ̂b−〉ss = −2gqgb

κγ (1 + 2Cb)
〈σ̂q−〉ss, (30c)

〈â〉ss = −igq

κ (1 + 2Ca)
〈σ̂q−〉ss, (30d)

〈b̂〉ss = −igq

κ (1 + 2Cb)
〈σ̂q−〉ss. (30e)

Here we have defined the cooperativities Cq ≡ g2
q/(κγ ), Ca ≡

g2
a/(κγ ), and Cb ≡ g2

b/(κγ ). Equations (30a)–(30e) reveal
how directional emission is induced in the system at steady
state. It is apparent that both 〈σ̂a−〉ss and 〈σ̂b−〉ss are perfectly
out of phase with 〈σ̂q−〉ss, which again implies that the radia-
tion from the quantum dot will interfere destructively with the
reradiation from the atom. This is essentially the same effect
that was found to give rise to the directional photon emission
that was addressed in Sec. III. As the atomic coupling to
mode a of the cavity is much larger than that for mode b, this
interference effect will be larger within mode a and emission
from this mode will be largely suppressed.

To study this effect and others in more detail analytically,
we can look more carefully at the results (30a)–(30e) in cer-
tain limits of interest. First, let us consider the case of no atom
(Ca = Cb = 0) and 2Cq � 1. Then

〈σ̂q−〉0
ss = − 2i�

γ (1 + 4Cq )
� − i�

2γCq
, (31)

and

〈â〉0
ss = 〈b̂〉0

ss = − igq

κ
〈σ̂q−〉0

ss � − �

2gq
. (32)

The output photon fluxes from the two cavity modes are then

�0
a,ss = 2κ〈â†â〉0

ss � 2κ
∣∣〈â〉0

ss

∣∣2 � �2

4g2
q

, (33)

�0
b,ss = �0

a,ss � �2

4g2
q

. (34)

Now, consider the case in which the atom is coupled with
2Ca � 1 and Cq,Ca � Cb (and, again, 2Cq � 1). We find

〈σ̂q−〉ss � − i�

2γCq
2(1 + 2Cb). (35)

We note immediately that the QD polarization is a factor of
2(1 + 2Cb) larger than for the no-atom case. Meanwhile, for
the cavity field amplitudes we find

〈â〉ss � − �

gq

1 + 2Cb

2Ca
� 0, (36)

and

〈b̂〉ss � − �

gq
. (37)

The amplitude 〈b̂〉ss is a factor of 2 larger than for the no-atom
case. This means that the (coherent) output photon flux from
mode b is enhanced by a factor of 4 over its corresponding no-
atom value and, further, that the total output photon flux from
the system through the cavity modes is, for a given driving
strength of the QD, doubled, i.e., �a,ss + �b,ss = 2(�0

a,ss +
�0

b,ss). Moreover, the directionality, defined for the continuous
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FIG. 4. Mean steady-state intracavity photon numbers 〈na〉 and
〈nb〉, ratios Ra and Rb, directionality Dss, and second-order in-
tensity correlation function g(2)

b (0) as a function of the driving
strength of the QD for �b/κ = 0 (left column) and �b/κ =
0.1 (right column). Other parameters are {gq, ga, gb, γq, γa}/κ =
{0.5, 0.5, 0.5/

√
45, 0.01, 0.01} and �c,q,a = 0. All results shown in

this figure have been obtained by solving Eq. (1) with the Hamilto-
nian (5).

driving case by

Dss ≡ �b,ss − �a,ss

�b,ss + �a,ss
, (38)

is essentially equal to 1 in the limit considered.
To back up these approximate analytical calculations, in

Fig. 4 we plot the steady-state intracavity photon numbers
〈na〉 = 〈â†â〉 and 〈nb〉 = 〈b̂†b̂〉 (equivalent to the output pho-
ton fluxes from the two modes scaled by 2κ), and the
directionality Dss, computed numerically from the full master
equation (1), as a function of the driving strength � of the QD
and for two values of the detuning of the atomic transition
|g〉 ↔ |−〉 from the driving laser frequency, �b = ω− − ωL.
We also plot the ratios of the output fluxes from each cavity
mode in the presence of the atom to the total output flux from
both modes in the absence of the atom, i.e., we plot

Ra = �a,ss

�0
a,ss + �0

b,ss

, Rb = �b,ss

�0
a,ss + �0

b,ss

. (39)

Finally, we plot the second-order intensity correlation func-
tion g(2)

b (0), which we will discuss in more detail in the next
section.

For the parameters of Fig. 4, we have Cq = Ca = 25 and
Cb = 0.556. We see that there is good qualitative agreement
with the predictions of the approximate analysis given above.
In particular, the output photon flux from mode b (a) is sub-
stantially enhanced (reduced) with the addition of the atom.
Furthermore, this enhancement does indeed take it well be-
yond the no-atom total output flux over much of the range of
driving strengths considered, while good directionality is also
demonstrated.

These effects are noticeably further enhanced with the ad-
dition of a finite detuning, �b/κ = 0.1, leading also to better
quantitative agreement with the predictions of the linear anal-
ysis above. We note that for �b/κ = 0 the numerical solutions
of the master equation reveal a significant population of the
atomic state |−〉 for the driving strengths considered. With
�b/κ = 0.1, however, this population becomes negligible.
Some insight is offered by modifying the analysis above to
allow for finite �b. In particular, in doing so one finds, for
2�b/γa � 1 (in Fig. 4, for �b/κ = 0.1 we have 2�b/γa = 20),
that 〈b̂〉ss � −�/gq once again, but

〈σ̂b−〉ss = − igb

i�b + γa/2
〈b̂〉ss � gb�

gq�b
� 〈σ̂b−〉�b=0

ss . (40)

The effects described above for weak, continuous
driving—enhanced photon flux from mode b and good
directionality—are also more robust with respect to QD and
atomic spontaneous emission than the single-photon pulse
regime of the previous section. This is demonstrated in Fig. 5,
where the results shown are obtained for the same parameters
as in Fig. 4 except that now we set γq/κ = γa/κ = 0.05. Note
that for these values we have Cq = Ca = 5. (Note also that
fairly similar results are obtained with still larger spontaneous
emission rates, i.e., with γq/κ = γa/κ = 0.1, for which Cq =
Ca = 2.5.)

B. Photon statistics and correlations

Our analysis is concluded by briefly addressing the photon
statistics of the fields emitted from the cavity. We are therefore
interested in evaluating the following second-order correlation
functions:

g(2)
a (t, τ ) = 〈â†(t )â†(t + τ )â(t + τ )â(t )〉

〈â†(t )â(t )〉2
, (41a)

g(2)
b (t, τ ) = 〈b̂†(t )b̂†(t + τ )b̂(t + τ )b̂(t )〉

〈b̂†(t )b̂(t )〉2
, (41b)

in the steady-state limit t −→ ∞. Equation (41a) [(41b)] then
gives the relative change in likelihood for the detection of a
photon from mode a [b] of the cavity at time τ later than
an initial photon detection from mode a [b] at time t . To
simplify notation, the parameter t is dropped from Eqs. (41a)
and (41b), g(2)

a,b(τ ) = g(2)
a,b(t, τ ), where it should be understood

that the system resides in its steady state at time τ = 0.
Noteworthy behavior of the photon statistics is shown in

Figs. 4 and 5, where the second-order correlation function
at zero time delay for mode b is plotted as a function of the

063719-8



INTERFERENCE-INDUCED DIRECTIONAL EMISSION … PHYSICAL REVIEW A 105, 063719 (2022)

FIG. 5. Mean steady-state intracavity photon numbers 〈na〉 and
〈nb〉, ratios Ra and Rb, directionality Dss, and second-order intensity
correlation function g(2)

b (0) as a function of the driving strength
of the QD for �b/κ = 0 (left column) and �b/κ = 0.1 (right col-
umn). Other parameters are the same as for Fig. 4, except that now
{γq, γa}/κ = {0.05, 0.05}. All results shown in this figure have been
obtained by solving Eq. (1) with the Hamiltonian (5).

driving strength of the QD. These results have been obtained
from a numerical simulation of the full master equation (1)
and predict that strong antibunching of the photons emit-
ted from mode b of the cavity can be expected. In order
to understand this behavior more deeply, we derive analytic
expressions for both g(2)

a,b(0) for the case of perfect resonance
(�c,q,a,b = 0) in the weak-driving limit in Appendix. From
this analysis we arrive at the following expressions:

g(2)
a (0) = C2

a (1 + 2Ca)2
γ 2

q

(�q + �a)2

×
[

1 + 2Cq

(
1

1 + 2Ca
+ 1

1 + 2Cb

)]2

, (42a)

g(2)
b (0) = C2

b (1 + 2Cb)2
γ 2

q

(�q + �b)2

×
[

1 + 2Cq

(
1

1 + 2Ca
+ 1

1 + 2Cb

)]2

. (42b)

Here we can see that within the regime of most inter-
est to us (i.e., 2Cq � 2Ca � 1 > Cb), Eqs. (42a) and (42b)
predict extreme bunching of photons emitted from mode a
[g(2)

a (0) � 1] and antibunching of photons emitted from mode
b [g(2)

b (0) < 1]. This qualitatively matches the behavior that is
observed in Figs. 4 and 5 [the corresponding plot for g(2)

a (0) is
not displayed here, as it takes values which are several orders
of magnitude larger than g(2)

b (0)].
The analysis that is performed to arrive at Eqs. (42a)

and (42b) give us insight into the mechanism behind this
phenomenon, which is similar to that which gives rise to
cavity-enhanced resonance fluorescence in the weak excita-
tion limit (see, e.g., Sec. 13.2.3 of Ref. [30]). Essentially,
this phenomenon occurs because the system’s steady state is
approximately pure given a sufficiently weak-driving laser,
allowing interference to occur between the excited-state am-
plitudes of the QD and atom.

In a similar manner to what is observed in the previous sec-
tions, where ideally Ca � Cb, more of the atomic population
resides in the |+〉 state compared to the |−〉 state. Given a
pure steady state |ψss〉 as mentioned above, the reduced state,
|ψa(τ = 0)〉 = â|ψss〉/

√
〈ψss|â†â|ψss〉, that is, the state condi-

tioned on the emission of a photon from mode a, is therefore
dominated by contributions from the excited-state manifold.
This occurs as a result of destructive interference between
emission from the excited state of the QD and that of the atom
coupling to mode a. This in turn makes it more likely for a
subsequent emission of another photon from mode a to occur,
giving rise to strong photon bunching. This is the opposite

for the reduced state |ψb(τ = 0)〉 = b̂|ψss〉/
√

〈ψss|b̂†b̂|ψss〉,
where there is less interference between the QD and atom
amplitudes simply because there is less atomic population
residing in the excited state coupled to mode b. |ψb(τ = 0)〉
is hence dominated by the ground state, therefore requiring
the system to evolve for some time before reexciting and
emitting a subsequent photon from mode b, giving rise to
the antibunching behavior observed from this mode. For more
details of this mechanism, we refer the reader to Appendix.
Of course, this analysis only holds in the weak-driving limit,
where the steady state of the system is approximately pure.
Regardless, we believe that this explanation is sufficient to
provide an intuitive view of the complex behavior that is
observed in more general parameter regimes.

V. DISCUSSION

We have demonstrated that directional coupling from an
unpolarized emitter to a circulating cavity can be induced
by coupling another emitter chirally to the same cavity. Our
analysis reveals that in both the single-excitation regime and
the steady state of the driven regime, the mechanism behind
the directionality is a quantum interference effect, wherein
the field amplitude of one of the modes (and therefore in
one direction) is strongly suppressed. For an ideal system,
and assuming the coupling asymmetry of atomic cesium,
directionalities well in excess of 90% can be achieved. Fur-
thermore, in the continuous driving case we find that the
intensity of the directional emission is also significantly en-
hanced compared to emission from the QD in the absence

063719-9



OSTROWSKI, PARKINS, SHIRANE, AND SADGROVE PHYSICAL REVIEW A 105, 063719 (2022)

of the atom, and that the directional emission is still strongly
antibunched.

We now make several comments related to the scheme
presented above. Firstly, an important point to consider is the
experimental realizability of the proposal. In recent years, a
number of experimental studies have demonstrated large Pur-
cell factors, typically for the case of photonic crystal cavities
[31]. Although resonators with circulating geometries have
not typically been used for such demonstrations, there is no
a priori reason why large Purcell enhancement cannot be
achieved in such a configuration, and the large quality factors
and relatively small mode volumes necessary have already
been demonstrated in a number of cases [32,33]. In addition,
because the scheme presented here works in the bad-cavity
regime, it should also be possible to use it with plasmonic
resonators, which typically exhibit very fast decay times (large
κ) along with large coupling rates.

Another important point to note, as mentioned in the Intro-
duction, is that there is no need for the scheme to use just a
single atom. Indeed, collective coupling of optically pumped
atoms to the resonator can alleviate the need for large single-
atom couplings, due to the collective enhancement factor of√

N which is applied to the single-atom coupling rate [26],
and at the level of a single excitation, or for weak continuous
driving, the response of an atomic ensemble is the same as
for a single atom. Additionally, the application of a magnetic
field as shown in Fig. 1 is not strictly necessary to stabilize the
atomic spin states, as it was recently shown in Ref. [34] that
chiral atomic coupling can also be implemented using tensor
light shifts.

More speculatively, it may be possible to further simplify
the setup by using emitters which have structural related chi-
rality at room temperature. Particles such as carbon nanotubes
[35,36] and transition metal dichalcogenides [37] exhibit cir-
cular dipole moments at room temperature but are not in
general single-photon emitters. It might be possible, therefore,
to replace the atoms in our current work with such nano-
materials. Indeed, research regarding the coupling of these
materials is already underway [37–39].

In summary, directional emission of single photons en-
abled by chiral coupling between quantum emitters and
nanophotonic devices is a technique with important applica-
tions to future quantum information technologies. However,
given that it requires a polarized emitter dipole moment, its
use is typically restricted to ultracold systems. Nonetheless,
as we show here, by using a circulating cavity, directional
emission can effectively be transferred from a chirally coupled
emitter to a randomly polarized emitter, even when both emit-
ters are coupled to the resonator in the bad-cavity regime. We
anticipate that this result may allow the easing of requirements
on the types of emitters which can be used in directional
emission schemes.
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APPENDIX: DETAILS OF ANALYSIS
OF PHOTON STATISTICS

Here, we provide the mathematical details for the deriva-
tion of Eqs. (42a) and (42b), shown in the main text, which
closely follows the method that is outlined in Sec. 13.2.3 of
Ref. [30]. As stated earlier, we assume for simplicity that
the driving laser is on resonance with both cavity modes, the
QD and both atomic transitions (�c,q,a,b = 0), and that the
strength of the laser is also weak enough such that the steady
state of the system can be considered to be approximately
pure. Furthermore, we specialize to the bad-cavity regime in
order to adiabatically eliminate the cavity modes from the
system dynamics. At the level of the master equation, this
may be achieved by tracing over the cavity modes in Eq. (1)
to obtain a master equation for the reduced density operator
ρ̂r (t ) that describes an effective interaction between the QD
and atom:

d ρ̂r

dt
= − i�[σ̂q+ + σ̂q−, ρ̂r] + γq

2
D[σ̂q−]ρ̂r

+ γa

2
(D[σ̂a−] + D[σ̂b−])ρ̂r

+ 1

κ
(D[gqσ̂q− + gaσ̂a−] + D[gqσ̂q− + gbσ̂b−])ρ̂r .

(A1)

The adiabatically eliminated cavity operators (in the Heisen-
berg picture) are expressed in terms of operators acting within
the Hilbert spaces of the QD and atom,

â(t ) = −i

κ
[gqσ̂q−(t ) + gaσ̂a−(t )] + v.f., (A2a)

b̂(t ) = −i

κ
[gqσ̂q−(t ) + gbσ̂b−(t )] + v.f., (A2b)

where v.f. denotes the vacuum field contribution, which
has again been included for completeness but may be ne-
glected for this analysis. With a sufficiently weak-driving laser
strength, �, the state of the system can be expanded as a pure
state,

|ψ (t )〉 = |G, g〉 + α(t )|E , g〉 + β(t )|G,+〉
+ η(t )|G,−〉 + ζ (t )|E ,+〉 + ξ (t )|E ,−〉, (A3)

where we allow for up to two quanta of excitation [note
that the amplitudes α(t ) and β(t ) are not the same as those
shown in Eq. (9)]. The state (A3) will evolve according to a
nonunitary Schrödinger equation,

d|ψ〉
dt

= −iĤ|ψ〉, (A4)

with the non-Hermitian Hamiltonian

Ĥ = �σ̂q+ − iγq

2
σ̂q+σ̂q− − iγa

2
σ̂a+σ̂a− − iγa

2
σ̂b+σ̂b−

− i

κ
(gqσ̂q+ + gaσ̂a+)(gqσ̂q− + gaσ̂a−)

− i

κ
(gqσ̂q+ + gbσ̂b+)(gqσ̂q− + gbσ̂b−). (A5)
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From this we may derive equations of motion for the com-
plex amplitudes appearing in Eq. (A3),

α̇ = −�qα − gq

κ
(gaβ + gbη), (A6a)

β̇ = −�aβ − gagq

κ
α, (A6b)

η̇ = −�bη − gbgq

κ
α, (A6c)

ζ̇ = −(�q + �a)ζ − i�β, (A6d)

ξ̇ = −(�q + �b)ξ − i�η, (A6e)

where �q = γq

2 (1 + 4Cq ), �a = γa

2 (1 + 2Ca), and �b =
γa

2 (1 + 2Cb). Solving these equations at steady state yields

αss = −i�

�q − g2
q

κ2

( g2
a

�a
+ g2

b
�b

) , (A7a)

βss = −gagq

�aκ
αss, (A7b)

ηss = −gbgq

�bκ
αss, (A7c)

ζss = i�

(�q + �a)

gagq

�aκ
αss, (A7d)

ξss = i�

(�q + �b)

gbgq

�bκ
αss. (A7e)

Within this approximation, the correlation functions (41a)
and (41b) are given by

g(2)
a (τ ) = 〈ψa(τ )|â†â|ψa(τ )〉

〈ψss|â†â|ψss〉 , (A8a)

g(2)
b (τ ) = 〈ψb(τ )|b̂†b̂|ψb(τ )〉

〈ψss|b̂†b̂|ψss〉
, (A8b)

where |ψss〉 is the state vector (A3) at steady state and
|ψa,b(τ )〉 are found by solving Eq. (A4) subject to the initial
condition,

|ψa(τ = 0)〉 = â|ψss〉√
〈ψss|â†â|ψss〉

, (A9a)

|ψb(τ = 0)〉 = b̂|ψss〉√
〈ψss|b̂†b̂|ψss〉

, (A9b)

i.e., the steady state, |ψss〉, conditioned on the emission of a
photon from mode a and mode b of the cavity, respectively;
these are commonly referred to as reduced states.

Expressions for the correlation functions are now found in
the limit τ = 0. Writing out Eqs. (A9a) and (A9b) explicitly,
we find

|ψa(τ = 0)〉

= 1√
na

[(gq

κ
αss + ga

κ
βss

)
|G, g〉

+ gq

κ
ζss|G,+〉 + gq

κ
ξss|G,−〉 + ga

κ
ζss|E , g〉

]
, (A10a)

|ψb(τ = 0)〉

= 1√
nb

[(gq

κ
αss + gb

κ
ηss

)
|G, g〉

+ gq

κ
ζss|G,+〉 + gq

κ
ξss|G,−〉 + gb

κ
ξss|E , g〉

]
, (A10b)

with

na ≡ g2
q

κ2
|αss + (ga/gq )βss|2 +

(
g2

q + g2
a

κ2

)
|ζss|2 + g2

q

κ2
|ξss|2,
(A11a)

and

nb ≡ g2
q

κ2
|αss + (gb/gq)ηss|2 +

(
g2

q + g2
b

κ2

)
|ξss|2 + g2

q

κ2
|ζss|2.
(A11b)

From this we obtain the second-order correlation functions
with zero time delay,

g(2)
a (0) = g2

ag2
q

κ4

|ζss|2
n2

a

, (A12a)

g(2)
b (0) = g2

bg2
q

κ4

|ξss|2
n2

b

, (A12b)

which, for greater clarity, may be alternatively expressed in
the forms given in Eqs. (42a) and (42b) in the main text.

To conclude this Appendix, we briefly elaborate on the
argument provided in the main text regarding the mechanism
giving rise to the bunching and antibunching behavior of
mode a and b, respectively. Drawing the reader’s attention
to the reduced states (A10a) and (A10b), we can see that the
ground state |G, g〉 contributes very little to the reduced state
|ψa(τ = 0)〉, as its amplitude essentially vanishes, i.e.,

gq

κ
αss + ga

κ
βss = gq

κ

1

1 + 2Ca
αss � 0, (A13)

for 2Ca � 1. This occurs due to interference between the
emission from the excited states |E , g〉 and |G,+〉 into mode
a. As a result, |ψa(τ = 0)〉 is dominated by the amplitudes
from the three excited states |E , g〉, |G,+〉, and |G,−〉, mak-
ing it very likely for a subsequent photon to be emitted from
mode a, conditioned on the initial emission of a photon from
this mode.

In contrast, the opposite is the case for the state
|ψb(τ = 0)〉, as the amplitude of the ground state |G, g〉 is
in fact the dominant amplitude in this reduced state. This is
because |G,−〉 contributes very little to the steady state |ψss〉,
so the interference between the emission from |G,−〉 and
|E , g〉 into mode b is nowhere near as prevalent compared to
what is seen in mode a with |ψa(τ = 0)〉. This in turn gives
rise to the antibunching behavior observed in mode b of the
cavity.
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