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Superconducting nanowire single-photon detectors (SNSPDs) are efficient measurement devices used for
counting single photons. The field of their applications covers experimental quantum-optical studies, optical
quantum computing, quantum communication, and others. After registering a photon by such a detector, the
next one cannot be registered during the dead time, and after that this ability is smoothly restored. We have
included this feature into the photodetection theory and introduced the corresponding photocounting formula.
In the regime of continuous-wave detection, the photocounting statistics nonlinearly depends on the density
operator due to a memory effect of previous measurement time windows. The considered examples demonstrate
the strong influence of the relaxation process and the memory effect on the resulting photocounting statistics of
the SNSPDs.
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I. INTRODUCTION

Fast and efficient single-photon detectors [1–4] are mem-
bers of the fundamental building blocks in modern quantum
technologies. The corresponding applications include opti-
cal universal [5] and nonuniversal [6] quantum computers,
quantum secure communication [7–9], quantum sensing and
metrology [10–12], etc. These detectors are also applied in a
wider range of research and technologies such as the design of
electronic devices [13,14] and imaging problems in biological
research and medicine [15–17].

Superconducting nanowire single-photon detectors
(SNSPDs) [3,4,18–21] are highly promising measurement
devices for numerous applications. This is explained by their
wide spectral sensitivity, good response speed, high detection
efficiency, low dark count rate, and high temporal resolution.
The detection process of the SNSPDs can be subdivided into
a few stages [21]: (1) an absorbed photon heats a small part of
a nanowire in which a superconducting current flows; (2) this
leads to forming a normal-conducting part of the nanowire
resulting in a voltage change; (3) the detectors cannot register
the next photons during the dead-time interval τd; (4) the
superconducting part of the nanowire and the ability to detect
another photon are smoothly recovered during the relaxation
time τr; (5) the detector returns to the initial state. It is worth
noting that physical models [18,19,22–34] describing the
detection process in the SNSPDs are still developing.

The SNSPDs are applied in many fundamental quantum-
optical experiments and in different implementations of
quantum-information protocols [4]. For example, they have
been recently used for demonstration of quantum supremacy
in the scheme of Gaussian boson sampling [35,36]. These
detectors have been applied for implementations of quan-
tum secure communication [37–56] and quantum teleporta-
tion [57,58] protocols. The SNSPDs are key measurement

elements for implementations of strong loophole-free tests of
Bell inequalities [59]. They have also been applied as building
blocks for array or time-multiplexing detectors in various
quantum-optical experiments; see, e.g., [60,61].

Photocounting is a prominent example of quantum mea-
surements. Its outcomes are given by a number of clicks,
which are commonly associated with the number of photons.
According to Born’s rule, the probability distribution to get n
clicks reads

Pn = Tr(ρ̂ �̂n), (1)

where ρ̂ is the density operator of the light mode and �̂n is the
positive operator-valued measure (POVM) [62] describing the
measurement procedure. In the idealized scenario of photon-
number-resolving (PNR) detectors it is given by

�̂n ≡ F̂n[η] =:
(ηn̂)n

n!
exp (−ηn̂):; (2)

cf. Refs. [63,64]. Here n̂ is the photon-number operator, η ∈
[0, 1] is the detection efficiency, and :. . .: means the normal
ordering. In particular, this means that F̂n(1) = |n〉〈n| is the
projector on the Fock state |n〉.

In realistic scenarios, photon-number resolution is not
ideal, which is described by the corresponding POVM. For
example, the POVM describing array [65–69] and time-
multiplexing [70–72] detectors have been derived in Ref. [73].
The corresponding measurement procedures are based on spa-
tial or temporal separation of modes and detecting each of
them with on-off detectors.

Another scenario of realistic detection is based on counting
the photocurrent pulses inside a measurement time window
(MTW). The number of these pulses—referred to as clicks
or photocounts—is associated with the number of photons.
A problem is that each pulse is followed by a dead-time
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interval during which photons cannot be detected. A classical
photocounting theory for this type of measurements has been
developed in Refs. [74–82].

In this paper we introduce a generalization of the photo-
counting theory to the scenario when the SNSPDs are used
for counting pulses inside MTWs. The main difference of
the SNSPDs from other detectors consists in the effect of
the relaxation time. The common problem of the SNSPDs
and the detectors characterized by only dead time is that the
corresponding time intervals from the last registered pulse
may exceed the MTW. This results in changing the statistics
of pulses for the next MTW.

We consider two detection scenarios associated with the
SNSPDs. Firstly, the scenario of independent MTWs assumes
darkening the detector at the end of each MTW. This protects
statistics of pulses in the current MTW from influence of
events in the previous ones. Next, we consider the continuous-
wave detection, which assumes no darkening at the ends of the
MTWs. The corresponding photocounting statistics is affected
by the previous MTWs—this influence is referred to as a
memory effect. It results in a nonlinear dependence of the
photocounting statistics on the density operator.

The rest of the paper is organized as follows. In Sec. II
we give a preliminary consideration of the photocounting
formula in the Glauber-Sudarshan representation, which is
used throughout the paper. The model of time-dependent
efficiency, underlying the basis of our consideration of the
SNSPDs, is discussed in Sec. II. The POVM for the scenario
of independent MTWs is derived in Sec. IV. The scenario of
continuous-wave detection involving the memory effects from
previous MTWs is considered in Sec. V. In Sec. VI we apply
the developed theory to deriving the photocounting statistics
for typical quantum states. A technique for experimental re-
construction of the time-dependent efficiency is analyzed in
Sec. VII. A summary and concluding remarks are given in
Sec. VIII.

II. PRELIMINARIES

Photocounting formula (1) can be conveniently rewritten
as (see Refs. [83,84])

Pn =
∫
C

d2α P(α) �n(α). (3)

Here P(α) is the Glauber-Sudarshan P function [85,86] and

�n(α) = 〈α|�̂n|α〉 (4)

is the Q symbols of the POVM defined as the average with the
coherent state |α〉. These symbols are interpreted as the prob-
abilities to get n clicks given the coherent state |α〉. Utilizing
the rule

〈α| : f̂ (â, â†) : |α〉 = f (α, α∗), (5)

where f (α, α∗) is an arbitrary function, one can reconstruct
the normal-ordering operator form of the POVM from its Q
symbols.

For the PNR detection, the Q symbols of the POVM (2)
read

�n(α) ≡ Fn[α; η] = (η|α|2)n

n!
exp(−η|α|2). (6)

Here Fn[α; η] = 〈α|F̂n[η]|α〉 represents the Q symbol of the
operator F̂n[η]; cf. Eq. (2). The first and second arguments
of this function describe the dependence on the phase-space
complex variable α and the detection efficiency η, respec-
tively. This expression describes a well-known fact that
photocounting statistics of the coherent states is given by the
Poissonian distribution. Equation (3) has a form similar to
the photocounting formula for classical electromagnetic fields
[63,87,88]. In the classical theory both functions, P(α) and
�n(α), are nonnegative. They play the roles of the probability
density of the complex amplitude α and the classical response
function of photocounts, respectively.

For purposes of this work, it is also useful to remind a
procedure of finding the POVM in the Fock-state basis,

Pn|m = 〈m|�̂n|m〉, (7)

which can be interpreted as the probability distribution to get
n photocounts given m photons. Since any kind of the photo-
counting measurements is phase insensitive, the nondiagonal
POVM elements vanish, i.e., 〈m1|�̂n|m2〉 = 0 for m1 �= m2.
The probabilities Pn|m can also be considered as expansion
coefficients of the POVM by the Fock states,

�̂n =
+∞∑
m=0

Pn|m|m〉〈m|. (8)

The same equation in terms of Q symbols reads

�n(α) exp(|α|2) =
+∞∑
m=0

Pn|m
|α|2n

n!
. (9)

Therefore, the POVM in the Fock-state basis can be obtained
by expanding the left-hand side of this expression by |α|2n/n!.

Another technique, which is used throughout the paper, is
related to including realistic values of the detection efficiency
and the dark-count rate. Let the POVM �̂n and its Q symbols
�n(α) describe the idealized scenario with the unit detection
efficiency and with no dark counts. In order to include these
issues in the description, one should replace

n̂ → ηn̂ + ν (10)

and

|α|2 → η|α|2 + ν (11)

under the sign of normal ordering in the POVM and in the
Q symbols of the POVM, respectively; cf. [89–92]. Here η

and ν are the detection efficiency and the dark-count intensity,
correspondingly.

III. MODEL OF TIME-DEPENDENT EFFICIENCY

In this section we consider an idea enabling us to study the
effect of dead and relaxation times. For a correct formulation
of our model, we should take into account two facts. Firstly,
the probability to detect a photon is zero during the dead time
τd after the pulse. Secondly, the probability to detect a photon
is smoothly recovered with the relaxation time τr, following
the dead-time interval.

In the photodetection theory, the probability to detect a
single photon is described by the detection efficiency. This

063716-2



PHOTOCOUNTING STATISTICS OF SUPERCONDUCTING … PHYSICAL REVIEW A 105, 063716 (2022)
V

ol
ta

ge

Time

T
im

e-
de

pe
nd

en
t 

ef
fic

ie
nc

y

FIG. 1. Photocounting process with the SNSPDs in the scenario
of independent MTWs is schematically depicted. The voltage pulses
(solid lines) are counted during the MTWs duration of τm. According
to Eq. (12), the time-dependent efficiency (dashed lines) is zero after
registering each photon during the dead time τd, and after that it
is smoothly recovered with the relaxation time τr . Detector input is
darkened between the MTWs for the time interval sufficient for full
recovering of the detector (hatched area).

means that we can consider the detection efficiency as a
function of time t passed after beginning of each pulse. This
function is zero in the time interval [0, τd]. After that the
detection efficiency is smoothly recovered to its initial value.
This implies that this function is given by

ξ (t ) = θ (t − τd )ηr (t − τd ), (12)

where θ (t − τd ) is the Heaviside step function and ηr (t ) is the
recovering efficiency. We chose the latter in the form

ηr (t ) = 1 − exp

(
− t

τr

)
, (13)

which is used in our paper as a model of detector re-
covering. Although this model may be considered as an
approximation—see, e.g., Refs. [93,94] for a more realistic
description of the time-dependent detection efficiency ξ (t )—
its advantage consists in possibilities of obtaining expressions
suitable for analytical study. Nevertheless, the main results of
our paper are formulated in terms of an arbitrary function
ξ (t ), which can also be reconstructed experimentally, as is
discussed in Sec. VII and in Ref. [93]. In a more general
context, the model given by the time-dependent efficiency
ξ (t ) can be considered as a phenomenological description.
In principle, this model could be derived from a microscopic
theory of quantum transitions in a superconducting nanowire.

IV. PHOTOCOUNTING WITH INDEPENDENT
MEASUREMENT TIME WINDOWS

In this section we consider photocounting theory with the
SNSPDs in the scenario of independent MTWs; see Fig. 1.
The process of photocounting starts at the beginning of the
time window of duration τm. Each MTW is followed by a time
interval of darkened detector-input sufficient for the detector
to recover fully. This eliminates the influence of the dead
time and the relaxation process from the previous MTW on
the measurement result in the current one. Alternatively, this

technique can be implemented by a proper postselection of
MTWs without darkening detector input.

A. Positive operator-valued measure

We start with consideration of the most general situation by
assuming light being in a nonmonochromatic mode. For our
purposes, such a mode can be characterized by an intensity
function I (t ) normalized by the condition∫ τm

0
dtI (t ) = 1. (14)

The function I (t ) should be included explicitly in the POVM.
In particular, this means that the detection efficiency in the
time domain [t, t + 
t] is given by∫ t+
t

t
dt I (t )ξ (t − tp), (15)

where tp is the time moment at which the previous photon was
detected. A particular example of the function I (t ) reads

I (t ) = 1

τm
, (16)

which corresponds to a momochromatic light mode. For the
sake of simplicity, we consider the unit detection efficiency
and the zero dark-count rate. The corresponding generaliza-
tion to realistic values of these parameters is straightforwardly
obtained according to Eqs. (10) and (11).

Firstly, we note that the no-count element of the POVM is
simply given by

�̂0 = F̂0[1], (17)

which properly describes absence of any pulses inside the
MTW. Next, we derive the POVM element corresponding to
the presence of a single pulse. For this purpose we consider
the unnormalized probability density π1(t1|α) to get this pulse
at the time moment t1 given the coherent state |α〉. The in-
finitesimal probability to get this click during the time interval
[t1, t1 + dt1] is obtained as the first expansion coefficient of
the expression 1 − F0[α; I (t1)dt1] [cf. Eq. (6)] with respect
to dt1. This yields |α|2I (t1)dt1. It should be multiplied by
the probabilities to get no-counts before and after the time
moment t1, which are given by

F0

[
α;

∫ t1

0
dtI (t )

]
= exp

(
− |α|2

∫ t1

0
dtI (t )

)
(18)

and

F0

[
α;

∫ τm

t1

dtI (t )ξ (t − t1)

]

= exp

(
− |α|2

∫ τd

t1

dtI (t )ξ (t − t1)

)
, (19)

respectively. Therefore, the unnormalized probability density
to get a single pulse at the time moment t1 given the coherent
state |α〉 reads

π1(t1|α) = |α|2I (t1) exp[−|α|2�1(t)], (20)
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where

�1(t1) =
∫ t1

0
dtI (t ) +

∫ τm

t1

dtI (t )ξ (t − t1). (21)

The Q symbol of the corresponding POVM element,

�1(α) =
∫ τm

0
dt1π1(t1|α), (22)

is obtained via integration with all possible values of t1.
As the last step, we derive the rest of the POVM elements,

i.e., those for n � 2. Similar to the case of n = 1, we derive
the unnormalized probability density πn(t|α) to get pulses at
the time moments t = (t1, . . . , tn) given the coherent state |α〉.
This is composed of the following components:

(i) The probability density to get a pulse at the time mo-
ment t1 given by |α|2I (t1)

(ii) The probability densities to get pulses at the time mo-
ments ti for i = 2, . . . , n given by |α|2I (ti)ξ (ti − ti−1)

(iii) The probability to get no pulses from the time mo-
ment t = 0 and up to the first pulse at the time moment t1
given by Eq. (18)

(iv) The probability to get no pulses in the time domains
between the ith and (i + 1)th pulses given by

exp

(
− |α|2

∫ ti+1

ti

dt I (t )ξ (t − ti )

)
(23)

(v) The probability to get no pulses in the time domain
between the nth pulse and the time moment t = τm given by

exp

(
− |α|2

∫ τm

tn

dtI (t )ξ (t − tn)

)
. (24)

Multiplying all these factors we arrive at the expression

πn(t|α) = |α|2nIn(t) exp[−|α|2�n(t)], (25)

where

In(t) = I (t1)
n∏

i=2

I (ti )ξ (ti − ti−1) (26)

and

�n(t) =
∫ t1

0
dtI (t ) +

n−1∑
i=1

∫ ti+1

ti

dt I (t )ξ (t − ti )

+
∫ τm

tn

dtI (t )ξ (t − tn). (27)

Equation (25) can be generalized to n = 1 by setting �1(t1) in
the form of Eq. (21) and I (t1) = I (t1).

The Q symbols of the POVM elements in the case of n � 1
are given by

�n(α) =
∫

Tn

dnt πn(t|α), (28)

where integration is taken over the time-ordering domain Tn

such that 0 � t1 � t2 � · · · tn � τm. Employing property (5),
one obtains the general expression for the POVM elements

�̂n =: n̂n
∫

Tn

dnt In(t) exp[−n̂�n(t)] : . (29)

In the case of the time-dependent detection efficiency defined
by Eq. (12), the maximal value of n is restricted by the num-
ber N + 1 or N , where N = [τm/τd] is the number of whole
dead-time intervals, fitting inside the MTW. The latter case is
suitable only if N = τm/τd. In order to generalize this POVM
to the case of a nonunit detection efficiency η and a nonzero
dark-cont intesity ν, one can use replacement described by
Eqs. (10) and (11).

For practical purposes, it is convenient to change the inte-
gration variables to τ = {τ0, τ1, τ2, . . . , τn},

τ0 = t1, (30)

τi = ti+1 − ti, (31)

τn = τm − tn. (32)

An inverse relation,

ti =
i−1∑
j=0

τi, (33)

can be substituted in Eqs. (26) and (27). The new variables
correspond to the time intervals between neighboring pulses.
Herewith, τ0 and τn are the intervals from the beginning of the
MTW up to the first pulse and from the last pulse up to the end
of the MTW, respectively. These nonnegative variables obey
the constraint

n∑
i=0

τi = τm, (34)

which defines an n-dimensional simplex of (n+1)-
dimensional space.

B. Regular and irregular parts of the POVM

If we consider the time-dependent efficiency in the form of
Eq. (12), the POVM can further be specified as

�̂n = �̂(r)
n + �̂(i)

n , (35)

where �̂(r)
n and �̂(i)

n are referred to as regular and irregular
parts, respectively. The regular part describes the situation
with all n dead-time intervals fitted inside the MTW. The
irregular part describes the situation, for which the last dead-
time interval exceeds the MTW. This representation is made
by splitting the integral for τn in two parts.

Let us derive analytical expressions for regular and irregu-
lar parts of the POVM. Herein the presence of the Heaviside
theta function in Eq. (12) will be accounted in the integration
domain. In this case, the regular part for n = 0, . . . , N is
given by

�̂(r)
n =: n̂n

∫ τm−(n−1)τd

τd

dτn

∫
n

dn−1τJn(τ)e−n̂�(r)
n (τ) : . (36)

For n = N + 1 this part vanishes. Here

J1(τ) = I (τ0), (37)

Jn(τ) = I (τ0)
n∏

i=2

I

(
i−1∑
j=0

τi

)
ηr (τi−1 − τd ) (38)
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for n � 2,

�(r)
n (τ) =

∫ τ0

0
dtI (t )

+
n∑

j=1

∫ τ j

τd

dtI

(
j−1∑
k=0

τk + t

)
ηr (t − τd ). (39)

The integration domain n is defined as∫
n

dn−1τ · · · =
∫ δn−1

τd

dτn−1 · · ·
∫ δ1

τd

dτ1 · · · , (40)

where

δi = τm − (i − 1)τd −
n∑

j=i+1

τ j . (41)

As mentioned, this integration is accounted for by the zero-
value domains of the Heaviside step-functions in Eq. (12).

The irregular part of the POVM reads

�̂(i)
n =: n̂n

∫ τd

0
dτn

∫
n

dn−1τJn(τ)e−n̂�(i)
n (τ ) :, (42)

for n = 0, . . . , N and

�̂
(i)
N+1 =: n̂N+1

∫ τm−Nτd

0
dτN+1

×
∫

N+1
dNτJN+1(τ)e−n̂�

(i)
N+1(τ) : . (43)

Here

�(i)
n (τ) =

∫ τ0

0
dtI (t ) +

n−1∑
j=1

∫ τ j

τd

dtI

×
(

j−1∑
k=0

τk + t

)
ηr (t − τd ). (44)

The integration domain n and the function Jn(τ) are the
same as for the regular part.

Consider the case of a monochromatic mode [cf. Eq. (16)]
and the recovering detector efficiency in the form of Eq. (13).
This gives a possibility to present the functions Jn(τ), �(r)

n (τ),
and �(i)

n (τ) in the explicit form

Jn(τ) = 1

τ n
m

n−1∏
j=1

ηr (τ j − τd ) (45)

for n � 2,

�(r)
n (τ) = ηn − τr

τm

n∑
j=1

ηr (τ j − τd ), (46)

�(i)
n (τ) = ηn−1 − τn

τm
− τr

τm

n−1∑
j=1

ηr (τ j − τd ). (47)

Here

ηn = τm − nτd

τm
(48)

is the adjusting detection efficiency describing the time free
from the dead-time interval as a ratio to the duration of the
MTW.

An important example corresponds to the case of zero
relaxation time, τr = 0, such that ηr = 1. This situation takes
place for many types of detectors, such as avalanche photodi-
odes and photomultiplier tubes. The regular part of the POVM
of such detectors for n = 0, . . . , N is given by

�̂(r)
n = F̂n[ηn], (49)

where ηn is the adjusting detection efficiency and F̂n[η] is the
POVM of the PNR detectors; cf. Eqs. (48) and (2), respec-
tively. For n = N + 1 this part vanishes. The irregular part of
the corresponding POVM reads

�̂(i)
n =

n−1∑
k=0

F̂k[ηn] −
n−1∑
k=0

F̂k[ηn−1] (50)

for n = 0, . . . , N and

�̂
(i)
N+1 = 1 −

N∑
k=0

F̂k[ηN ] (51)

for n = N + 1. Combining both parts of the POVM in
Eq. (35), we arrive at the POVM, the Q symbols of which
correspond to the classical photodetection theory with the
dead time [74–82].

We remind that all expressions presented here are given
for the unit detection efficiency η and the zero dark-count
intensity ν. These equations can be simply rewritten to the
case of realistic values of these quantities. For this pur-
pose, one should use the replacement described by Eqs. (10)
and (11).

C. Photocounting statistics vs photon-number statistics

As follows from the previous consideration, the photo-
counting statistics (statistics of pulse numbers) may signif-
icantly differ from the photon-number statistics. Averaging
both sides of Eq. (8) with the density operator ρ̂, we arrive
at the linear expression

Pn =
+∞∑
m=0

Pn|mPm (52)

connecting the photocounting distribution Pn with the photon-
number distribution Pm = 〈m|ρ̂|m〉 in the case of η = 1 and
ν = 0. A similar expression in the case of array detectors is
applied for reconstructions of Pm from Pn via regularization of
an ill-posed problem [69]. For realistic values of η and ν, one
can use Pm = Tr(ρ̂F̂m[η; ν]), where F̂m[η; ν] is obtained from
F̂m[1] [cf. Eq. (2)] by the replacement (10). This procedure
does not result in changing the conditional probabilities Pn|m;
cf. Ref. [95]. However, it enables one to consider the effects
caused solely by the realistic resolution of photon numbers.

We apply the technique described by Eq. (9) to the POVM
(29). This yields the expression for the probability to get n
pulses given m photons,

Pn|m = m!

(m − n)!

∫
Tn

dnt In(t)[1 − �n(t)]m−n (53)
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for m � n and

Pn|m = 0 (54)

for m < n. The latter means that we cannot get more pulses
than photons at the detector input. Integration in Eq. (53) is
performed in the time-ordering domain Tn.

Applying the same method to Eq. (36) and Eqs. (42) and
(43), we can subdivide the conditional probability Pn|m on reg-
ular and irregular parts, respectively. Specifically, the regular
part is given by

P(r)
n|m = m!

(m − n)!

∫ τm−(n−1)τd

τd

dτn

×
∫

n

dn−1τJn(τ)[1 − �(r)
n (τ)]m−n (55)

for n = 0, . . . , N . The irregular part reads

P(i)
n|m = m!

(m − n)!

∫ τd

0
dτn

×
∫

n

dn−1τJn(τ)[1 − �(i)
n (τ)]m−n (56)

for n = 0, . . . , N and

P(i)
N+1|m = m!

(m − N − 1)!

∫ τm−Nτd

0
dτN+1

×
∫

n

dNτJN+1(τ)[1 − �
(i)
N+1(τ)]m−N−1 (57)

for n = N + 1. Both parts vanish for m < n.
Let us consider a special model: the monochromatic mode

given by Eq. (16) and the recovering detector efficiency in the
form of Eq. (13). In this case, integrals in Eqs. (55), (56), and
(57) can be evaluated analytically for each values of n and m
although the general equations have a complex structure. The
corresponding expressions for P(r)

n|m and P(i)
n|m can be directly

used in Eq. (52) for deriving the photocounting statistics from
the photon-number statistics.

In the important case of n = m, the probabilities Pn|n are
reduced to a simple analytical form,

Pn|n = τ n
r

τ n
m

[
n∑

l=0

al
n−1(−1)n−l n!(2n − 2 − l )!

l!(n − l )!(n − 2)!

+ (−1)n−1e−an−1

n−2∑
l=0

al
n−1

(2n − 2 − l )!

l!(n − l − 2)!

]
, (58)

where

an = τm − nτd

τr
. (59)

The quantity (58) characterizes the ability of detectors to
distinguish between photon numbers. For the PNR detectors,
i.e., for τd = τr = 0, it takes the unit value. It tends to zero for
the detectors, for which the click number is never equal to the
number of detected photons.

V. CONTINUOUS-WAVE DETECTION

A typical photocounting technique of the continuous-wave
detection assumes no interruptions between the MTWs; see
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FIG. 2. Photocounting with the technique of continuous-wave
detection is schematically depicted. The voltage pulses (solid lines)
are counted inside the MTW. The time-dependent efficiency ξ (t ) is
shown by dashed lines. The time τ between the last pulse in the
(l − 1)th MTW, and its end is shown.

Fig. 2. In such a scenario, the detector may not be recovered
after the last pulse from the previous MTW. This affects on
the probability of events in the current MTW. Therefore, pho-
tocounting statistics depends on quantum states in previous
MTWs.

Let us numerate MTWs in the order as they appear in
time. The Q symbols of the POVM in the lth MTW, �n(αl ),
depend on the amplitudes αl = (α1, . . . , αl ) in the given and
all previous MTWs. Here and in the following consideration,
we use the upper indices of bold symbols in order to designate
the number of entries in the corresponding sets of numbers.
Therefore, the photocounting formula in the P representation
is given by

Pn =
∫
Cl

d2lαl P(αl )P(αl−1) · · · P(α1) �n(αl ). (60)

This formula in the operator form reads

Pn = Tr(ρ̂⊗l �̂n). (61)

The most significant difference of these relations from Eqs. (1)
and (3) consists in nonlinear dependence of the photocounting
distribution on the density operator ρ̂. In this section we will
derive the POVM �̂n for the scenario of the continuous-wave
detection in an explicit form and consider the memory effect
of the previous MTWs on the photocounting distribution in
the current one.

A. Events dependent on previous measurements

Before we start with deriving the general expression for
the POVM �̂n in the scenario of continuous-wave detection,
we consider an important part needed for this consideration.
Let us assume that the last pulse in the (l − 1)th MTW occurs
at the time moment τn = τ [cf. Eq. (32)] before its end; see
Fig. 2. The POVM in the lth MTW should now depend on
this time.

The no-count element of the POVM in the considered case
differs from Eq. (17) and is given by

�̂0(τ ) =: exp[−�0(τ )n̂] :, (62)
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where

�0(τ ) =
∫ τm

0
dtI (t )ξ (t + τ ) (63)

corresponds to the no-count efficiency. Derivation of all other
elements of the POVM resembles the points listed in Sec. IV A
but with two modifications. Firstly, the unnormalized proba-
bility density to get the first pulse at the time moment t1 is
now given by |α|2I (t1)ξ (τ + t1). Secondly, the probability to
get no pulses before the time moment t1 is modified to the
form

F0

[
α;

∫ t1

0
dtI (t )ξ (τ + t )

]

= exp(−|α|2
∫ t1

0
dtI (t )ξ (τ + t )). (64)

Other points of the derivation are not changed.
The Q symbols of the POVM conditioned by the time τ for

n � 1 are given by

�n(α; τ ) =
∫

Tn

dnt πn(t|α; τ ). (65)

Here πn(t|α; τ ) is the unnormalized probability density to get
pulses at the time moments t given the coherent states |α〉 and
the time τ between the last pulse in the previous MTW and its
end. This conditional probability density reads

πn(t|α; τ ) = |α|2nIn(t; τ ) exp[−|α|2�n(t; τ )]. (66)

Here

In(t; τ ) = In(t)ξ (τ + t1) (67)

[cf. Eq. (26) for In(t)],

�n(t; τ ) =
∫ t1

0
dtI (t )ξ (τ + t ) +

n−1∑
i=1

∫ ti+1

ti

dt I (t )ξ (t − ti )

+
∫ τm

tn

dtI (t )ξ (t − tn) (68)

for n � 2, and

�1(t1; τ ) =
∫ t1

0
dtI (t )ξ (τ + t ) +

∫ τm

t1

dtI (t )ξ (t − t1) (69)

for n = 1.
To summarize this part, we note that the POVM condi-

tioned by the time τ is given by

�̂n(τ ) =: n̂n
∫

Tn

dnt In(t; τ ) exp[−n̂�n(t; τ )] : . (70)

Here In(t; τ ) is given by Eq. (67) for n � 1 and I0 = 1. Simi-
larly, �n(t; τ ) is given by Eqs. (68), (69), and (63) for n � 2,
n = 1, and n = 0, respectively.

B. POVM in the Markovian approximation

In this subsection we derive an expression for the POVM in
the scenario of the continuous-wave detection considering the
measurement in the lth MTW; cf. Eqs. (60) and (61). In the
next sections we will show that the dependence on the number
l is negligible for l � 1, and its actual value is not important.

However, for the sake of consistency, this number should be
explicitly included in our consideration. We also assume that
the ratio of dead and relaxation times to the duration of the
MTW is small,

τd + τr

τm
� 1. (71)

This yields for the time-dependent efficiency

ξ (t � τm ) ≈ 1, (72)

i.e., if no pulses are registered in the (l − 1)th MTW, then the
pulses in the former MTWs do not affect the statistics in the
lth MTW. This is the essence of the Markovian approximation
considered here.

Similar to Sec. IV, we consider the Q symbols of the
POVM as the probabilities to get n pulses given the coherent
state |α〉. Let ρ (k)(τ |αk ) be the probability density for the time
interval [between the last pulse and the end of the MTW]
τ in the kth MTW given the coherent amplitudes αk in this
and in all previous MTWs. This function is normalized by the
condition

�
(k)
0 (αk ) +

∫ τm

0
dτρ (k)(τ |αk ) = 1, (73)

where �
(k)
0 (αk ) is the 0th element of the Q symbols of the

POVM, i.e., the probability to get no pulses in the kth MTW
given the coherent amplitudes αk . The form of these functions
will be specified latter.

Two kinds of the outcomes in the (l − 1)th MTW affect on
the statistics in the lth one:

(i) No pulses in the (l − 1)th MTW with the probability
�

(l−1)
0 (αl−1) occur. In this case, the unnormalized probability

density to get pulses at the time moments tn of the lth MTW
is πn(tn|αl ).

(ii) Pulses in the (l − 1)th MTW occur such that the prob-
ability density for the time interval τ is ρ (l−1)(τ |αl−1). In this
case, the unnormalized probability density to get pulses at the
time moments tn of the lth MTW is πn(tn|αl ; τ ).

Employing the law of total probability, we get the unnor-
malized probability density to get pulses at the time moments
tn of the lth MTW given the coherent amplitudes αl in current
and all previous MTWs in the form

λ(l )
n (tn|αl ) = πn(tn|αl )�

(l−1)
0 (αl−1)

+
∫ τm

0
dτπn(tn|αl ; τ )ρ (l−1)(τ |αl−1). (74)

Integrating this relation with respect to tn in the time-ordering
domain Tn, we get for the Q symbols of the POVM

�(l )
n (αl ) = �n(αl )�

(l−1)
0 (αl−1)

+
∫ τm

0
dτ�n(αl ; τ )ρ (l−1)(τ |αl−1). (75)

This equation connects the POVM �̂(l )
n for the lth MTW in the

scenario of continuous-wave detection with the POVM �̂n in
the scenario of independent MTW and the conditional POVM
�̂n(τ ).

Let us now derive a technique for obtaining the func-
tions ρ (l−1)(τ |αl−1) and �

(l−1)
0 (αl−1). For this purpose, we
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explicitly separate the nth time in Eqs. (74) and (75) as tn =
(tn−1, tn). The function ρ (k)(τ |αk ) can be expressed via the
probability density λ(k)

n (tn−1, tn|αk ) as

ρ (k)(τ |αk ) =
+∞∑
n=1

∫
T n−1

τ

dn−1tn−1λ(k)
n (tn−1, τm − τ |αk ), (76)

where the term with n = 1 assumes no integration and the in-
tegration domain T n−1

τ is defined as 0 � t1 � t2 � · · · tn−1 �
τm − τ . Indeed, integration with the first (n − 1) components
of tn gives the probability density for the time tn = τm − τ in
the case of n pulses and the sum is taken over all n �= 0.

Employing Eq. (76) to Eq. (74) and setting n = 0 in
Eq. (75), we arrive at a system of recurrence relations for
ρ (k)(τ |αk ) and �0(αk ),

ρ (k)(τ |αk ) = G(τ |αk )�(k−1)
0 (αk−1)

+
∫ τm

0
dτ ′H (τ |αk; τ ′)ρ (k−1)(τ ′|αk−1), (77)

�
(k)
0 (αk ) = �0(αk )�(k−1)

0 (αk−1)

+
∫ τm

0
dτ�0(αk; τ )ρ (k−1)(τ |αk−1). (78)

Here we use the notations

G(τ |αk ) =
+∞∑
n=1

∫
T n−1

τ

dn−1tn−1πn(tn−1, τm − τ |αk ) (79)

and

H (τ |αk; τ ′) =
+∞∑
n=1

∫
T n−1

τ

dn−1tn−1πn(tn−1, τm − τ |αk; τ ′).

(80)

Resolving the recurrence relations (77) and (78) with the
initial conditions

ρ (0) = 0 and �
(0)
0 = 1 (81)

we may get explicit expressions for ρ (l−1)(τ |αl−1) and
�

(l−1)
0 (αl−1).
As a summary of this part we note that the POVM �̂n in

the photocounting formula (60) and (61) is given by Eq. (75).
Constituents of this expression can be obtained as a solution
to the system of recurrence relations given by Eqs. (77) and
(78). The POVM element �

(l−1)
0 (αl−1) can in principle be

excluded from Eq. (75) by employing the normalization con-
dition (73). One can also formulate the recurrence relation
solely for the function ρ (k)(τ |αk ) by excluding the POVM
element �

(k)
0 (αl−1) in Eq. (77). Similarly to the case of in-

dependent MTWs, the detection efficiency η and dark-count
intensity ν can be easily included by applying the rules (10)
and (11) to all coherent amplitudes or the photon-number
operators.

C. Approximation by the uniform distribution

In real practical applications, resolving the system of re-
currence relations (77) and (78) may be an involved numerical
task. In this subsection we introduce a reasonable approxima-
tion for this problem. The main condition for its applicability

is stronger than the condition (72) for the Markovian approxi-
mation. Namely, we assume that there exists a time parameter

 � τm such that

ξ (t � 
) ≈ 1. (82)

This yields

πn(t|α; τ > 
) ≈ πn(t|α), (83)

�n(α; τ > 
) ≈ �n(α). (84)

Particularly, in the case of τr = 0 the parameter 
 should
be chosen as 
 = τd. Another condition for the discussed
approximation assumes that the number of time bins free
from dead- and relaxation-time intervals must significantly
exceed 
, i.e., 
 � τm − |α|2(τd + τr ). This implies that in
the domain τ ∈ [0,
] the probability density ρ (k)(τ |αk ) can
be modeled by the uniform distribution,

ρ (k)(τ |αk ) = 1 − Q(k)(αk )



. (85)

Here Q(k)(αk ) is the probability to get no pulses inside the
time interval τ ∈ [0,
] for the kth MTW.

In the approximation by the uniform distribution, the
POVM (75) is significantly simplified. Firstly, we split the
integration domain in the right-hand side of this equation into
two parts: The first and the second ones are [0,
] and [
, τm],
respectively. Next, we apply the simplification (84) to the
second part. We also use the fact that

∫ τm




dτρ (k)(τ |αk ) = Q(k)(αk ) − �
(k)
0 (αk ), (86)

which directly follows from the normalization condition (73)
and from the expression

1 − Q(k)(αk ) =
∫ 


0
dτρ (k)(τ |αk ) (87)

for the probability to get the last pulse in the domain τ ∈
[0,
]. Finally, we apply the approximation (85) for the prob-
ability density ρ (k)(τ |αk ). As a result, the POVM (75) is
reduced to the form

�(l )
n (αl ) = Q(l−1)(αl−1)�n(αl )

+ 1 − Q(l−1)(αl−1)




∫ 


0
dτ�n(αl ; τ ). (88)

The information about the memory effect caused by events
in the previous MTWs is encoded in this relation by the
probability Q(l−1)(αl−1).

The advantage of this approximation is that the probability
density ρ (k)(τ |αk ) is replaced by the probability Q(k)(αk ),
which is a number depending on the coherent amplitudes
in the previous MTWs. In order to find the corresponding

063716-8



PHOTOCOUNTING STATISTICS OF SUPERCONDUCTING … PHYSICAL REVIEW A 105, 063716 (2022)

recurrence relations, we integrate Eq. (77) in the domain
[0,
] and apply the technique used for derivation of Eq. (88).
Thus we get

Q(l )(αl ) = C(αl )Q
(l−1)(αl−1) + B(αl ), (89)

where

B(αl ) = 1 − 1




∫ 


0
dτ

∫ 


0
dτ ′H (τ |αl ; τ

′), (90)

C(αl ) = A(αl ) − B(αl ), (91)

A(αl ) = 1 −
∫ 


0
dτG(τ |αk ). (92)

The recurrence relation (89) should be resolved with the initial
condition

Q(0) = 1, (93)

which implies that the first MTW is not affected by the previ-
ous MTWs.

The solution to the relation (89) with the initial condition
(93) reads

Ql−1(αl−1) = B(αl−1) + B(αl−2)C(αl−1)

+ B(αl−3)C(αl−2)C(αl−1) + · · · . (94)

The first term of this relation describes the effect of the
previous MTW. The second term describes the effect of two
previous MTWs, and so on. Therefore, the memory effect
from the previous MTWs is conveniently encoded by the
probability Ql−1(αl−1) in the POVM (88).

An important feature of the solution (94) is that contri-
butions of higher terms quickly vanish with growing their
number. In many practical situations, it is sufficient to con-
sider only a few first terms. Therefore, only several previous
MTWs affect the photocounting statistics in the given one.
Hence, the considered measurement process is ergodic, i.e.,
the dependence on l vanishes for l � 1, and the statistics
in different MTWs is almost the same. This implies that
the photocounting statistics of the lth MTW is equal to the
statistics obtained from events sampled from the MTWs with
consecutive numbers. This result justifies a technique of data
processing widely used with the continuous-wave detection.
Indeed, in typical experimental applications one averages
events sampled from different MTWs without repeating the
whole measurement procedure and averaging data from the
MTWs with the same number.

D. Photocounting statistics vs photon-number statistics

An important consequence from the nonlinear dependence
of the photocounting distribution on the density operator ρ̂

in Eq. (61) is that the expression (52) connecting photon-
number and photocounting statistics does not hold anymore.
Evidently, in the considered situation it should be replaced by

Pn =
+∞∑

m1,...,ml =0

�n|ml ,...,m1Pml · · ·Pm1 . (95)

Here Pn and Pk are photocounting and photon-number distri-
butions, respectively, and

�n|ml ,...,m1 = 〈ml , . . . , m1|�̂n|ml , . . . , m1〉 (96)

is the POVM (88) in the Fock representation, where we have
omitted the MTW-number l for the sake of simplicity.

Converting the POVM (88) in the Fock representation, we
get

�n|ml ,...,m1 = [Pn|ml − Dn|ml ]Qml−1...m1 + Dn|ml . (97)

Here we have introduced operators in the Fock representation.
The probability Pn|m to get n pulses given m photons in the
current MTW and no pulses in the time interval τ ∈ [0,
] of
the previous MTW is presented by Eq. (53). The conditional
probability Dn|m = 〈m|D̂n|m〉 describes the situation with the
presence of last pulse in the time interval τ ∈ [0,
] of the
previous MTW. This probability is uniformly averaged with
the time τ and corresponds to the operator

D̂n = 1




∫ 


0
dτ�̂n(τ ) (98)

[cf. Eq. (65)] for the conditional POVM �̂n(τ ). The symbol
Qml−1...m1 is decomposed according to Eq. (94) as

Qml−1...m1 = Bml−1 + Bml−2Cml−1

+ Bml−3Cml−2Cml−1 + · · · . (99)

Here Bm = 〈m|B̂|m〉 and Cm = 〈m|Ĉ|m〉 correspond to the
operators with the Q symbols given by Eq. (90) and Eq. (91),
respectively.

The conditional probabilities Dn|m can be obtained from
Eqs. (65), (66), and (98) by applying the technique described
in Sec. II. This leads to the expression

Dn|m = m!


(m − n)!

∫ 


0
dτ

×
∫

Tn

dnt In(t; τ )[1 − �n(t; τ )]m−n (100)

for m � n and

Dn|m = 0 (101)

for m < n. The coefficients Am, Bm, and Cm are expressed via
the operators Ĝ(τ ) and Ĥ (τ |τ ′) [cf. Eqs. (90), (91), and (92)]
in the Fock representation as

Am = 1 −
∫ 


0
dτGm(τ ), (102)

Bm = 1 − 1




∫ 


0
dτ

∫ 


0
dτ ′Hm(τ |τ ′), (103)

Cm = Am − Bm. (104)

Here the functions

Gm(τ ) =
m∑

n=1

m!

(m − n)!

×
∫

T n−1
τ

dn−1tn−1In(tn−1, τm − τ )

× [1 − �n(tn−1, τm − τ )]m−n (105)
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and

Hm(τ |τ ′) =
m∑

n=1

m!

(m − n)!

×
∫

T n−1
τ

dn−1tn−1In(tn−1, τm − τ ; τ ′)

× [1 − �n(tn−1, τm − τ ; τ ′)]m−n (106)

are obtained from Eqs. (79) and (80) with the technique de-
scribed in Sec. II.

VI. EXAMPLES FOR TYPICAL QUANTUM STATES

In this section, we consider applications of the obtained
theory for the SNSPDs to derivation of photocounting statis-
tics for typical quantum states. We will concentrate on
understanding the roles of two factors: (1) the relaxation
time τr in the scenario of independent MTWs and (2) the
memory effect of the previous MTWs in the scenario of
continuous-wave detection. For this purpose, we compare the
statistic obtained from the PNR detectors with three different
situations. Firstly, we model the relaxation in the scenario
of independent MTWs by replacing the dead time τd with
τd + τr in the POVM (49), (50), (51). Next, we directly apply
the derived POVM (29) with the model of smooth relaxation
(13). Finally, we consider the memory effect of the previous
MTWs; cf. the POVM (88) and the photocounting formula
(60). For all cases we use a monochromatic mode described
by Eq. (16).

The first example is the coherent state |α0〉. Since its P
function is given by the Dirac delta function,

P(α) = δ(α − α0), (107)

the corresponding statistics is obtained by replacing α or αk

for all k with α0 in the Q symbols of the POVM for the sce-
nario of independent MTWs or in continuous-wave detection,
respectively. The result is shown in Fig. 3. It is clear that the
presence of the dead time alone strictly changes the statistics
in comparison with the case of the PNR detectors. The smooth
relaxation described by Eq. (13) and the memory effect of
the previous MTWs result in significant modifications of the
statistics as well.

As the next example, we consider the Fock state |k〉 atten-
uated with the efficiency η, which can also be considered as
the detection efficiency. The corresponding density operator is
given by

ρ̂ =
k∑

l=0

Pl |l〉〈l|, (108)

where

Pl =
(

k

l

)
ηl (1 − η)k−l (109)

is the photon-number distribution. The photocounting distri-
bution is directly obtained from Eq. (52) and Eq. (95) in
the scenarios of independent MTWs and continuous-wave
detection, respectively. It is shown in Fig. 4 for k = 4. Firstly,
it is clearly seen that even the dead-time alone results in
a significant increase of events with n < k. Secondly, the
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FIG. 3. Photocounting statistics for the coherent state |α0〉 with
α0 = 2 is shown. Four cases are presented: (i) PNR detectors with
the statistics determined from the POVM (2); (ii) the simple model
described by the POVM (49), (50), (51) with the dead time τd re-
placed by τd + τr ; (iii) the model given by the POVM (29) in the
scenario of independent MTWs; (iv) the model of continuous-wave
detection accounting the memory effect of the previous MTWs [cf.
Eq. (88)] for l = 3 and 
 = 0.3τm. In all appropriate cases we chose
τd = 0.05τm and τr = 0.2τm.
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FIG. 4. Photocounting statistics as in Fig. 3 is shown but for the
Fock state |4〉. The upper and lower plots correspond to η = 1 and
η = 0.8, respectively.
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consideration of a smooth model for the relaxation crucially
changes the probability distribution as well. Finally, we note
the significant impact of the previous MTWs.

As the last example, we consider the squeezed vacuum
state,

|r〉 = 1√
cosh r

∞∑
n=0

(
2n

n

)1/2( tanh r

2

)n

|2n〉, (110)

where r is the squeezing parameter. The corresponding pho-
tocounting distribution can be obtained with two different
methods. The first one is based on the fact that the photon-
number distribution for this state is given by

Pn = (i sinh r)n

[1 + (2 − η)η sinh2 r]
n+1

2

× Pn

[
(1 − η)η sinh r

i
√

1 + (2 − η)η sinh2 r

]
, (111)

where Pn(x) are the Legendre polynomials. These probabili-
ties can be substituted in Eqs. (52) and (95) in order to obtain
the photocounting distribution for the SNSPDs in the sce-
narios of independent MTWs and continuous-wave detection,
respectively. Alternatively, for the scenario of independent
MTWs one can directly use the photocounting formula (1)
with the POVM (29) and get the photocounting distribution
in the form

Pn =
∫

T n

dntpn(t), (112)

where

pn(t) = Tr[π̂n(t)ρ̂] (113)

is the unnormalized probability density to get pulses at the
time moments t, ρ̂ = |r〉〈r| is the density operator, and π̂n(t)
is the operator, the Q symbol of which is given by πn(t|α); cf.
Eq. (25). The function pn(t) can be obtained explicitly as

pn(t) = n!inIn(t) sinhn r

[Sn(t)]n+1

× Pn

(
i sinh r[�n(t) − 1]

Sn(t)

)
, (114)

where

Sn(t) =
√

1 − sinh2 r�n(t)[�n(t) − 2]. (115)

With these expressions, the integral in Eq. (112) can be
evaluated numerically. Similar calculations can be directly
conducted for the scenario of continuous-wave detection. The
result is presented in Fig. 5. Evidently, dead and relaxation
times as well as the memory effect of the previous MTWs play
a crucial role in the photocounting statistics for the squeezed
vacuum states.

VII. RECONSTRUCTION OF THE TIME-
DEPENDENT EFFICIENCY

For our purposes, we have used the time-dependent ef-
ficiency in the form of a decaying exponent as is given by
Eqs. (12) and (13). However, the realistic function may differ
from this simple model. In this section we analyze a technique
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FIG. 5. Photocounting statistics as in Fig. 3 is shown but for
the squeezed vacuum state |r〉. The squeezing parameter and the
detection efficiency are chosen as r = 1.5 and η = 0.8, respectively.

reported in Ref. [93], enabling reconstruction of the efficiency
ξ (t ) from the experimental data.

Let us consider a monochromatic wave in the coherent
state |α0〉 in the MTW of duration τm. The intensity of this
wave (the mean energy per time unit) is given by the value
λ = |α0|2/τm. We will derive the probability density for the
time between pulses in such a scenario. It is composed of two
parts:

(1) The probability density to get the second pulse at the
time moment t given the first pulse registered at the time
moment t = 0 in the form λξ (t ).

(2) The probability to get no pulses in the time domain
(0, t ) given by

exp

[
−λ

∫ t

0
dτξ (τ )

]
. (116)

The resulting probability density for the time between
pulses is given by

P(t ) = λξ (t ) exp

[
−λ

∫ t

0
dτξ (τ )

]
, (117)

which is the product of two mentioned components.
Similar to Eq. (82) we assume the existence of time 
, for

which the relaxation processes are finished. Let the intensity
be chosen such that the condition

λ �
[ ∫ 


0
dτξ (τ )

]−1

(118)

is satisfied. For times t � 
 the probability density (117) can
be approximated as

P(t ) ≈ λξ (t ). (119)

Therefore, the probability density of the time between
pulses for t � 
 is proportional to the time-dependent effi-
ciency ξ (t ). This fact can be used for its reconstruction in
experiments.
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VIII. SUMMARY AND CONCLUSIONS

To summarize, we have proposed a photodetection theory
of the SNSPDs for the technique of counting voltage pulses,
which occur during the MTWs. We have concentrated with
three issues: dead time, relaxation time, and the memory ef-
fect from the previous MTWs. The latter can be eliminated
with the considered here technique of independent MTWs
assuming either darkening detector input after each MTW or
a proper postselection of the MTWs.

Our idea is based on modeling the dead time and the relax-
ation process by the time-dependent efficiency. This efficiency
becomes zero after each pulse during the dead-time interval,
and then it is smoothly recovered. For a better understanding
of the role of dead and relaxation times, the recovering part
of this efficiency has been approximated by the exponential
function. However, the realistic dependence may have a dif-
ferent form, which can also be applied in our theory. We have
analyzed an experimental technique of its reconstruction from
experimental data.

The measurement technique of continuous-wave detection
assuming no interruptions between the MTWs is considered
in the Markovian approximation. In this case, the well-known
photodetection formula significantly differs from its standard

form. Indeed, the memory effect of the previous MTWs results
in nonlinear dependence of the photocounting distribution on
the density operator.

In the most general case, photocounting statistics in each
MTW depends on its number. We have shown that in the
Markovian scenario this dependence is weak such that the
measurement process can be considered as ergodic. This result
justifies a widely used experimental technique of averaging
results from the events sampled in all MTWs.

The SNSPDs are widely used in many experimental works
in quantum optics. They also successfully applied for practical
implementations of quantum-information technologies. We
hope that our results will be useful for a proper analysis of
corresponding experimental data and for further development
of modern quantum technologies.
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