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Experimental preparation of generalized cat states for itinerant microwave photons
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Generalized cat states represent arbitrary superpositions of coherent states, which are of great importance
in various quantum information processing protocols. Here we demonstrate a versatile approach to creating
generalized itinerant cat states in the microwave domain, by reflecting coherent-state photons from a microwave
cavity containing a superconducting qubit. We show that with a coherent control of the qubit state, a full control
over the coherent-state superposition can be realized. The prepared cat states are verified through quantum state
tomography of the qubit-state-dependent reflection photon field. We further quantify quantum coherence in the
prepared cat states based on the resource theory, revealing a good experimental control on the coherent-state
superpositions. The photon number statistic and the squeezing properties are also analyzed. Remarkably, fourth-
order squeezing is observed in the experimental states. Those results open up new possibilities of applying
generalized cat states for the purpose of quantum information processing.

DOI: 10.1103/PhysRevA.105.063717

I. INTRODUCTION

Coherent states are regarded as quasiclassical states with
minimum uncertainties. Preparing superpositions of a co-
herent state is of widespread interest to explore such an
intriguing quantum phenomenon for macroscopically distinct
states [1–15]. Specifically, equal superpositions of coherent
states |α〉 ± |−α〉 are known as cat states, in deference to
Schrödinger’s famous thought experiment [16]. Accordingly,
arbitrary superpositions of coherent states are commonly
termed as generalized cat states [14], which serve as impor-
tant quantum resources for various continuous-variable-based
quantum information processing protocols, including quan-
tum communication [17,18], quantum computation [19–22],
and quantum metrology [23,24]. Even though the cat states
are known to be delicate, they have been demonstrated to be a
powerful encoding scheme for the implementation of quantum
error correction [25–27].

Schrödinger’s cat state is not necessarily confined in a
closed box, but could take a propagating mode. Itinerant
cat states of photons have been proposed to be used as
carriers of quantum information through a lossy channel
[18,28] or for fault-tolerant quantum computation [29,30].
Generalized itinerant cat states are originally prepared with
linear optics in a nondeterministic approach by subtracting a
single photon from a squeezed vacuum and coherent displace-
ment operations [31]. A deterministic preparation requires a
cavity quantum electrodynamics (QED) system, with which
odd and even cat states have been successfully prepared by
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either releasing a stationary cat from the cavity as propagating
modes [13] or reflecting coherent-state photons from a cavity
containing a qubit [15,32]. The latter scheme is essentially a
variation of Duan-Kimble scheme for optical quantum com-
putation [33], which has been broadly used in the quantum
nondemolition measurement of a single photon [15,33–36],
realizing a controlled-phase gate between an atomic and a
photonic quantum bit [37,38] or between two photonic quan-
tum bits [33,39], and generating remote qubit entanglement
[40,41]. Notably, generalized cat states in the optical domain
have been successfully prepared with this scheme [14].

In this work, we have prepared generalized itinerant cat
states in the microwave domain with the above-mentioned
scheme. Coherent-state photons are reflected from a mi-
crowave cavity containing a superconducting qubit. A full
control over the coherent-state superposition can be realized
by a coherent control of the qubit state. Quantum super-
positions are verified with quantum state tomography and
further quantified with a quantum coherence resource the-
ory. The prepared states exhibit distinct nonclassical features
in the statistical properties of the photon field, demonstrat-
ing a well-controlled evolution of the reflected photon field
from a super-Poissonian distribution to a sub-Poissonian dis-
tribution, or from antisqueezing to squeezing. In particular,
fourth-order squeezing is observed in the superposition states.
Those results demonstrate an important toolbox for quantum
information processing protocols based on the cat states.

II. METHODS

We use a three-dimensional (3D) microwave cavity disper-
sively coupled to a superconducting transmon qubit, for which
the Hamiltonian can be written as H/h̄ = (ωc + χσz )a†a +
ωqσz/2, where a (a†) is the annihilation (creation) operator of
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FIG. 1. The protocol for the generalized cat-state preparation.
(a) The pulse sequence for the preparation of generalize cat states.
Initially, the qubit is prepared to a superposition state (|0〉 + |1〉)/

√
2,

and coherent-state microwave photons are sent to the cavity. The
reflected photons would acquire a conditional phase depending
on the qubit state. The qubit is further rotated with Rθq (ξ ) =
exp[−i ξ

2 (σx sin θq − σy cos θq )], and projected to either |0〉 or |1〉
with a projective measurement. The reflected photons conditioned
on the qubit state either in |0〉 or |1〉 would be a superposition of
coherent states. (b) The measured cavity reflection spectra when
the qubit is in either |0〉 (blue) or |1〉 (red). In the experiment, we
tune the cavity linewidth to meet κ ∼ 2|χ |. The resulting (c) phase
difference of the qubit-state-dependent reflections reaches π at the
bare cavity frequency ωc. The dots are the measured results and the
solid lines are the theoretical fitting results. The dashed line indicates
the frequency of the input photons.

the cavity mode, σz is Pauli operator of the qubit, ωc represents
the cavity frequency, ωq is the qubit frequency, and χ is
dispersive shift induced by the interaction between the qubit
and the cavity. As shown in Fig. 1(b), the cavity reflectance
depends on the state of the qubit due to the dispersive term,
resulting in a phase difference of the cavity reflectance when
the qubit is in |0〉 and in |1〉. In the experiment, we tune the
total cavity line width κtot to approximately 2|χ | to realize a
phase difference of π at ωc, as illustrated in Fig. 1(c).

The protocol for the generation of generalized itinerant cat
states in the microwave domain is shown in Fig. 1(a). The
qubit initially takes a quantum superposition (|0〉 + |1〉)/

√
2.

When a coherent-state microwave pulse is sent to the cavity,
the reflected photons would acquire a conditional phase shift
depending on the qubit state, and thus the system would be in
a Schrödinger cat state expressed as [42]

(|0〉|α〉 + |1〉|−α〉)/
√

2. (1)

Such a photon-qubit entangled state serves as the basis for
the generation of generalized cat states. If an arbitrary ro-
tation Rθq (ξ ) = exp[−i ξ

2 (σx sin θq − σy cos θq)] is applied on
the qubit, and then the qubit state is projected to either
|0〉 or |1〉 with a projective measurement, we would have a

qubit-state-dependent photon state as

|ψ0〉 = N

(
cos

ξ

2
|α〉 + sin

ξ

2
e−iθq |−α〉

)
,

|ψ1〉 = N

(
− sin

ξ

2
eiθq |α〉 + cos

ξ

2
|−α〉

)
, (2)

where N represents a suitable normalization factor. It can
be seen that ξ and θq control the weight and phase of the
coherent-state superposition, respectively. Specifically, with
ξ = π/2 and θq = 0, we would have an odd or even cat state
of microwave photons, |ψe/o〉 = N (|α〉 ± |−α〉), conditioned
on the qubit state of either |0〉 or |1〉. If taking ξ = π/2 and
θq = π/2, we would have the so-called Yurke-Stoler (YS)
state [43] expressed as |ψYS〉 = N (|α〉 ± e−iπ/2|−α〉). The
YS state differs from the odd or even cat state only by a super-
position phase, but shows distinctly different photon number
statistics, as discussed later.

Before being acquired with a homodyne setup, the reflected
photons are successively amplified by a cascade amplifier
circuit containing a Josephson junction parametric amplifier
(JPA), a high-electron-mobility-transistor amplifier and two
microwave amplifiers at room temperature. The JPA is work-
ing in a phase-preserving mode [44,45] with a gain of 16 dB
around the cavity frequency, yielding an overall circuit de-
tection efficiency 1/(nnoise + 1) = 20% with a noise photon
number nnoise = 4. In this way, we record the quadrature
distribution of the qubit-state-dependent reflection signal and
calculate its moments up to the sixth order. The quantum
state of the reflected photons can be reconstructed from the
moments with a maximum-likelihood method [46]. It is worth
noting that statistical features of the photon field, such as
photon number distribution and squeezing, can be directly
extracted from the calculated moments [46].

III. RESULTS

A. Generalized cat states

Following the protocol mentioned above, we experimen-
tally showcase the preparation of arbitrary superpositions of
two coherent states with opposite amplitudes. It is impor-
tant to note that in the presence of finite cavity loss, the
coherent-state superposition phase θ deviates from the qubit
superposition phase θq, with θ − θq = 0.125π corresponding
to α = 1.07 in the experiment. Detailed discussions can be
found in Appendix D. In Figs. 2(a) and 2(b), we present
the reconstructed Wigner functions of the reflected itinerant
microwave photons conditioned on the qubit state in |0〉 and
|1〉, with varied azimuthal angles θ and polar angles ξ of
the coherent-state superposition. The negative-value regions
in the Wigner functions characterize quantum coherence for
the prepared states, which are of no classical explanation.
By scanning ξ from 0 to π/2 and using θ = 0, the re-
flected photon state changes continuously from a coherent
state to cat states with equivalent distributions on |α〉 and
|−α〉, as expected from Eq. (2). When varying θ from 0 to π

while keeping ξ = π/2, the measured photon state gradually
evolves from an even cat state to an odd cat state conditioned
on the qubit state in |0〉, or vice versa for the qubit state in |1〉,
indicating a well-controlled superposition phase. Specifically,
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FIG. 2. Experimental Wigner function of the generalized cat
states. For varied rotation angles ξ and θ of the coherent-state
superposition, the measured Wigner functions are of the reflected
itinerant microwave photons conditioned on the qubit state in either
|0〉 or |1〉. We choose the coherent-state amplitude α = 1.07. (a) The
results when scanning ξ from 0 to π/2, while keeping θ = 0. The
reflected photon state gradually evolves from a coherent state to an
equal superposition of two coherent states with opposite amplitudes,
known as the even or odd cat state when the qubit state is in |0〉 or |1〉.
(b) The results when varying θ from 0 to π , while keeping ξ = π/2.
The phase evolution of the cat state can be seen from the change of
the interference fringes. Conditioned on the qubit state in |0〉 (or |1〉),
the measured odd (even) cat state continuously evolves to an even
(odd) cat state. The fidelities of the experimentally reconstructed
state compared with the corresponding ideal state are labeled in each
figure.

with θ = π/2, we obtain the YS states, characterized by the
unsymmetrical interference patterns [43,47]. It is known that
quantum interference of the coherent components alters the
photon statistics, and thus conceivably results in different par-
ities of the superposition state. In the experiment, we observe
a continuous evolution from a sub-Poissonian photon distri-
bution to a super-Poissonian one with a varied θ from 0 to π ,
which agrees well with the theory and manifests good control
over the photon number statistics of the superposition states.
More details can be found in Appendix E 3. Those results
unambiguously manifest the preparation of arbitrary quantum
superposition of coherent states.

The size of the superposition state can be controlled by the
amplitude of the coherent components α. The superposition
of coherent states with arbitrary optical phases can also be
prepared with the current scheme. The optical phases, which
are defined as the phase difference between two coherent
components, are determined by the signal frequency, which in
principle can be changed from π to 0 through a detuning from
the bare cavity resonance ωc. We showcase the preparation of
superposition containing two coherent states with a relative
optical phase of 0.9π with a detuning of 0.7 MHz. Details of
those results can be found in Appendix E 2.

FIG. 3. Quantum coherence and photon statistics of the general-
ized cat states. (a) α coherence for the odd and even cat states with
varied sizes. (b) α coherence of the superposition states conditioned
on the qubit state in |0〉 and |1〉, when varying ξ from 0 to π/2 while
keeping θ = 0. The error bar is given by a standard deviation of
the measured data, some of which are smaller than the size of the
markers. The blue solid lines and the red dashed lines are theoretical
results based on the corresponding ideal states conditioned on the
qubit state in |0〉 and |1〉, respectively. The blue dot-dashed lines
and the red dotted lines are theoretical results considering possible
experimental loss and decoherence conditioned on the qubit state in
|0〉 and |1〉, respectively. The blue squares and the red circles show
the experimental data for the states conditioned on the qubit state in
|0〉 and |1〉, respectively.

The infidelity of the prepared cat states mainly originates
from cavity loss during the reflection process, qubit decay
and dephasing, and qubit state measurement error. As for our
experiment, cavity loss is the dominant error source for most
of the cases, which contributes more than 60% of infidelity
to the experimentally prepared odd and even cat states with
α = 1.07. Considering that the cavity internal loss rate κi/2π

is about 0.22 MHz in the experiment, which is substantially
larger than the state-of-the-art values [48], an improved mi-
crowave cavity with smaller κi is preferred to achieve better
fidelity, especially for cat states with large α. A detailed dis-
cussion of the error model and error budget can be found in
Appendix D.

B. Quantum coherence of the cat states

To quantify the quantum superposition in the prepared
states, we analyze the experimental states with a recently
developed quantum coherence resource theory [49,50]. The
resource theory essentially measures the amount of co-
herence introduced by superposition or entanglement in a
given quantum state. As for coherent-state-based superpo-
sition, the idea of α coherence was introduced based on
the Glauber-Sudarshan P distribution, assisted by proper or-
thonormalization of the basis set and state decomposition
[50]. In this definition, coherent states or their statistical
mixtures are taken as classical states without coherence; cor-
respondingly, one would have α coherence as 0.

In Figs. 3(a) and 3(b), we present α coherence for the
experimental states with varied α and ξ . The nonzero values
of α coherence characterize the nonclassical property of the
prepared states. When the prepared state evolves from a co-
herent state to an odd or even cat state by varying ξ from 0 to
π/2, one can see a continual growth of α coherence, as shown
in Fig. 3(b). Theoretical results based on the error model are
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basically in line with the trend of experimental data, which
verifies that the deviations between experimental states and
their corresponding ideal states are mainly caused by cavity
loss and qubit-related imperfections that induced decoherence
of the superposition states. This decoherence effect can also
be reflected from the decreasing trend of α coherence of odd
and even cat states with larger size, as shown in Fig. 3(a).
This is because the coherence of the cat states is negatively
related with α as exp(−Lα2), where L is determined by cav-
ity loss. We find that α coherence is numerically sensitive
to the off-diagonal elements of the density matrix, and thus
the noticeable deviation between the theoretical curve and
experimental data is attributed to the daily fluctuation in qubit
coherence.

C. Squeezing

Squeezing refers to a reduced quantum fluctuation for a
certain quadrature of the photon field than that in the vacuum
state or coherent state, which is important for various appli-
cations in quantum metrology [51,52]. Quantum interference
of the coherent-state components could result in squeezing of
the reflected photon fields. To quantify the squeezing effect
in the experimentally prepared states, we use a generalized
squeezing parameter defined as [47]

S(N )
p = 〈(�p̂)N 〉 − CN/2(N − 1)!!

CN/2(N − 1)!!
, (3)

where N is the order of squeezing, C = 1/4 is the constant
of the commutation relation, and 〈(�p̂)N 〉 is the N th-order
moment of the quadrature operator in the p direction, which
is the expected squeezing direction for the experimental con-
figuration. S(N )

p < 0 indicates the existence of squeezing, and
the maximum squeezing corresponds to S(N )

p = −1. We shall
only consider the moments of even order since otherwise we
would always have S(N )

p > 0 [47]. Second-order squeezing has
been extensively studied with a broad spectrum of quantum
state, describing a smaller variance of the field distribution
than that of a coherent state. Higher-order squeezing with
N > 2 essentially describes a reduced quantum fluctuation
for higher-order moments of the photon field, allowing much
more fractional noise reduction than lower-order squeezing
[53].

Previous pioneering works demonstrate that second-order
squeezing can be observed in the even cat state with small α

[54]. Figure 4(a) shows S(2)
p with varied α for the experimental

states conditioned on the qubit state in |0〉, which corresponds
to even cat states with varied sizes. Second-order squeezing
is observed for all of the experimental states as expected.
Moreover, a gradually declined squeezing level is observed
in Fig. 4(b) when the experimental state evolves from an
even cat state to a coherent state, which is consistent with
the theory. Additionally, when varying θ from 0 to π while
keeping ξ = π/2 [Fig. 4(c)], we observe a continuous evo-
lution from a squeezed even cat state to an antisqueezed odd
cat state. For the S(2)

p evolution mentioned above, theoretical
results based on the error model are in agreement with the
experimental results, with the deviations mainly originating
from daily fluctuation in qubit coherence.

FIG. 4. Squeezing of the generalized cat states. The second-
order and fourth-order squeezing for the various coherent-state
superpositions conditioned on the qubit state in |0〉, with (a) var-
ied coherent-state amplitude α when keeping ξ = π/2 and θ = 0,
(b) varied population fraction of the two coherent components ξ

when using α = 1.07 and θ = 0, or (c) varied superposition phase θ

when using α = 1.07 and ξ = π/2. S(N )
p < 0 indicates the existence

of squeezing. The scattered plots show the experimental data. The er-
ror bar is given by a standard deviation of the measured data, some of
which are smaller than the size of the markers. The blue dot-dashed
lines and cyan dotted lines are the theoretical results of second-order
and fourth-order squeezing considering possible experimental loss
and decoherence, respectively. The blue solid lines and cyan dashed
lines are the theoretical results of second-order and fourth-order
squeezing of the corresponding ideal states, respectively. The blue
squares and the cyan circles show the experimental results of the
second-order and fourth-order squeezing, respectively.

Prominently, we observe explicit fourth-order squeezing in
the experimental states. As shown in Fig. 4(b), S(4)

p shows
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negative values for the even-cat-like states with varied relative
ratio between |α〉 and |−α〉. Also, in Fig. 4(a), for even cat
states with an equal proportion of two coherent contributions,
fourth-order squeezing can be observed with smaller α. Those
results demonstrate a versatile control on the squeezing of the
photon field with our method.

IV. CONCLUSION

In conclusion, we have experimentally prepared various
kinds of itinerant cat states in the microwave domain by
reflecting coherent-state photons from a cavity containing a
superconducting qubit. The superposition of coherent compo-
nents can be well controlled through a coherent control of
the qubit state. The preparation of generalized cat states is
confirmed via a quantum state tomography on the reflected
photon field, and further quantified in the frame of quantum
coherence resource theory. We note that this method is of great
versatility in controlling the statistical properties of a photon
field, for which we have realized a continuous evolution of the
reflected field from a super-Poissonian distribution to a sub-
Poissonian distribution, or from antisqueezing to squeezing.
Even more, we have observed fourth-order squeezing in the
prepared states. Our results demonstrate a powerful toolbox
for many quantum information processing protocols based on
coherent-state superposition or nonclassical light field statis-
tics [17,18,18–24,28,51,52].
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APPENDIX A: SAMPLE AND MEASUREMENT SETUP

The sample consists of a three-dimensional microwave
cavity made from bulk aluminum, and a superconducting
qubit made from aluminum film on a sapphire substrate [32].
The qubit is placed at the center of the 3D cavity to achieve
strong coupling. The out-coupling rate of the cavity is pre-
cisely tuned by adjusting the length of a one-dimensional
transmission line extended into the cavity, to meet the optimal
phase condition as κtot ∼ 2|χ |, as shown in Fig. 1(b). The
sample is cooled to about 20 mK in a dilution refrigerator for
experiments. A detailed list of the device parameters can be
found in Table I.

The measurement setup is schematically shown in Fig. 5
[32]. Specifically, the cavity reflection signal is succes-
sively amplified by a cascade amplifier circuit containing a

TABLE I. System parameters.

Cavity bare frequency ωc/2π (GHz) 8.6885

Cavity internal loss rate κi/2π (MHz) 0.22

Cavity out-coupling rate κr/2π (MHz) 2.23

Qubit frequency ωq/2π (GHz) 5.2927

Dispersive coupling rate χ/2π (MHz) −1.1

Qubit energy relaxation time T1 (μs) 20

Qubit dephasing time T2 (μs) 6

Qubit readout fidelity 97.0%

JPA gain (dB) 16

Josephson parametric amplifier (JPA) at the base plate, a
high-electron-mobility transistor (HEMT) amplifier at a 4 K
plate, and two microwave amplifiers at room temperature. The
amplified signal is finally acquired by a homodyne setup. The
JPA is working in a phase-preserving mode with the gain
of 16 dB around the cavity frequency, yielding an overall
detection efficiency 1/(nnoise + 1) = 20%, with a noise pho-
ton number nnoise = 4. In this way, we measure the amplified
in-phase and quadrature signals of the reflected photon field,
which can be used for the calculation of moments for the
photon distribution and quantum state tomography, as seen in
the next section.

APPENDIX B: MOMENTS AND QUANTUM
STATE TOMOGRAPHY

1. Photon number calibration

In this cat-state generation scheme, the size of the cat state
is determined by the input coherent state of which the strength
|α|2 is proportional to the input photon flux ṅd . In order to
confirm the size of the cat state, photon flux ṅd is calibrated
with the method introduced in Ref. [35]. This method is based
on the additional qubit dephasing rate �m induced by the AC
Stark shift when the cavity is occupied by a certain number
of photons. With a continuous coherent drive at frequency
ωd applied to the qubit-cavity system, the additional qubit
dephasing rate �m can be expressed as

�m = κtotχ
2

κ2
tot/4 + χ2 + �2

d

(n̄+ + n̄−),

n̄± = κr ṅd

κ2
tot/4 + (�d ± χ )2

, (B1)

where n̄± is the average photon number in the cavity when
the qubit is in |0〉 or |1〉. The detuning between the coherent
driving and cavity frequency, �d = ωd − ωc = −0.1 MHz,
is chosen during calibration. By fitting the relation between
the practical qubit dephasing rate and varied cavity input
signal strength with Eq. (B1), the corresponding photon
flux in the cat-state preparation experiment is figured out as
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FIG. 5. An illustration of the experimental setup.

ṅd = 1.35 ± 0.05 μs−1. Then, by using input-output theory
[55], the size of the prepared cat state in the reflection path
|α| can be calculated as

|α| = √
nr =

∣∣∣∣ iκr

χ + iκtot/2
− 1

∣∣∣∣√ṅd T . (B2)

Here the drive signal is taken resonant with the cavity mode
ωd = ωc, and T is the length of the coherent pulse. In our
experiment, with the length of the coherent pulse T = 1 μs,
the size of the cat state with varied ξ and θq is fixed at |α| =
1.07 ± 0.04, while the even or odd cat state with varied size
|α| is investigated from 0.8 to 1.3.

2. Moments of the photon field and quantum state tomography

As discussed in the last section, our measurement setup
effectively performs a homodyne detection on the propagat-
ing photon modes [46,56]. The two conjugate quadratures
I, Q constitute the complex amplitude S = I + iQ, which is
repeatedly recorded during the experiment. In principle, the
quantum state of the propagating light field can be fully

reconstructed based on the distribution of the measured
quadratures. A practical issue is that the measured quadratures
contain both the signal of reflected photons and the noise
added by the detection chain. Therefore, one has to first ex-
tract the information of the reflected photon field from the
measured quadratures for further state tomography. A detailed
discussion about this method can be found in Ref. [56].

Considering both the amplified cavity reflection and the
added noise, the measured complex amplitude S is equivalent
to the result of the measurement operator Ŝ = â + ĥ†, where
â is the annihilation operator of the reflected microwave pho-
ton mode and ĥ† is the creation operator of the noise mode,
which originates from the added noises of the amplifiers and
the circuit losses [57]. In order to separate the noise from
the signal, the complex amplitude was measured for both the
desired state and the vacuum state, with the measurement op-
erator expressed as Ŝsig = a + h† and Ŝvac = h†, respectively.
Assuming the noise added by the detection chain is indepen-
dent of the photon signal, there is no correlation between the
signal mode a and noise mode h. This means the moments
〈(Ŝ†

sig)mŜn
sig〉 of the complex amplitude with signal, Ssig, can
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be expanded as

〈
(Ŝ†

sig)mŜn
sig

〉 =
m,n∑

i, j=0

(
n

j

)(
m

i

)
〈(â†)iâ j〉〈ĥm−i(ĥ†)n− j〉, (B3)

where 〈ĥm−i(ĥ†)n− j〉 corresponds to the moment of the
measured vacuum state 〈(S†

vac)m−iSn− j
vac 〉. By solving these

equations, the moments of only the signal photon state without
noise, 〈(â†)mân〉, can be obtained.

Further, based on the measured moments, one could re-
construct the density matrix of the itinerant photon field with
quantum state tomography [56]. With the moments in dif-
ferent orders 〈(â†)mân〉 of the measured photon state and
its standard deviations δm,n, a most likely density matrix of
the photon state can be obtained by applying a maximum-
likelihood method. The log-likelihood function is shown as

Llog = −
∑
n,m

1

δ2
m,n

|〈(â†)mân〉 − Tr[ρph(â†)mân]|2. (B4)

Maximizing this log-likelihood function with the physical
constraints ρph � 0 and Trρph = 1, the experiment state
can be consequently reconstructed. In our experiment, the
complex amplitudes of the amplified propagating mode are
sampled by 3 × 107 times. The moments up to 6 order (m +
n � 6) were taken into consideration, and a cutoff photon
number of 11 is used for the reconstruction of the quantum
states.

APPENDIX C: α COHERENCE

The generalized cat states realized in the experiment con-
sist of various kinds of superpositions of two coherent states.
In order to quantify the quantum coherence in the cat states,
especially in the presence of loss, we calculate the α coher-
ence of the prepared states.

As described in Ref. [49], the original proposal of the
coherence in a certain quantum state is discussed in the dis-
crete finite-dimensional case, which is a far cry from the cat
states studied here. Taking the Fock basis {|n〉} to illustrate,
the two coherent-state components would have nonzero co-
herence even larger than that of their superpositions, which
indicates that this quantifier is incongruent to quantify the
superposition-induced quantum coherence here. A recent
work has developed an approach to extend the application
of the existing quantifiers to the arbitrary superposition of
coherent states, through a proper orthonormalization on the
basis set and state decomposition [50]. First, the considered
system A is jointed with an (N + 1)-dimensional auxiliary
system B with an orthonormal basis set {|i〉B} (i = 0, . . . , N),
expanding the target density matrix ρA to a tensor product
ρ

(0)
AB = ρA ⊗ |0〉B〈0|. Then, one could figure out a set of co-

herent states |α(i)〉A, achieving the condition

Tr(|α(i)〉A〈α(i)| ⊗ |0〉B〈0|ρ (i−1)
AB )

= max
α

Tr(|α〉A〈α| ⊗ |0〉B〈0|ρ (i−1)
AB ), (C1)

where ρ
(i)
AB ≡ Uα(i)ρ

(i−1)
AB U †

α(i) and Uα(i) ≡ I ⊗ I +
|α(i)〉A〈α(i)| ⊗ (|i〉B〈0| + |0〉B〈i| − |0〉B〈0| − |i〉B〈i|). After

N unitary transformations, the population originally concen-
trated in the subspace |0〉B〈0| is spread around the total space
with orthogonal components {|α(i)〉A|i〉B}, leaving an almost
zero trace in the subspace |0〉B〈0|. By projecting the trans-
formed density matrix ρ

(N )
AB onto the subspace {|α(i)〉A|i〉B}

with projector �(N ) ≡ ∑N
i=1 |α(i)〉A〈α(i)| ⊗ |i〉B〈i|, the original

density matrix is reconstructed on a coherent-state basis set
as ρα = N (�(N )ρ

(N )
AB �(N ) ), which is now compatible with

the commonly used coherence quantifiers [49]. The amount
of coherence calculated in this density matrix form is called α

coherence. Here we employ the relative entropy as a quantifier
to meter quantum coherence, defining a Cα as

Cα (ρ̂α ) ≡ S
(
ρ̂diag

α

) − S(ρ̂), (C2)

where S(ρ̂ ) = −Tr(ρ̂ log2 ρ̂ ) is the von Neumann entropy.

APPENDIX D: THE LOSS MODEL AND ERROR BUDGET

1. The loss model

In this part, the contribution of cavity loss, finite qubit
lifetime (T1, T2), and qubit-state measurement error to the
infidelity of the generalized cat states is calculated.

Considering finite cavity loss, the qubit-photon entangled
system can be written as (|0〉|αr

0〉|αl
0〉 + |1〉|αr

1〉|αl
1〉)/

√
2. Us-

ing input-output theory [55,58], the reflection mode |αr
0/1〉 and

the loss mode |αl
0/1〉 conditioned on qubit state |0〉(|1〉) can be

written as

αl
0/1 = i

√
κrκi

� ± χ + iκtot/2
αin,

αr
0/1 =

(
iκr

� ± χ + iκtot/2
− 1

)
αin, (D1)

where αin is the amplitude of the input coherent-state photon,
� is detuning between the frequency of the input photon and
the cavity bare frequency, κr is the out-coupling rate of cavity
at the reflection port, and κtot = κi + κr is the total linewidth
of the cavity mode with κi the internal loss rate of the cavity.
In the experiment, in order to engender a π phase shift be-
tween αr

0 and αr
1 when the cavity is driven resonant � = 0,

κr was fine tuned to meet the condition, κ2
r − κ2

i = 4χ2. This
condition can also be rewritten as κtot ≈ 2χ because κi 	 κr .
According to our experimental setup, the amplitude of the
reflection mode and the loss mode is expressed as

αr
0/1 = ±ηαin ≡ α,

αl
0/1 = (1 ± iη)

√
1 − η2

1 + η2
αin ≡ (1/η ± i)

√
1 − η2

1 + η2
α, (D2)

where η = √
(1 − κi/κr )/(1 + κi/κr ). The photon in the loss

mode shall be traced off from the system. After applying an ar-
bitrary rotation, Rθq (ξ ) = exp[−i ξ

2 (σx sin θq − σy cos θq)], the
measured photon state for the qubit at |0〉 and |1〉 would be
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FIG. 6. Fidelities of theoretical prediction for the generalized cat states. The theoretically predicted fidelities for the generalized cat states
conditioned on the qubit state either in |0〉 or in |1〉, with (a) different coherent-state amplitude α and fixed ξ = π/2 and θ = 0, (b) different
superposition phase θ when using α = 1.07 and ξ = π/2, and (c) different population fraction of the two coherent components ξ while keeping
α = 1.07 and θ = 0. The red circles and the blue squares on the lines are the theoretical results corresponding to the particularly prepared
states in the experiment.

ρ0
0 = N

(
cos2 ξ

2
|α〉〈α| + cos

ξ

2
sin

ξ

2
e−iθq

〈
αl

0

∣∣∣∣αl
1

〉|−α〉〈α|

+ cos
ξ

2
sin

ξ

2
eiθq

〈
αl

1

∣∣∣∣αl
0

〉∣∣α〉〈−α| + sin2 ξ

2
|−α〉〈−α|

)
,

ρ0
1 = N

(
sin2 ξ

2
|α〉〈α| − cos

ξ

2
sin

ξ

2
e−iθq

〈
αl

0

∣∣∣∣αl
1

〉|−α〉〈α|

− cos
ξ

2
sin

ξ

2
eiθq

〈
αl

1

∣∣∣∣αl
0

〉|α〉〈−α| + cos2 ξ

2
|−α〉〈−α|

)
.

(D3)

Comparing with the ideal cat state in Eq. (2) in the main text,
a decoherence factor 〈αl

1/0||αl
0/1〉 appears as

〈
αl

0/1

∣∣∣∣αl
1/0

〉 = exp

[
−2

1 − η2

1 + η2
(η2 ± iη)

|α|2
η2

]
. (D4)

The finite internal loss of the cavity gives rise to a certain
decoherence in the superposition of the two coherent states
|±α〉. This undesired decoherence has a negative exponential
relation with the cat-state size α, imposing severe restrictions
on the preparation fidelity of the large cat state. Additionally,
by Eq. (D4) and Eq. (D3), there would be an azimuthal angle
deviation δθ = 2 1−η2

1+η2
|α|2
η

induced by cavity loss, which is also
confirmed by the experiment. This angle deviation can be
compensated by setting an offset for θ in the arbitrary rotation
Rθ (ξ ) to θ − θq = δθ = 0.125π , where θ essentially refers to
the superposition phase of the coherent states.

The effect of the finite lifetime of the qubit on the qubit-
photon entanglement state can be counted by using the master
equation with Lindblad operators: LT1 = 1√

T1
|0〉〈1| for qubit

decay, and LTφ
= 1√

2Tφ

(|0〉〈0| − |1〉〈1|) for qubit dephasing.

Here, Tφ = ( 1
T2

− 1
2T1

)−1 is the pure dephasing time in total
T2 contribution. By integrating the master equation over the
duration time of the full experimental sequence t , the den-
sity matrix of the qubit-photon entanglement system can be
written as

FIG. 7. Cavity-loss-induced infidelities for the generalized cat states. Cavity-loss-induced infidelities predicted according to Eq. (D4) for
the generalized cat states conditioned on the qubit state either in |0〉 or in |1〉, with (a) different coherent-state amplitude α and fixed ξ = π/2
and θ = 0, (b) different superposition phase θ when using α = 1.07 and ξ = π/2, and (c) different population fraction of the two coherent
components ξ while keeping α = 1.07 and θ = 0.
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FIG. 8. Qubit decay and dephasing-induced infidelities for the generalized cat states. Qubit decay and dephasing-induced infidelities
predicted according to Eq. (D6) for the generalized cat states conditioned on the qubit state either in |0〉 or in |1〉, with (a) different coherent-state
amplitude α and fixed ξ = π/2 and θ = 0, (b) different superposition phase θ when using α = 1.07 and ξ = π/2, and (c) different population
fraction of the two coherent components ξ while keeping α = 1.07 and θ = 0.

ρLT
q−ph = 1

2
|0〉〈0| ⊗

{[
1 − exp

(
− t

T1

)]
|−α〉〈−α| + |α〉〈α|

}
+ 1

2

〈
αl

1

∣∣∣∣αl
0

〉
exp

(
− t

T2

)
|0〉〈1| ⊗ |α〉〈−α|

+ 1

2

〈
αl

0

∣∣∣∣αl
1

〉
exp

(
− t

T2

)
|1〉〈0| ⊗ |−α〉〈α| + 1

2
exp

(
− t

T1

)
|1〉〈1| ⊗ |−α〉〈−α|. (D5)

After applying an arbitrary rotation Rθ (ξ ), the measured photon state for the qubit at |0〉 and |1〉 would be

ρLT
0 = N

(
cos2 ξ

2

{[
1 − exp

(
− t

T1

)]
|−α〉〈−α| + |α〉〈α|

}
+ cos

ξ

2
sin

ξ

2
e−iθ exp

(
− t

T2

)〈
αl

0

∣∣∣∣αl
1

〉|−α〉〈α|

+ cos
ξ

2
sin

ξ

2
eiθ exp

(
− t

T2

)〈
αl

1

∣∣∣∣αl
0

〉|α〉〈−α| + sin2 ξ

2
exp

(
− t

T1

)
|−α〉〈−α|

)
,

ρLT
1 = N

(
sin2 ξ

2

{[
1 − exp

(
− t

T1

)]
|−α〉〈−α| + |α〉〈α|

}
− cos

ξ

2
sin

ξ

2
e−iθ exp

(
− t

T2

)〈
αl

0

∣∣∣∣αl
1

〉|−α〉〈α|

− cos
ξ

2
sin

ξ

2
eiθ exp

(
− t

T2

)〈
αl

1

∣∣∣∣αl
0

〉|α〉〈−α| + cos2 ξ

2
exp

(
− t

T1

)
|−α〉〈−α|

)
. (D6)

Since each generalized cat state is prepared with projecting
the final qubit-photon entanglement system on a certain qubit
state |0〉 or |1〉, wrong attribution of the qubit state will mix
the cat states conditioned on |0〉 and |1〉, and add an infidelity
of measurement error. For a qubit with probability P0/1 at
state |0〉(|1〉), the measurement error ε0/1 leads to a wrong
count probability P0/1ε0/1, leaving the right count probability
P0/1(1 − ε0/1). Using Bayes theory, the measured states con-
ditioned on both |0〉 and |1〉 become mixtures as

ρ0 = P0(1 − ε0)ρLT
0 + P1ε1ρ

LT
1

P0(1 − ε0) + P1ε1
,

ρ1 = P1(1 − ε1)ρLT
1 + P0ε0ρ

LT
0

P1(1 − ε1) + P0ε0
, (D7)

where P0/1 is the probability for the qubit-photon entangle-
ment system to be projected to qubit state |0〉(|1〉), which can
be obtained by the normalization factor in Eq. (D6). With the
three error factors considered, Eq. (D7) gives the theoretically
predicted states and is used to calculate the dashed lines in the
figures for comparisons with experimental data.

2. Error budget

It is then possible to perform an explicit error budget for
the experiments based on the error model developed before.
In Fig. 6, we show the theoretical predicted fidelity for the
generalized cat states. Owing to cavity loss and finite qubit
lifetime, the fidelity shows a clear decreasing trend with α and
ξ increasing for the generalized cat states conditioned on the
qubit state in both |0〉 and |1〉. This feature is confirmed by
the experimental data shown in the main text and in Fig. 10,
which indicates that the loss model covers the main sources of
errors in the experiment. It is interesting to find that in general,
the odd cat states suffer more errors than the even cat states,
which is detailed and discussed in Ref. [32].

We could also separately consider the three error sources,
including cavity loss, qubit decay and dephasing, and qubit-
state readout error, to account for the preparation infidelity
for the cat states, as shown in Figs. 7–9. The calculation is
performed based on Eqs. (D4), (D6), and (D7), respectively,
with an ideal state as the initial state. It is worth mentioning
that the calculation of total infidelity shown in Fig. 6 combines
all three error sources together, and thus the total infidelity
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FIG. 9. Qubit-state readout-error-induced infidelities for the generalized cat states. Qubit-state readout-error-induced infidelities calculated
with Eq. (D7) for the generalized cat states conditioned on the qubit state either in |0〉 or in |1〉, with (a) different coherent-state amplitude α

and fixed ξ = π/2 and θ = 0, (b) different superposition phase θ when using α = 1.07 and ξ = π/2, and (c) different population fraction of
the two coherent components ξ while keeping α = 1.07 and θ = 0.

is smaller than the sum of the separated infidelities listed in
Figs. 7–9, due to the fact that the infidelity induced by a
specific error source for a partially mixed state is smaller than
that for an ideal state.

Figure 7 shows the cavity-loss-induced infidelity on the
superposition states. One could find that with an increasing cat
size α, cavity-loss-induced infidelity rises quickly from a few
percent to above 10 percent, which is not surprising consid-
ering the fact that this infidelity scales with α as exp(−Lα2)
in Eq. (D4). Therefore, it is crucial to reduce cavity loss if
a large cat size is desired. From Fig. 7(c), one could find
that the cavity-loss-related infidelity is positively related to
the weight of the coherent-state superposition, which means a
superposition state with more quantum coherence [Fig. 3(b)]
is more vulnerable to cavity loss.

Figure 8 shows the qubit decay and dephasing-induced
infidelity on the coherent-state superposition. The qubit-state-
induced infidelity is dominated by qubit dephasing, since T2 is
closer to the experimental sequence duration and much shorter
than T1 (see Table I). One could find that the qubit-state-
related infidelity is also positively related with the weight
of the coherent-state superposition ξ , which is reasonable
considering that qubit dephasing leads to the dephasing of

FIG. 10. Wigner function of the experimental cat states with var-
ied sizes. The reconstructed Wigner function for the reflected photon
states conditioned on the qubit state in |0〉 and |1〉, where θ = 0 and
ξ = π/2 are used. The amplitude of the coherent state α is varied
from 0.86 to 1.31, as labeled on top of each column of the plots.

coherent-state superposition in Eq. (D6). In our experiment,
the qubit state caused about half the error as the cavity loss,
which would get smaller with an increasing cat size α.

Figure 9 shows the qubit-state measurement-error-
induced infidelity on the coherent-state superposition. Com-
pared with the previous two error sources, qubit-state

FIG. 11. Wigner function of the cat states generated with detuned
microwave pulse from the cavity bare frequency. The theoretical
and experimentally reconstructed Wigner function for the reflected
photon states conditioned on the qubit state in |0〉 and |1〉, where
α = 1.07, θ = 0, and ξ = π/2 are used. The frequency of the in-
put microwave photon pulse ωp is detuned from the cavity bare
frequency by 0.7 MHz, with ωp/2π − ωc/2π = 0.7 MHz, corre-
sponding to an optical phase difference of 2.657 in radian between
the two coherent-state components. The black solid point in each
panel is the original point. The red points indicate the centers of
the two coherent components, from where a smaller optical phase
difference than π can be clearly seen.
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FIG. 12. The Mandel’s Q parameters for the prepared gener-
alized cat states. The calculated Mandel’s Q parameters for the
coherent-state superpositions conditioned on the qubit state either
in |0〉 or in |1〉, with (a) different coherent-state amplitude α while
using ξ = π/2 and θ = 0, (b) different superposition phase θ when
using α = 1.07 and ξ = π/2, or (c) different population fraction of
the two coherent components ξ when using α = 1.07 and θ = 0.
The blue squares and the red circles show the experimental data
conditioned on the qubit state in |0〉 and |1〉, respectively. The blue
solid lines and the red dashed lines are the theoretical results based
on the corresponding ideal states conditioned on the qubit state in |0〉
and |1〉, respectively. The blue dot-dashed lines and the red dotted
lines are the theoretical results considering possible experimental
loss and decoherence conditioned on the qubit state in |0〉 and |1〉,
respectively. Q < 0 indicates a sub-Poissonian photon distribution.

measurement-error-induced infidelity varies within a rela-
tively small region, which shows minor sensitivity to either
α or ξ , which shall be greatly relieved by improving the
qubit-state readout performance.

FIG. 13. Photon number distribution with varied α. The derived
photon number distributions among different Fock states for the odd
(conditioned on qubit state in |1〉) and even (conditioned on qubit
state in |0〉) cat states of different sizes. The corresponding α is
labeled above each of the panels. The blue squares and the red circles
show the experimental data conditioned on the qubit state in |0〉
and |1〉, respectively. The blue solid lines and the red dashed lines
are the theoretical results based on the corresponding ideal states
conditioned on the qubit state in |0〉 and |1〉, respectively. The blue
dot-dashed lines and the red dotted lines are the theoretical results
considering possible experimental loss and decoherence conditioned
on the qubit state in |0〉 and |1〉, respectively.

APPENDIX E: MORE DATA

1. Varied α

The size of the cat state can be controlled by using different
input coherent state α. In Fig. 10, we show the reconstructed
Wigner function of odd and even cat states with varied α from
0.86 to 1.31. The fidelity of experimentally generated states
shows a statistical decrease with an increasing α, which is
attributed to the cavity-loss-induced exponential decay term
exp(−Lα2) in the density matrix (see Appendix D 1 for de-
tails).

2. Varied optical phase

The optical phase difference of the coherent components
in the superposition states is not limited to be π , but can be
varied by using a different signal frequency. In the experiment,
we tune the linewidth of the cavity to fit the dispersive shift as
κtot ≈ 2|χ |, which results in the phase difference between the
reflectivities conditioned on the qubit state in |0〉 and in |1〉,
as shown in Fig. 1(c). For the generalized cat states shown
in Fig. 2 and in Fig. 10, the signal frequency is tuned to
the cavity bare frequency ωp = ωc, and thus we have two
coherent components with the same amplitude but opposite
phases, as indicated by the dashed line in Figs. 1(b) and 1(c).
The optical phase difference can be controlled by using a
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FIG. 14. Photon number distribution with varied θ . Photon num-
ber distributions among different Fock states for superposition states
with varied θ from 0 to π , and using α = 1.07 and ξ = π/2. The
blue squares and the red circles show the experimental data condi-
tioned on the qubit state in |0〉 and |1〉, respectively. The blue solid
lines and the red dashed lines are the theoretical results based on
the corresponding ideal states conditioned on the qubit state in |0〉
and |1〉, respectively. The blue dot-dashed lines and the red dotted
lines are the theoretical results considering possible experimental
loss and decoherence conditioned on the qubit state in |0〉 and |1〉,
respectively.

detuned signal frequency from the cavity bare frequency ωc.
As a proof of principle, we use a frequency detuning ωp/2π −
ωc/2π = 0.7 MHz between the input signal frequency and
cavity bare frequency in the experiment, which corresponds to
an optical phase difference of 2.657 in radian measured from
Fig. 1(c). The Wigner functions of the experimental states and
the corresponding theoretical states are present in Fig. 11. The
centers of their coherent-state components are labeled with
red points in each panel, which indicate a well-tuned optical
phase difference between the coherent states.

3. Photon number statistic

Mandel’s Q parameter is a direct measurement of the pho-
ton statistics, which is defined as [59]

Q = 〈(�n̂)2〉 − 〈n̂〉
〈n̂〉 . (E1)

In the experiment, we calculate the Q parameters from the
measured moments of the reflected photon states. In Fig. 12,
we systematically present the derived Mandel’s Q parameter
and photon number distribution for the experimentally pre-
pared generalized cat states.

The photon number distributions can be extracted from the
diagonal terms of the reconstructed density matrices, which
are plotted in Figs. 13–15.

FIG. 15. Photon number distribution with varied ξ . Photon num-
ber distributions among different Fock states for superposition states
with varied ξ from 0 to π/2, and using α = 1.07 and θ = 0. The
blue squares and the red circles show the experimental data condi-
tioned on the qubit state in |0〉 and |1〉, respectively. The blue solid
lines and the red dashed lines are the theoretical results based on
the corresponding ideal states conditioned on the qubit state in |0〉
and |1〉, respectively. The blue dot-dashed lines and the red dotted
lines are the theoretical results considering possible experimental
loss and decoherence conditioned on the qubit state in |0〉 and |1〉,
respectively.

Figure 12 shows the Mandel’s Q parameters for the pre-
pared states with different sets of (α, θ , ξ ), conditioned on
the qubit state either in |0〉 or in |1〉. When using θ = 0
and ξ = π/2, we would have the even and odd cat states
conditioned on the qubit state in |0〉 and |1〉, respectively. In
Fig. 12(a), we show the calculated Mandel’s Q for the even
and odd states with varied sizes. We could see that the even
cat states show super-Poissonian distribution, while the odd
states are of sub-Poissonian distribution, which agrees well
with the theory. With an increasing α, the photon statistics of
both even cat states and odd cat states evolve to a Poissonian
distribution, which is due to the stronger dephasing effect of
the cat states with larger size. In Fig. 13, we show the photon
number distribution among the Fock states with varied α.
One could see that the even (odd) Fock states are preferably
occupied for the prepared cat states. With an increasing α,
such a selective feature of photon number occupation tends to
get smaller.

In Fig. 12(b), we show the Mandel’s Q for the superpo-
sition states with different θ , while using ξ = π/2 and α =
1.07. Conditioned on the qubit states in |0〉, the prepared states
evolve from an even cat state to an odd cat state, and vice
versa for a qubit state in |1〉. For both cases, we could see a
continuous transition between a super-Poissonian distribution
and a sub-Poissonian distribution for the photon statistics of
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the prepared states. In Fig. 14, we show the photon number
occupation for the prepared states with different θ . One could
see that for the quantum states conditioned on the qubit state
in |0〉 (|1〉), the photon fields change from an even-Fock-state
(odd-Fock-state) occupation to an odd-Fock-state (even-Fock-
state) occupation. For θ = π/2, the photon fields show little
preference of even or odd Fock state occupation, as expected
for YS states.

In Fig. 12(c), the Mandel’s Q for the superposition states
with varied ξ when using θ = 0 and α = 1.07 are presented.
One could see that the photon field statistic evolves from a

Poissonian distribution to either a super-Poissonian distribu-
tion conditioned on the qubit state in |0〉, or sub-Poissonian
distribution conditioned on the qubit state in |1〉, which in-
dicates that the prepared state changes from a coherent state
to either an even cat state or an odd cat state with an in-
creasing ξ . A more direct evidence of such a transition can
be found in Fig. 15, where a Poissonian distribution with
no preference of even- or odd-Fock-state occupations grad-
ually evolves to an alternate distribution among the even or
odd Fock states conditioned on the qubit state in |0〉 or |1〉,
respectively.

[1] D. J. Wineland, Nobel lecture: Superposition, entanglement,
and raising Schrödinger’s cat, Rev. Mod. Phys. 85, 1103 (2013).

[2] S. Haroche, Nobel lecture: Controlling photons in a box and
exploring the quantum to classical boundary, Rev. Mod. Phys.
85, 1083 (2013).

[3] J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer,
and E. S. Polzik, Generation of a Superposition of Odd Photon
Number States for Quantum Information Networks, Phys. Rev.
Lett. 97, 083604 (2006).

[4] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier,
Generating optical Schrödinger kittens for quantum information
processing, Science 312, 83 (2006).

[5] A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier,
Generation of optical “Schrödinger cats” from photon number
states, Nature (London) 448, 784 (2007).

[6] H. Takahashi, K. Wakui, S. Suzuki, M. Takeoka, K. Hayasaka,
A. Furusawa, and M. Sasaki, Generation of Large-Amplitude
Coherent-State Superposition via Ancilla-Assisted Photon Sub-
traction, Phys. Rev. Lett. 101, 233605 (2008).

[7] A. Ourjoumtsev, F. Ferreyrol, R. Tualle-Brouri, and P. Grangier,
Preparation of non-local superpositions of quasi-classical light
states, Nat. Phys. 5, 189 (2009).

[8] T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J.
Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill,
Generation of optical coherent-state superpositions by number-
resolved photon subtraction from the squeezed vacuum, Phys.
Rev. A 82, 031802(R) (2010).

[9] N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura,
and S. Inoue, Non-Gaussian operation based on photon
subtraction using a photon-number-resolving detector at a
telecommunications wavelength, Nat. Photon. 4, 655 (2010).

[10] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio,
S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J.
Schoelkopf, Deterministically encoding quantum information
using 100-photon Schrödinger cat states, Science 342, 607
(2013).

[11] C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek,
K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L.
Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret,
and R. J. Schoelkopf, A Schrödinger cat living in two boxes,
Science 352, 1087 (2016).

[12] A. E. Ulanov, D. Sychev, A. A. Pushkina, I. A. Fedorov, and
A. I. Lvovsky, Quantum Teleportation Between Discrete and
Continuous Encodings of an Optical Qubit, Phys. Rev. Lett.
118, 160501 (2017).

[13] W. Pfaff, C. J. Axline, L. D. Burkhart, U. Vool, P. Reinhold,
L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Con-
trolled release of multiphoton quantum states from a microwave
cavity memory, Nat. Phys. 13, 882 (2017).

[14] B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li,
and G. Rempe, Deterministic creation of entangled atomlight
Schrödinger-cat states, Nat. Photon. 13, 110 (2019).

[15] J.-C. Besse, S. Gasparinetti, M. C. Collodo, T. Walter, A.
Remm, J. Krause, C. Eichler, and A. Wallraff, Parity Detection
of Propagating Microwave Fields, Phys. Rev. X 10, 011046
(2020).

[16] E. Schrödinger, The present situation in quantum mechanics,
Nature 23, 844 (1935).

[17] P. van Loock, N. Lütkenhaus, W. J. Munro, and K. Nemoto,
Quantum repeaters using coherent-state communication, Phys.
Rev. A 78, 062319 (2008).

[18] L. Li, C.-L. Zou, V. V. Albert, S. Muralidharan, S. M. Girvin,
and L. Jiang, Cat Codes with Optimal Decoherence Suppression
for a Lossy Bosonic Channel, Phys. Rev. Lett. 119, 030502
(2017).

[19] P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscop-
ically distinct quantum-superposition states as a bosonic code
for amplitude damping, Phys. Rev. A 59, 2631 (1999).

[20] H. Jeong and M. S. Kim, Efficient quantum computation using
coherent states, Phys. Rev. A 65, 042305 (2002).

[21] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and
S. Glancy, Quantum computation with optical coherent states,
Phys. Rev. A 68, 042319 (2003).

[22] A. P. Lund, T. C. Ralph, and H. L. Haselgrove, Fault-Tolerant
Linear Optical Quantum Computing with Small-Amplitude Co-
herent States, Phys. Rev. Lett. 100, 030503 (2008).

[23] A. Gilchrist, K. Nemoto, W. J. Munro, T. C. Ralph, S. Glancy,
S. L. Braunstein, and G. J. Milburn, Schrödinger cats and their
power for quantum information processing, J. Opt. B: Quantum
Semiclassical Opt. 6, S828 (2004).

[24] E. Polino, M. Valeri, N. Spagnolo, and F. Sciarrino, Photonic
quantum metrology, AVS Quantum Sci. 2, 024703 (2020).

[25] Z. Leghtas, G. Kirchmair, B. Vlastakis, R. J. Schoelkopf, M. H.
Devoret, and M. Mirrahimi, Hardware-Efficient Autonomous
Quantum Memory Protection, Phys. Rev. Lett. 111, 120501
(2013).

[26] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J.
Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically pro-
tected cat-qubits: A new paradigm for universal quantum
computation, New J. Phys. 16, 045014 (2014).

063717-13

https://doi.org/10.1103/RevModPhys.85.1103
https://doi.org/10.1103/RevModPhys.85.1083
https://doi.org/10.1103/PhysRevLett.97.083604
https://doi.org/10.1126/science.1122858
https://doi.org/10.1038/nature06054
https://doi.org/10.1103/PhysRevLett.101.233605
https://doi.org/10.1038/nphys1199
https://doi.org/10.1103/PhysRevA.82.031802
https://doi.org/10.1038/nphoton.2010.158
https://doi.org/10.1126/science.1243289
https://doi.org/10.1126/science.aaf2941
https://doi.org/10.1103/PhysRevLett.118.160501
https://doi.org/10.1038/nphys4143
https://doi.org/10.1038/s41566-018-0339-5
https://doi.org/10.1103/PhysRevX.10.011046
https://doi.org/10.1007/BF01491987
https://doi.org/10.1103/PhysRevA.78.062319
https://doi.org/10.1103/PhysRevLett.119.030502
https://doi.org/10.1103/PhysRevA.59.2631
https://doi.org/10.1103/PhysRevA.65.042305
https://doi.org/10.1103/PhysRevA.68.042319
https://doi.org/10.1103/PhysRevLett.100.030503
https://doi.org/10.1088/1464-4266/6/8/032
https://doi.org/10.1116/5.0007577
https://doi.org/10.1103/PhysRevLett.111.120501
https://doi.org/10.1088/1367-2630/16/4/045014


ZENGHUI BAO et al. PHYSICAL REVIEW A 105, 063717 (2022)

[27] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas,
B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M.
Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Extending the
lifetime of a quantum bit with error correction in superconduct-
ing circuits, Nature (London) 536, 441 (2016).

[28] Z.-L. Xiang, M. Zhang, L. Jiang, and P. Rabl, Intracity Quantum
Communication via Thermal Microwave Networks, Phys. Rev.
X 7, 011035 (2017).

[29] D. Su, I. Dhand, and T. C. Ralph, Universal quantum computa-
tion with optical four-component cat qubits, arXiv:2109.12278.

[30] J. Hastrup and U. L. Andersen, All-optical cat-code quantum
error correction, arXiv:2108.12225.

[31] J. S. Neergaard-Nielsen, M. Takeuchi, K. Wakui, H. Takahashi,
K. Hayasaka, M. Takeoka, and M. Sasaki, Optical Continuous-
Variable Qubit, Phys. Rev. Lett. 105, 053602 (2010).

[32] Z. Wang, Z. Bao, Y. Wu, Y. Li, W. Cai, W. Wang, Y. Ma, T.
Cai, X. Han, J. Wang, Y. Song, L. Sun, H. Zhang, and L. Duan,
A flying Schrödinger’s cat in multipartite entangled states, Sci.
Adv. 8, eabn1778 (2022).

[33] L.-M. Duan and H. J. Kimble, Scalable Photonic Quantum
Computation through Cavity-Assisted Interactions, Phys. Rev.
Lett. 92, 127902 (2004).

[34] A. Reiserer, S. Ritter, and G. Rempe, Nondestructive detection
of an optical photon, Science 342, 1349 (2013).

[35] S. Kono, K. Koshino, Y. Tabuchi, A. Noguchi, and Y.
Nakamura, Quantum non-demolition detection of an itinerant
microwave photon, Nat. Phys. 14, 546 (2018).

[36] J.-C. Besse, S. Gasparinetti, M. C. Collodo, T. Walter, P.
Kurpiers, M. Pechal, C. Eichler, and A. Wallraff, Single-Shot
Quantum Nondemolition Detection of Individual Itinerant Mi-
crowave Photons, Phys. Rev. X 8, 021003 (2018).

[37] A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, A quantum
gate between a flying optical photon and a single trapped atom,
Nature (London) 508, 237 (2014).

[38] T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V.
Vuleti, and M. D. Lukin, Nanophotonic quantum phase switch
with a single atom, Nature (London) 508, 241 (2014).

[39] B. Hacker, S. Welte, G. Rempe, and S. Ritter, A photon-photon
quantum gate based on a single atom in an optical resonator,
Nature (London) 536, 193 (2016).

[40] L.-M. Duan, B. Wang, and H. J. Kimble, Robust quantum gates
on neutral atoms with cavity-assisted photon scattering, Phys.
Rev. A 72, 032333 (2005).

[41] S. Daiss, S. Langenfeld, S. Welte, E. Distante, P. Thomas,
L. Hartung, O. Morin, and G. Rempe, A quantum-logic gate
between distant quantum-network modules, Science 371, 614
(2021).

[42] B. Wang and L.-M. Duan, Engineering superpositions of co-
herent states in coherent optical pulses through cavity-assisted
interaction, Phys. Rev. A 72, 022320 (2005).

[43] B. Yurke and D. Stoler, Generating Quantum Mechanical Su-
perpositions of Macroscopically Distinguishable States Via
Amplitude Dispersion, Phys. Rev. Lett. 57, 13 (1986).

[44] R. Vijayaraghavan, Josephson bifurcation amplifier: Ampli-
fying quantum signals using a dynamical bifurcation, Ph.D.
thesis, Yale University, 2008.

[45] R. Vijay, M. Devoret, and I. Siddiqi, Invited review article: The
Josephson bifurcation amplifier, Rev. Sci. Instrum. 80, 111101
(2009).

[46] C. Eichler, D. Bozyigit, C. Lang, L. Steffen, J. Fink, and A.
Wallraff, Experimental State Tomography of Itinerant Single
Microwave Photons, Phys. Rev. Lett. 106, 220503 (2011).

[47] V. Bužek, A. Vidiella-Barranco, and P. L. Knight, Superposi-
tions of coherent states: Squeezing and dissipation, Phys. Rev.
A 45, 6570 (1992).

[48] M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek,
K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J.
Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J.
Schoelkopf, Quantum memory with millisecond coherence in
circuit QED, Phys. Rev. B 94, 014506 (2016).

[49] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying Co-
herence, Phys. Rev. Lett. 113, 140401 (2014).

[50] K. C. Tan, T. Volkoff, H. Kwon, and H. Jeong, Quantifying
the Coherence between Coherent States, Phys. Rev. Lett. 119,
190405 (2017).

[51] B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser,
Quantum sensing with squeezed light, ACS Photon. 6, 1307
(2019).

[52] C. Xu, L. Zhang, S. Huang, T. Ma, F. Liu, H. Yonezawa, Y.
Zhang, and M. Xiao, Sensing and tracking enhanced by quan-
tum squeezing, Photon. Res. 7, A14 (2019).

[53] C. K. Hong and L. Mandel, Higher-Order Squeezing of a Quan-
tum Field, Phys. Rev. Lett. 54, 323 (1985).

[54] W. Schleich, M. Pernigo, and F. L. Kien, Nonclassical state
from two pseudoclassical states, Phys. Rev. A 44, 2172 (1991).

[55] D. Walls and G. Milburn, Quantum Optics (Springer, Berlin,
2008).

[56] C. Eichler, D. Bozyigit, and A. Wallraff, Characterizing
quantum microwave radiation and its entanglement with su-
perconducting qubits using linear detectors, Phys. Rev. A 86,
032106 (2012).

[57] F. Mallet, M. A. Castellanos-Beltran, H. S. Ku, S. Glancy,
E. Knill, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W.
Lehnert, Quantum State Tomography of an Itinerant Squeezed
Microwave Field, Phys. Rev. Lett. 106, 220502 (2011).

[58] C. W. Gardiner and M. J. Collett, Input and output in damped
quantum systems: Quantum stochastic differential equations
and the master equation, Phys. Rev. A 31, 3761 (1985).

[59] L. Mandel, Sub-Poissonian photon statistics in resonance fluo-
rescence, Opt. Lett. 4, 205 (1979).

063717-14

https://doi.org/10.1038/nature18949
https://doi.org/10.1103/PhysRevX.7.011035
http://arxiv.org/abs/arXiv:2109.12278
http://arxiv.org/abs/arXiv:2108.12225
https://doi.org/10.1103/PhysRevLett.105.053602
https://doi.org/10.1126/sciadv.abn1778
https://doi.org/10.1103/PhysRevLett.92.127902
https://doi.org/10.1126/science.1246164
https://doi.org/10.1038/s41567-018-0066-3
https://doi.org/10.1103/PhysRevX.8.021003
https://doi.org/10.1038/nature13177
https://doi.org/10.1038/nature13188
https://doi.org/10.1038/nature18592
https://doi.org/10.1103/PhysRevA.72.032333
https://doi.org/10.1126/science.abe3150
https://doi.org/10.1103/PhysRevA.72.022320
https://doi.org/10.1103/PhysRevLett.57.13
https://doi.org/10.1063/1.3224703
https://doi.org/10.1103/PhysRevLett.106.220503
https://doi.org/10.1103/PhysRevA.45.6570
https://doi.org/10.1103/PhysRevB.94.014506
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.119.190405
https://doi.org/10.1021/acsphotonics.9b00250
https://doi.org/10.1364/PRJ.7.000A14
https://doi.org/10.1103/PhysRevLett.54.323
https://doi.org/10.1103/PhysRevA.44.2172
https://doi.org/10.1103/PhysRevA.86.032106
https://doi.org/10.1103/PhysRevLett.106.220502
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1364/OL.4.000205

