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Guiding and polarization shaping of vector beams in anisotropic media
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We investigate a scheme to guide a weak vector beam using optically written waveguides inside atomic
vapor, while controlling its polarization rotation. The atoms are prepared in the four-level tripod configuration
in the presence of an external magnetic field. The three transitions of the tripod system are driven by a strong
control beam and the two orthogonal polarization components of a weak vector beam (VB). A suitable spatial
intensity profile and the detuning of the control field facilitate the generation of an optical fiberlike refractive
index gradient across the atomic vapor. This enables waveguiding of the weak VB for a couple of Rayleigh
lengths. Further, the magnetic-field-induced anisotropy of the tripod system creates a difference in the refractive
indices of its two components. This is the reason behind the polarization shaping of VB. The mechanism of
efficient guiding of VB with controllable polarization may have important applications in high-density optical
communication and quantum information.
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I. INTRODUCTION

Vector beams (VBs) also known as fully structure light
(FSL) beams have a great advantage over their scalar coun-
terparts, due to their spatially inhomogeneous polarization
distribution. Coherent control of polarization, phase, and am-
plitude gives us complete freedom to manipulate FSL. A
vector superposition of two orthogonally polarized compo-
nents can produce a VB or FSL beam [1–3]. The constituent of
VB carries orbital angular momentum (OAM) with Laguerre-
Gaussian (LG) modes [4]. Two LG modes with equal and
opposite OAM can generate a cylindrical vector (CV) beam
that carries a net-zero OAM. The polarization distribution of
CV beam is found to be radial, azimuthal, and spiral with
respect to the axial symmetry of the beam. On the other hand,
a full Poincaré (FP) [2] beam has a transverse polarization
distribution that varies both in the azimuthal and radial di-
rections. The FP beam bears a nonzero OAM value, which is
in contrast to the CV beam. Based on the transverse inhomo-
geneity of polarization, the FP can be classified as lemon, star,
and web VBs.

The acclamation of VBs comes from their applicability in
myriads of areas as well as developments in their generation
methods. With the use of a high numerical aperture (NA)
lens, CV beams can create a spot size as small as 0.1612λ2

[5]. This realization is possible due to the existence of a
strong longitudinal polarization component [6]. The focusing
property of CV beams has applications in single-molecule
spectroscopy, STED [7], confocal microscopy [8–10], ef-
ficient laser cutting [11], and optical trapping of particles
[12,13]. The inhomogeneous polarization distribution of VBs
has application in polarization dependent measurements [14].

*tarak.dey@iitg.ac.in

In quantum information, a high-dimensional Hilbert space
[15] can be facilitated by the VBs that employ their po-
larization inhomogeneity and OAM. This high-dimensional
Hilbert space can be leveraged to encode single-photon qubits
[16]. In optical communication, the transverse polarization
distribution of vector modes can be used to increase the
transmission data rate of free space optical communication
[17]. The spatial degree of freedom of scalar OAM carrying
beams has been used to increase information content [18] in
optical communication. The diffraction of these OAM beams
during propagation can be mitigated by using a Kerr medium
[19]. Although, OAM beams suffer from fragmentation into
multiple spatial solitons during nonlinear propagation [20,21],
this fragmentation can be inhibited by using VBs instead of
scalar beams [22–24]. CV beams can propagate in a saturable
Kerr nonlinear medium for longer distances compared to
scalar beams [25] without undergoing significant changes to
their transverse spatial intensity profile. It is important to
maintain minimum absorption and controllable diffraction for
VB, which is an essential criterion for many of the aforemen-
tioned applications. In addition, exploiting the polarization
structure opens up a completely new degree of freedom for
manipulation of FSL [26].

In this work, we propose a VB guiding scheme based on
optically written waveguides in atomic vapor [27,28]. The
three transitions of the tripod system are driven by a strong
control field and the two orthogonal polarization components
of a probe VB. The strong control field facilitates absorp-
tionless VB propagation through electromagnetically induced
transparency (EIT). An external longitudinal magnetic field
is employed to induce anisotropy, which creates a difference
in the refractive indices of the two orthogonally polarized
VB components. This difference in refractive index varies
with the magnetic field strength and, in turn, enables VB
polarization rotation control during propagation. Furthermore,
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a control field with a suitable spatial intensity profile and
detuning can create a “core-cladding” type refractive index
gradient, providing diffractionless VB propagation for sev-
eral Rayleigh lengths. The degree of waveguiding can be
dynamically controlled via the magnetic field and control field
detuning. There has been work related to vector beam guiding
using anisotropic crystals [29] and generation of diffraction-
less vector Bessel beams with axicons [30]. Compared to
these methods, an atomic medium provides dynamic control
of the relevant parameters, which is not possible with crystals
due to their fixed optical properties.

The paper is organized as follows. Section I contains a brief
introduction on vector beam, its applications, and the findings
of our work. Section II contains the theoretical formalism used
in the work. Section III collates the results of this paper with
explanations. Finally, Sec. IV contains the conclusion of the
paper.

II. THEORETICAL FORMULATION

A. Level system

Engineering of spatial refractive index in the transverse
plane is the key feature for diffraction-free propagation of
the vector beam through the medium. A suitable modulation
of spatial refractive index by the application of the spatial
dependent control field enables waveguidelike structure inside
the medium. In addition, the rotation of the polarization angle
in the transverse plane of the VB is essentially dependent
on the difference in refractive indices of its two components.
This variation can be adjusted by a magnetic field. Hence the
manipulation of the spatial refractive index makes it possible
to achieve an efficient control over diffraction as well as po-
larization rotation of VB while it is propagating through the
medium. In this regard, a four-level tripod system as shown in
Fig. 1 is a natural candidate for the fulfillment of the above
criteria without absorption. In Fig. 1, a longitudinal magnetic
field can be used to remove the degeneracy among the states
|1〉, |0〉, and |2〉. The energy of |0〉 is set to be zero and |4〉 is
taken as the excited state. The states |3〉 and |4〉 are coupled
by a strong control field, �Ec, which is defined as

�Ec(r, t ) = êcEc(r)e−i(ωct−kcz) + c.c., (1)

where Ec, êc, ωc, and kc are the slowly varying envelope,
the polarization, the frequency, and the wave vector of the
control field, respectively. A weak x̂-polarized probe field of
frequency ωp and propagation constant kp can be decomposed
in terms of two orthogonal polarization basis σ̂i, (i ∈ R, L),

�Ep(r, t ) = x̂Ep(�r)e−i(ωpt−kpz) + c.c. (2a)

=
∑

i=R,L

σ̂iEi(�r)e−i(ωpt−kpz) + c.c., (2b)

where the right (left) circularly polarized component ER (EL)
couples |1〉 ↔ |4〉 (|2〉 ↔ |4〉) transition. The level configu-
ration in Fig. 1 can be realized with rubidium (Rb) atomic
vapor in the presence of a magnetic field. We choose the
Zeeman sublevels of 87Rb D2 (52S1/2 → 52P3/2) transition
hyperfine structure as |1〉 = |52S1/2, F = 1, mF = −1〉, |2〉 =
|52S1/2, F = 1, mF = +1〉, which makes |0〉 = |52S1/2, F =
1, mF = 0〉. States |3〉 and |4〉 can be taken as |3〉 =

|52S1/2, F = 2, mF = 1〉 and |4〉 = |52P3/2, F = 0, mF = 0〉.
The time-dependent Hamiltonian of the system as shown in
Fig. 1 can be expressed under the electric dipole approxima-
tion as

H = H0 + HB + H I , (3a)

H0 = h̄(ω40|4〉〈4| + ω30|3〉〈3|), (3b)

H I = −d̂ · �E
= −[�d41 · (σ̂RERe−iωpt + c.c.)|4〉〈1|

+ �d42 · (σ̂LELe−iωpt + c.c.)|4〉〈2|
+ �d43 · (êcERe−iωct + c.c.)|4〉〈3|] + H.c., (3c)

where ω j0 ( j = 4, 3) is the frequency separation between
state | j〉 and ground state |0〉 and �d4i = 〈4|d̂|i〉 (i = 1, 2, 3)
are matrix elements of the dipole moment operator d̂, repre-
senting the induced dipole moments, corresponding to |i〉 ↔
|4〉 transition. The magnitude of Zeeman shift between the
ground-state levels is given by βL = gF μBB/h̄, where gF and
μB are the Landé g factor and Bohr magneton, respectively.
To remove explicit time dependency in the Hamiltonian H ,
we use the following unitary transformation:

Û = e−iωpt |4〉〈4|−i(ωp−ωc )t |3〉〈3|. (4)

The effective Hamiltonian obeying the Schrödinger equa-
tion in the transformed basis is given as H = Û †HÛ −
ih̄Û †∂tÛ , which under rotating wave approximation gives

H
h̄

= −[(δp − δc)|3〉〈3| + δp|4〉〈4|] + h̄βL(|2〉〈2| − |1〉〈1|)
− h̄[�R|4〉〈1| + �L|4〉〈2| + �c|4〉〈3|] + H.c. (5)

In Eq. (5), the one photon probe detuning is δp = ωp − ω40

and Rabi frequencies for the probe field components are

FIG. 1. Schematic diagram of a four-level tripod system. A mag-
netic field, �B = Bzẑ, generates the Zeeman sublevels, |1〉, |0〉, and
|2〉, with an energy separation of h̄βL between them. The energy of
|0〉 is indiscriminately set to zero and |4〉 is taken as the excited state.
The right circularly polarized component, �ER, and the left circularly
polarized component, �EL , of a weak probe VB drives the transitions,
|1〉 ↔ |4〉 and |2〉 ↔ |4〉, respectively. The transition, |3〉 ↔ |4〉, is
coupled by a strong control field, �Ec. The spontaneous emission
decay rate from |4〉 to | j〉 ( j = 0, 1, 2, 3) is denoted by γ4 j . The
detunings of the probe and control fields are denoted by δp and δc,
respectively.
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defined as

�R =
�d41 · σ̂R

h̄
ER, �L =

�d42 · σ̂L

h̄
EL. (6)

The detuning and Rabi frequency of control is denoted as

δc = ωc − ω43, �c =
�d43 · êcEc

h̄
. (7)

The dynamics of atomic state populations and coherences are
governed by the following Liouville equation:

∂ρ

∂t
= − i

h̄
[H, ρ] + Lρ. (8)

In the above equation, the Liouville operator, Lρ , describes all
incoherent processes and can be expressed as

Lρ = −
3∑

j=1

γ4 j

2
(|4〉〈4|ρ − 2| j〉〈 j|ρ44 + ρ|4〉〈4|), (9)

where γ4 j represents the radiative decay rates from the excited
state, |4〉, to ground states, | j〉. The relevant equations of
motion for atomic state populations and coherences of the
four-level tripod system are then given by

ρ̇44 = −
3∑

i=0

γ4iρ44 + i(ρ34�c − ρ43�
∗
c + ρ14�R

− ρ41�
∗
R + ρ24�L − ρ42�

∗
L ), (10a)

ρ̇41 = i�14ρ41 + i[ρ31�c + ρ21�L + (ρ11 − ρ44)�R], (10b)

ρ̇42 = i�24ρ42 + i[ρ32�c + ρ12�R + (ρ22 − ρ44)�L], (10c)

ρ̇43 = i�34ρ43 + i[ρ13�R + ρ23�L + (ρ33 − ρ44)�c], (10d)

ρ̇11 = γ41ρ44 + i(ρ41�
∗
R − ρ14�R), (10e)

ρ̇12 = i�12ρ12 + i(ρ42�
∗
R − ρ14�L ), (10f)

ρ̇13 = i�13ρ13 + i(ρ43�
∗
R − ρ14�c), (10g)

ρ̇22 = γ42ρ44 + i(ρ42�
∗
L − ρ24�L ), (10h)

ρ̇23 = i�23ρ23 + i(ρ43�
∗
L − ρ24�c), (10i)

ρ̇33 = γ43ρ44 + i(ρ43�
∗
c − ρ34�c), (10j)

ρi j = ρ∗
ji,

4∑
i=1

ρii = 1. (10k)

In Eq. (10), �14 = δp − βL + i�14, �24 = δp + βL +
i�34, �34 = δc + i�24, �12 = 2βL + i�12, �13 = δc −
δp + βL + i�13, and �13 = δc − δp − βL + i�23. Here, �i j

and �i4 are the decoherence rate of ρi j and ρi4, respectively.
For simplicity, we assume γ4i = γ (i < j; i, j ∈ 0, 1, 2, 3).

B. Refractive index of the medium

A minimum absorption is a prerequisite for VB propa-
gation through the medium. Otherwise, huge absorption can
degrade both envelope shape as well as transmission of VB.
A strong control field-assisted EIT can make an otherwise
opaque medium transparent for a weak probe field. The in-
tensity of the probe field ensures that the perturbation analysis
of the system retains the two lowest-order contributions while

neglecting the higher orders in the expansion under steady-
state conditions. Under the assumption of |Ec| 	 |ER,L|, ρ11 =
ρ22 = 1/2 and ρ33 = ρ44 = ρ43 = ρ34 = 0. Hence the atomic
coherences induced by the probe field can be expressed as

ρ41 = −�R

2

⎡
⎣ 1 + |�L |2

A

�14 + |�c|2
�∗

13
+ |�L |2

�∗
12

(
1 + |�R|2

A

)
⎤
⎦, (11a)

ρ42 = −�L

2

⎡
⎣ 1 − |�R|2

B

�24 + |�c|2
�∗

23
− |�R|2

�12

(
1 − |�L |2

B

)
⎤
⎦. (11b)

The coefficients A and B are defined by

A = �∗
24�

∗
12

[
1 −

( |�R|2
�∗

24�
∗
12

− |�c|2
�∗

24�23

)]
, (12a)

B = �∗
14�12

[
1 +

( |�L|2
�∗

14�12
+ |�c|2

�∗
14�13

)]
. (12b)

The refractive indices for frequencies, ωR,L, can then be writ-
ten in terms of the coherences given in Eq. (11) as

nR = 1 + 2πη̃RRe
[ρ41

�R

]
, nL = 1 + 2πη̃LRe

[ρ42

�L

]
, (13)

provided Im[ρ41(2)/�R(L)] ∼ 0. The parameter η̃i =
3N /2k3

i (i = R, L) is a dimensionless constant with N
being the number of atoms per unit volume inside the
medium.

C. Polarization rotation angle

The orthogonal polarization components of the VB behave
differently while passing through an anisotropic medium. This
property leads to the rotation of the polarization angle in the
transverse plane. A brief derivation of the polarization rotation
angle at each point on the VB’s transverse plane is given
below: the field envelopes of the two orthogonal polarization
components of the VB can be written as

EL = E0
L cos(α)LGlL

0 , ER = E0
Reiθ sin(α)LGlR

0 , (14)

where E0
i , α, and θ determine the field amplitudes, relative

amplitude, and phase between the two modes, respectively,
and LGli

0 (i = R, L) are the Laguerre Gaussian modes, with
the radial index set to zero for simplicity:

LGli
0 (r, φ, z) = E (0)

i

√
2

π |li|!
(

r
√

2

w(z)

)|li|
e− r2

w(z)2 eiliφ

× exp

(
ik f

i nir2z

2
(
z2 + n2

i z2
R

)
)

e−i(|li|+1)η(z)+ik f
i niz.

(15)

In Eq. (15), li are the OAM index. The free space Rayleigh
length is given by zR = k f

i w2
0/2, where w0 is the beam waist

at z = 0 and k f
i is the free space wave number. The beam

radius at a propagation distance, z, inside the medium is given
by w(z) = w0

√
1 + z2/n2

i z2
R , where ni is the refractive index

of the medium for frequency, ωi. The Gouy phase is given
by (|li| + 1)η(z), with η(z) = tan−1(z/nizR). The azimuthal
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and radial coordinates are denoted by φ and r, respec-
tively. The output vector beam becomes elliptically polarized
under the action of the anisotropic medium. Thus, to fully
define the polarization state of the output field, one has to
introduce the Stokes parameters. The Stokes parameters in the
circular polarization basis are given by

S0 = |ER|2 + |EL|2, S1 = 2 Re[E∗
REL],

S2 = 2 Im[E∗
REL], S3 = |ER|2 − |EL|2. (16)

The ellipticity, ζ , and orientation, ξ , of the polarization at each
point on the VB’s transverse plane can be calculated using

S1

S0
= cos(2ζ ) cos(2ξ ),

S2

S0
= cos(2ζ ) sin(2ξ ),

S3

S0
= sin(2ζ ). (17)

From Eqs. (16) and (17), we get

ξ = 1

2
tan−1

(S2

S1

)
= 1

2
tan−1

(
Im[E∗

REL]

Re[E∗
REL]

)
. (18)

For simplicity, the free space wave vectors for �EL and �ER are
made equal, i.e., �k f

L = �k f
R = �k f (say). Substituting Eq. (14)

and Eq. (15) in Eq. (18) gives

ξ (z) = − 1

2

[
θ + η(z)�(|lL,R|) + φ�(lL,R) + k f z�(nR,L )

+ k f zr2

2

{
nR(

z2 + n2
Rz2

R

) − nL(
z2 + n2

Lz2
R

)}]
, (19)

where �|lL,R| = |lL| − |lR|, �(lL,R) = lL − lR, and �(nR,L ) =
nR − nL. Therefore, after propagating for a distance, z, the
polarization at each point on the transverse plane of the VB
rotates by an angle

�ξ = ξ (z) − ξ (0) = −�|lL,R|η(z)

2
−

{
k f z�(nR,L )

2

+ k f zr2

4

(
nR

z2 + n2
Rz2

r

− nL

z2 + n2
Lz2

r

)}
. (20)

In free space, nR = nL = 1, or any medium where nR = nL,
Eq. (20) implies

�ξ = − 1
2�|lL,R|η(z). (21)

From Eq. (21), if |lL| = |lR| (e.g., for CV beams), there is no
polarization rotation during free space propagation. For all
other cases (such as FP beams) there will be a polarization
rotation in accordance with Eq. (21) in free space or any
medium where nR = nL.

D. Propagation equations

To investigate the effect of medium properties such as
absorption, dispersion, diffraction, and anisotropicity on VB
propagation, we study nonlinear Schrödinger equations under
the slowly varying envelope and paraxial wave approxima-
tions. The beam propagation equations for the right and left

circularly polarized components of the probe VB in terms of
the respective Rabi frequencies are given as

∂�R

∂z
= i

2kR
∇2

⊥�R + 2π ikRN |d14|2
h̄

ρ41, (22a)

∂�L

∂z
= i

2kL
∇2

⊥�L + 2π ikLN |d24|2
h̄

ρ42. (22b)

The first terms on the right-hand side stand for the diffrac-
tion. The second terms on the right-hand side are responsible
for the dispersion and absorption of both the components
of probe VB. Note that the two propagation equations are
coupled via the susceptibilities ρ41 and ρ42. The propagation
effect of the control field is neglected since the field is strong
and undepleted throughout the length of propagation. Further,
the envelope shape of the control field is considered to be
diffraction-free Bessel Gaussian.

III. RESULTS

A. Polarization rotation control

The orthogonal components of VB must have different
refractive indices to produce polarization rotation as stated
in Eq. (20). The substantial contrast between nR and nL

creates large polarization rotation. Hence the equal and op-
posite values of nR,L are the basic constraint for producing
large polarization rotation. The variation of refractive index in
the anisotropic medium is possible by changing the strength of
the magnetic field. The difference in nR,L can be accomplished
by making the probe VB’s carrier frequency, ωp, resonant
with the intermediary state, |0〉, and excited state, |4〉, as
shown in Fig. 1. With this configuration, the magnetic field,
responsible for generating Zeeman sublevels, |1〉, |0〉, and
|2〉, will red(blue) detune �R(L) by an amount βL. Due to
the equal and opposite nature of detuning experienced by
�R(L), their medium responses with respect to βL become
laterally inverted mirror images of each other as shown in
Figs. 2(a) and 2(b), respectively. Therefore, at any given value
of βL, Re[χ41] = −Re[χ42], as apparent from Figs. 2(a) and
2(b). This makes nR �= nL according to Eq. (13), giving a

FIG. 2. (a), (b) Real and imaginary part of χ41 and χ42 vs
βL/γ , respectively. Parameters used: δp = δc = 0, �R,L = 0.05γ ,
�c = 4γ , �i j = 10−3γ , �i4 ≈ 3/2γ (i < j; i, j = 1, 2, 3), and N =
2 × 1011 cm−3.
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nonzero polarization rotation angle, coming from the curly
bracketed term in Eq. (20). The Zeeman separation, βL, is
varied by changing | �B| to change Re[χ4i], (i ∈ 1, 2), as shown
in Figs. 2(a) and 2(b), which in turn causes correspond-
ing changes in nR,L according to Eq. (13). Moreover, the
requirement of minimum absorption is fulfilled within the
range of � as depicted in Fig. 2, thus enabling control of
the polarization rotation angle via magnetic field with zero
or minimum absorption.

B. Vector beam guiding

To guide the VB, the transverse spatial profile of the control
beam is to be chosen in such a way that it creates a “core and
cladding” type refractive index gradient for the components
of VB. To form atomic waveguide structure, the control beam
profile is taken to be a fundamental zeroth-order Bessel beam
and is defined as

�c(r, φ, 0) = �0
cJ0

( r

w0

)
, r =

√
x2 + y2. (23)

The input amplitude of the Bessel control beam is denoted
by �0

c . The zeroth-order Bessel function of the first kind is
denoted as J0(r/w0), where the full width half maximum of
the central peak is approximately 2w−1

0 . A Bessel beam un-
dergoes diffractionless propagation inside the medium across
several Rayleigh lengths (around 20zR) and it maintains the
consistency of the refractive index gradient throughout. Thus
the “core-cladding” type refractive index profile remains con-
stant within that limited propagation length. The envelope
shape of the control field is illustrated in Figs. 3(a) and 3(b).
Figures 3(c) and 3(d) show the transverse refractive index
profile of two orthogonal polarization components of the VB
in the presence of a resonant control field, i.e., δc = 0, at
βL = 0.1γ . On the other hand, Figs. 3(e) and 3(f) correspond
to blue detuned control field δc = 0.2γ for the same βL. In
Figs. 3(c)–(f), there is a rise or fall in the refractive indices
of �R,L , around the zeros of the Bessel control beam on
the x axis. These refractive index extremums and the region
between them serve as “cladding” and “core,” respectively.
For achieving waveguiding features, the core’s refractive in-
dex needs to be higher than the cladding’s, as displayed in
Figs. 3(c), 3(e) and 3(f). Contrarily, there is no guiding when
the core’s refractive index is smaller than the cladding such as
Fig. 3(d).

For control field detuning, δc = 0, Re[χ41] = −Re[χ42] at
any given value of βL within the EIT window, �, as shown
in Figs. 2(a) and 2(b). In Figs. 2(a) and 2(c), for βL > 0,
Re[χ41] < 0 and Re[χ42] > 0, which makes nR < 1 and nL >

1, in accordance with Eq. (13). This is reflected in Figs. 3(c)
and 3(d), where, for βL = 0.1γ > 0 at δc = 0, the transverse
profiles of refractive indices, Re[nR,L], are inverted images of
each other. Figures 3(c) and 3(d) suggest that the right circu-
larly polarized component, �R, will be guided, while the left
circularly polarized component, �L, will undergo diffraction.
Thus, for simultaneous waveguiding of �R,L, both nR,L must
be less than unity for a given value of βL and δc. This can be
achieved by considering a blue detuned control field, δc > 0.
For example, in Fig. 4, at δc = 2γ , the zero point (marked
with small circles) of Re[χ41] and Re[χ42], within the EIT
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FIG. 3. (a), (b) Transverse intensity profile of control field. In
Figs. (c)– (f), “solid line”: transverse profile of Re[ni − 1] (i = R, L);
“dotted line”: transverse profile of Im[ni] (absorption). For all the
plots, δp = 0, βL = 0.1γ . Plots (c) and (d) are generated with δc = 0,
while plots (e) and (f), with δc = 0.2γ . Other parameters used remain
the same as mentioned in Fig. 2.

window, are shifted leftwards and rightwards, respectively, by
2γ . As a result, within −2γ < βL < 2γ , both Re[χ41] < 0
and Re[χ42] < 0, which implies, nR,L < 1. Thus, in general,
δc > 0 and −δc < βL < δc generates the desired “core-
cladding” refractive index profile for both �R,L as shown
in Figs. 3(e) and 3(f), which were plotted by taking δc =
0.2γ > 0 and −0.2γ < βL = 0.1γ < 0.2γ . Again, in Fig. 4,
for δc > 0 and −δc < βL < δc, the susceptibilities of �R,L are
unequal, i.e., nR �= nL. This results in a polarization rotation
of the VB during propagation in accordance with Eq. (20).
With the above parameter constraint in mind, the propagation
results for a CV beam are curated in Fig. 5. Figures 5(a) and
5(b) are the transverse polarization distribution of a CV beam
at z = 0 and z = 2zR, respectively. In Fig. 5(b) the polarization
ellipses at each point on the VB’s transverse plane has rotated
by a certain angle and its polarization state has changed from
radial to azimuthal. With increasing propagation length, the
azimuthal distribution will change to spiral and then back
to radial in a cyclic manner along the propagation length.
This sort of rotation is not observed for CV beams during
free space propagation [Eq. (21)] and is a consequence of
the magnetic-field-induced anisotropy. Figure 5(c) shows a
comparison between the one-dimensional transverse profile of
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FIG. 4. (a), (b) Real and imaginary part of χ41 and χ42 vs βL/γ ,
respectively, with δp = 0 and δc = 2γ . Other parameters used remain
the same as mentioned in Fig. 2. The small circular markings in
(a) and (b) indicate the zero point of Re[χ4i] within the EIT window.

�R,L at a given propagation length. In Fig. 5(c), the degree
of waveguiding for �R,L is slightly different. This is because,
within the requisite parameter region for waveguiding, δc > 0,
−δc < βL < δc, the susceptibilities of �R,L are not equal as
seen in Fig. 4. Figure 5(d) shows the longitudinal profile of
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FIG. 5. (a), (b) Transverse intensity and polarization distribution
of a CV beam (lL = −1, lR = 1, θ = 0, α = π/8) at z = 0 and z =
2zR, respectively. (c) Normalized intensity vs x/w0. (d) Longitudinal
intensity profile of the VB. Control field beam waist is taken to be
1.4w0, where w0 is the beam waist of the probe VB. The white color
ellipses in (a) and (b) represent left circular polarization. Parameters
used: δc = 0.2γ , βL = 0.05γ , with the rest of the parameters the
same as Fig. 2. Field amplitudes have been normalized with respect
to the field amplitude at z = 0.

the CV beam. In Fig. 5(d), the CV beam is smoothly guided
up to four Rayleigh lengths, beyond which the VB’s intensity
noticeably depletes. This is a consequence of the cumulative
absorption at the core-cladding boundary [see Figs. 3(e) and
3(f)] during propagation. In the next section, we shall discuss
the factors responsible for smooth waveguiding.

C. Effect of control beam waist

In this section, we discuss how the Bessel control beam’s
width dictates the guiding of the VB through atomic vapor.
The sizes of the Bessel control beam’s central lobe and the
core of the optically written waveguide are approximately
the same. The core’s radius can be changed by varying the
control beam size. Figure 6 shows the longitudinal profiles of
a CV beam for different control beam waists. In Figs. 6(a)
and 6(b), control beam waists are 0.5w0 and w0, respectively.
The CV beam exhibits an oscillatory longitudinal variation,
closely resembling that of an actual optical fiber. In Fig. 6(c),
for a control beam waist of 1.4w0, the CV beam experiences
a smooth guiding. Increasing the control beam waist to 2w0

as shown in Fig. 6(d), the oscillatory behavior reappears with
a larger period compared to Figs. 6(a) and 6(b). The expla-
nation for Fig. 6(d) is as follows: here the Bessel-control
beam waist at the medium entrance is 2w0, which creates
a core of approximately the same radii, 2w0. Therefore, a
probe CV beam of waist w0 would undergo broadening due
to diffraction until its beam waist becomes equal to the core’s
radius, i.e., 2w0. Subsequently, the CV beam would be guided
back towards the core’s axis due to total internal reflection at
the core-cladding boundary. Since the core is a nonabsorbing
or diffracting media (free space like) as seen in Figs. 3(c)–3(f),
the CV beam would have to propagate approximately two
Rayleigh lengths to have a broadened beam waist of ≈2w0.
This is because the beam waist of an LG beam after free space
propagation of two Rayleigh lengths is

√
5w0, which can be

rounded off to 2w0. Thus the CV beam expands and contracts
at an interval of two Rayleigh lengths along the longitudinal
direction as seen in Fig. 6(d). In Fig. 6(d), the dotted lines,
“y/w0 = −2” and “z/zR = 2,” represent the core boundary
and position of two Rayleigh length on z axis, respectively.
The intersection point of these two lines is where the CV
beam is reflected inside the core via total internal reflection.
The expansion and contraction observed in Figs. 6(a) and
6(b) for control beam waists 0.5w0 and w0, respectively, is
of the same nature as Fig. 6(d). In Fig. 6(a), the CV beam
undergoes rapid compression near the medium entrance due
to the core’s size being smaller than VB’s spot size. After this,
the VB undergoes the aforementioned oscillatory longitudinal
variation. Same explanation applies to the case in Fig. 6(b). In
Fig. 6(c), the control beam waist is 1.4w0 (≈√

2w0), which is
approximately the beam waist of an LG beam after free space
propagation of one Rayleigh length. Therefore, the CV beam
broadens to about 1.4w0 at one Rayleigh length, before under-
going total internal reflection at the core-cladding boundary.
The expansion of the CVB from w0 to 1.4w0 is very small
and thus results in a smooth guiding. Therefore, to achieve
smooth waveguiding, the control beam waist has to lie within
a range of approximately [1.2w0, 1.6w0].
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FIG. 6. (a)–(d) Longitudinal intensity profile of a CV beam (lL = −1, lR = 1, θ = 0, α = π/8) for control field beam waists 0.5w0, w0,
1.4w0, and 2w0, respectively. Parameters used: δc = 0.2γ , βL = 0.05γ . All other parameters and field amplitude normalization remains the
same as Fig. 5.

IV. CONCLUSION

In conclusion, we theoretically investigated a vector beam
guiding scheme through an atomic vapor medium, with a
four-level tripod system. The three transitions of the four-level
tripod system are coupled by a strong zeroth-order Bessel
control beam and the two orthogonally polarized components
of a weak vector beam, in the presence of an external longitu-
dinal magnetic field. With appropriate parameters, the spatial
intensity profile of the control beam can create a core and
cladding type refractive index gradient along the radial direc-
tion from the beam propagation axis. Due to the nondiffractive
property of a Bessel beam, the “core-cladding” created by
it remains unchanged across its diffractionless propagation
length. We have shown that a weak vector beam of slightly
smaller diameter than the core is guided through the medium
for several Rayleigh lengths. In addition to waveguiding, the
magnetic-field-induced anisotropy in the four-level tripod sys-
tem creates a difference in the refractive indices of the vector
beam’s two orthogonal polarization components. This results
in polarization rotation of cylindrical vector beams (CVBs)
which are otherwise polarization invariant under free-space
propagation. Thus creating diffractionless CVBs with polar-
ization gradient across the propagation length, e.g., a radial
CVB, would change to azimuthal, then to spiral, and back
to radial in a periodic manner along the propagation length.
Due to the higher focusability of radial over azimuthal CVBs,
the ability to change the polarization state of a CVB may be
useful in achieving a variable degree of focusing. Further-
more, the vector beam can be squeezed as desired by reducing
the control beam’s radius. Therefore, as a proof of concept,
the proposed scheme can guide a weak vector beam, whilst
enabling control over its polarization rotation. Our work may
also have applications in polarization-based measurements
with vector beams, increasing optical density of a medium,
etc., where vector beam focusing, guiding, and polarization
rotation control might be simultaneously desired.
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APPENDIX: EFFECT OF INHOMOGENEOUS
BROADENING

In this Appendix, we discuss the effect of inhomogeneous
broadening on the proposed VB guiding scheme. The Doppler
effect causes a laser frequency shift in the atom’s rest frame,
introducing a laser detuning, δ̃i(�v) = δi + �ki.�v [i = p, c], that
is dependent on the velocity, �v, of the atom. Here, �ki is the
wave vector of the laser field. With the aforementioned modi-
fied detuning, the steady-state susceptibility, χi j , are given by
their average over the one-dimensional Maxwell-Boltzmann
velocity distribution:

f (v)dv =
√

M

2πkBT
exp

(
− Mv2

2kBT

)
dv, (A1)

FIG. 7. (a), (b) Real and imaginary part of homogeneously
broadened susceptibility, χ41, and Doppler averaged susceptibility,
〈χ41〉 vs βL/γ , respectively. Parameters used: Rabi frequencies,
�c = 4γ , �R(L) = 0.05γ ; detunings, δp(c) = 0; decoherence rates,
�i j ≈ 10−3γ , �i4 = 3/2γ (i < j, i, j = 1, 2, 3); density of atoms,
N = 2 × 1011 cm−3; temperature T = 300 K. Here, �h and �in

represent the width of the EIT window for homogeneous and inho-
mogeneous broadening, respectively.
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FIG. 8. (a), (b) Transverse intensity and polarization distribution
of a CV beam (lL = −1, lR = 1, θ = 0, α = 3π/8) at z = 0 and
z = 4zR, respectively. (c) Normalized intensity vs x/w0. (d) Longitu-
dinal intensity profile of the VB. Control field beam waist is taken to
be w0. The blue color ellipses in (a) and (b) represent right circular
polarization. Parameters used: δc = 0.1γ , δp = 0, βL = 0.05γ , and
�c = 8γ with the rest of the parameters the same as Fig. 7.

where T is the temperature of the gas, M is the mass of each
atom, and kB is the Boltzmann constant. The velocity averaged
susceptibilities are then given by 〈χi j〉 = ∫ ∞

−∞ χi j (v) f (v)dv.
We consider a copropagating geometry, with both probe

and control fields propagating along the +z direction, i.e.,

�kp/|�kp| = �kc/|�kc| = ẑ. Furthermore, for simplicity of our cal-
culations, we considered the wave numbers for both control
and probe fields to be the same, i.e., |�kp| ≈ |�kc|. As a result
the two-photon detuning in the presence of inhomogeneous
broadening becomes

δ̃(�v) = δ̃p(�v) − δ̃c(�v)

= δp + �kp · �v − (δc + �kc · �v)

≈ δp − δc, (A2)

which is the same as the two-photon detuning for homo-
geneous broadening. Thus the copropagating geometry is
preferable to reduce the effect of inhomogeneous broaden-
ing. In Figs. 7(a) and 7(b), the real and imaginary parts
of susceptibility, corresponding to the VB’s right circularly
polarized component for homogeneous and inhomogeneous
broadening, are respectively plotted. In the case of inhomoge-
neous broadening, the width of the EIT window (�in ≈ 0.2γ )
shrinks as shown in Fig. 7(b). Furthermore, the magnitude
of susceptibility for inhomogeneous broadening is compar-
atively smaller than homogeneous broadening as shown in
Figs. 7(a) and 7(b). Due to a very narrow EIT window in
the case of inhomogeneous broadening, the control field Rabi
frequency needs to be larger, say �c = 8γ , compared to
�c = 4γ as mentioned in Fig. 5, to increase the EIT window
width. The strengthening of the control field intensity leads to
an absorption free VB guiding through the core of the opti-
cally written waveguide. The propagation results obtained by
considering inhomogeneous broadening are curated in Fig. 8.
The results suggest that VB guiding should also be possible
in the presence of inhomogeneous broadening by choosing
a larger value of control field Rabi frequency, as illustrated
in the figure. Therefore, the proposed VB guiding scheme
should be experimentally feasible for both warm [31] as well
as ultracold [32] rubidium atomic vapor.
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