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Fourth-order moment of the light field in the atmosphere for moderate and strong turbulence
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The collisionless Boltzmann equation is used to describe the intensity correlations in partially saturated and
fully saturated regimes in terms of photon distribution function in the phase space. Explicit expression for fourth
moment of the light fields is obtained for the case of moderate and strong turbulence. Such expression consists of
two terms accounting for two regions in the phase space that independently contribute to the correlation function.
It is shown that the present solution agrees with previous results for the fully saturated regime. Additionally it
embodies the effect of partially saturated radiation where the correlations of photon trajectories are important
and the magnitude of the scintillation index is well above the unity. The fourth moment is used to study the
fluctuations of transmittance, which consider the effect of finite detector aperture.
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I. INTRODUCTION

Propagation of light in atmospheric channel is an essen-
tial part of many new-age applied areas such as quantum
key distribution [1,2], satellite-ground communication [3,4],
quantum teleportation [5–7], propagation of entangled, and
squeezed states [8–11]. Altogether these areas contribute to
the development of the next-generation quantum and classi-
cal communication systems including quantum internet [12],
quantum protocols [13,14], etc. However, spatiotemporal
properties of light in the atmosphere are modified drastically
in a way of propagation limiting current applications.

Fluctuations of refractive index in Earth’s atmosphere in-
troduce random distortions to the phase of waves. Since the
range of sizes of optical inhomogeneities is very wide, from
millimeters (inner scale of turbulence, l0) to hundreds of me-
ters (outer scale of turbulence, L0), laser beam is exposed to
the bunch of various negative effects: beam spreading, beam
wandering, fragmentation, beam jitter, intensity fluctuations,
etc. [15–19]. All of them affect statistical and spatiotemporal
properties of the light radiation causing additional to absorp-
tion and scattering losses in atmosphere and impairing the
performance of free-space communication systems.

Although intensity fluctuations play a critical role in the
transmission of optical signal, their description remains one
of the most challenging problems in free-space optics. Due to
multiple scattering on atmospheric inhomogeneities primary
optical waves are gradually randomized so initially coherent
laser radiation acquires some properties of Gaussian statistics
[20]. Such gradual change of statistical properties complicates
theoretical analysis of correlation properties (fourth-order
moment) of propagating radiation. One of such obstacle is so-
called saturation of intensity fluctuations [21]. In the course of
propagation scintillation index, the inverse of signal-to-noise
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ratio, after steep growing and hitting the maximum value,
starts to decline and asymptotically approach unity. Further
we refer to the asymptotic regime as fully saturated and to the
region between maximum and asymptotic values for intensity
fluctuations as partially saturated regime. Such levels of satu-
ration are naturally derived from degree of randomization of
primary optical waves.

Some general approaches involving equations of evolu-
tion for fourth-order moments were proposed in early studies
[15,16]. However, the applicability of these equations is lim-
ited due to their complexity. Besides that, correlations of
intensity were studied in terms of scintillation index and co-
variance function [18,22–24]. Nevertheless, there is still no
rigorous theory of fourth moment for optical fields in atmo-
sphere for moderate and strong turbulence (partially saturated
and fully saturated regimes).

Here we use the method of photon distribution function
(PDF) in the phase space [25] to describe laser radiation in
atmosphere. PDF is defined as photon density in coordinate-
momentum space (phase space) and can be regarded as
quantum generalization of classic radiant intensity in radiative
transfer methods [16,26]. Intensity of the light and correlation
properties of radiation are derived from PDF moments. The
method of PDF was successfully applied to the problem of
light propagation in atmospheric channels [27–30]. Particu-
larly it proved to be effective for study of intensity fluctuations
(scintillation) in the range of moderate turbulence regime
[31,32] and fourth-order moment problem in asymptotic case
of large propagation distances, z → ∞ [33]. In the current
paper, we use the Boltzmann kinetic equation for PDF for
the description of partially saturated and saturated regimes
where only substantial change of photon momenta due to
atmospheric turbulence takes place [25]. In this case the effect
of turbulence is enclosed in random force originating from the
gradient of refractive index.

The paper is devoted to derivation of the expression for
fourth moment applicable for the case of moderate-to-strong
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and strong turbulence regimes and analysis of role of degrees
of randomization of the primary optical waves. In contrast
to the fully saturated model [33], the present model de-
scribes much wider range of atmospheric channels. It includes
description of channels where intensity fluctuations are the
biggest, i.e., the scintillation index is significantly above unity.
Such objectives are viable for much applied research includ-
ing intensity correlation [34,35], enhanced focusing [36,37],
different imaging problems [38–42], reconstruction of the
probability distribution of transmittance [43], and its appli-
cations to communication protocols [44]. In this paper we
account for the effect of multiple collisions with turbulent
inhomogeneities, which leads to the change of radiation statis-
tics to the Gaussian one. In this case only particular volume in
the phase space contributes to the correlation function.

The remainder of this paper is organized as follows. In
Sec. II, we provide review of photon distribution function
approach applied to laser beam propagation in atmosphere.
In Sec. III, explicit expression for fourth moment of the light
fields and its analysis are presented. Section IV is devoted to
estimation of transmittance fluctuations and its dependence on
the size of detector aperture. In Appendix, we give detailed
derivation of the expressions for fourth-moment terms.

II. PRELIMINARIES

Photon distribution function

The photon distribution function resembling the idea of
distribution functions in physics of solids [45,46] is given
by [25,47]

f̂ (r, q, t ) = 1

V

∑
k

e−ik·rb†
q+k/2bq−k/2, (1)

where b†
q and bq are the quantum amplitudes of bosonic pho-

ton field with the wave vector q; V ≡ LxLyLz ≡ SLz is the
normalizing volume. All operators are given in the Heisenberg
representation. The laser beam propagates in the z direction.
It is assumed that k⊥ , q⊥ � q0 where q0 is the wave vector
corresponding to the central frequency ω0 of radiation ω0 =
cq0, c is the speed of light in a vacuum. Such assumption
justifies the paraxial approximation. The initial polarization
of light left out of consideration in this case as for a wide
range of propagation distances it remains almost constant (see
Ref. [48]).

The Hamiltonian of photons in a medium with a fluctuat-
ing refractive index could be derived from representation of
energy in inhomogeneous media [49]

H =
∑

k

h̄ωkb†
kbk −

∑
k,k′

h̄ωknk′b†
kbk+k′ , (2)

where h̄ωk ≡ h̄ck is the photon energy, and nk is the Fourier
transform of the refractive index fluctuations δn(r). The
Fourier transform is defined by

nk = 1

V

∫
dVeikrδn(r). (3)

Usually, δn is assumed to be a Gaussian random variable with
known covariance 〈δn(r)δn(r′)〉. The covariance is defined by

its Fourier transform, ψ (g), with respect to the difference r −
r′. In a statistically homogeneous atmosphere it can be written
as

〈δn(r − r′)δn(0)〉 =
∫

dge−ig(r−r′ )ψ (g). (4)

The evolution equation for PDF is derived from Heisen-
berg’s equation. Although in more general case its evolution
is gathered by Boltzmann-Langevin equation [31], which
takes into account the whole range of possible changes in
photon momentum due to collisions with atmosphere inho-
mogeneities, for reasonably long distances (see Ref. [32])
description with collisionless Boltzmann equation

∂t f̂ (r, q, t ) + cq · ∂r f̂ (r, q, t ) + F(r) · ∂q f̂ (r, q, t ) = 0 (5)

is justified, where cq = ∂qωq. In this case the effect of at-
mospheric turbulence is enclosed in random smooth force
F(r) = ω0∂rn(r).

The general solution of (5) is obtained by characteristics
method

f̂ (r, q, t ) = φ

{
r −

∫ t

0
dt ′ ∂r(t ′)

∂t ′ ; q −
∫ t

0
dt ′ ∂q(t ′)

∂t ′

}
, (6)

where evolution of PDF is described in terms of the classical
trajectories of photons

∂r(t ′)
∂t ′ = c[q(t ′)], (7)

∂q(t ′)
∂t ′ = F[r(t ′)], (8)

the function φ(r, q) is the initial value of f̂ (r, q, t ) in the
aperture plane of the source, i.e.,

φ(r, q) = 1

V

∑
k

e−ikr(b+
q+ k

2

bq− k
2

)∣∣
t=0 ≡

∑
k

e−ikrφ(k, q).

(9)
Under paraxial approximation atmosphere mostly affects di-
vergence of the beam, q⊥, and has negligible influence on the
longitudinal components (z axis). Then, Eq. (6) can be written
as

f̂ (r, q, t ) = φ

{
r − cqt + c

q0

∫ t

0
dt ′t ′F⊥[r(t ′)];

q−
∫ t

0
dt ′F⊥[r(t ′)]

}
. (10)

Assuming the initial configuration for laser radiation is
known, the first and second moments of f̂ , which describe
beam intensity and its correlations, could be obtained by
means of the iterative procedure for powers of F⊥(r) [25,32].

III. INTENSITY CORRELATIONS

The intensity (density of photons in the spatial domain) is
derived from operator f̂ (r, q, t ) by summation over all values
of q

Î (r, t ) =
∑

q

f̂ (r, q, t ) = 1

V

∑
q,k

e−ik·rb†
q+k/2bq−k/2. (11)
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The second-order moment for the field operators
�2(r) ≡ 〈Î (r, t )〉, respectively. Consequently, the intensity
correlations, or fourth-order moment, is defined by

�4(r, r′) ≡ 〈Î (r, t )Î (r′, t )〉

= 1

V 2

∑
q,k,

q′,k′

e−i(k·r+k′ ·r′ )〈b†
q+ k

2

bq− k
2
b†

q′+ k′
2

bq′− k′
2

〉
.

(12)

From here on the averaging 〈. . . 〉 includes the quantum-
mechanical averaging of operators Î and averaging over
different configurations of atmospheric turbulence. Both av-
eraging can be performed independently.

It was shown in the recent research [33] that due to sat-
uration effect for fluctuations in asymptotic case of large
distances, z → ∞, fourth moment may be expressed via sec-
ond moments〈

b†
q+ k

2

bq− k
2
b†

q′+ k′
2

bq′− k′
2

〉
≈ 〈

b†
q+ k

2

bq− k
2

〉〈
b†

q′+ k′
2

bq′− k′
2

〉+〈
b†

q+ k
2

bq′− k′
2

〉〈
b†

q′+ k′
2

bq− k
2

〉
= nqnq′δk,0δk′,0 + nq+ k

2
nq− k

2
δq,q′δk,−k′ , (13)

where nq ≡ 〈b†
qbq〉. Also it is assumed that initial laser ra-

diation is in a multiphoton coherent state, so the shot-noise
term is omitted. Expression (13) is legitimate if the ampli-
tudes b† and b obey Gaussian statistics. In other words for
t → ∞ it is assumed that each primary coherent electro-

magnetic wave experiences multiple scatterings by randomly
distributed turbulent eddies [20,23] and the radiation becomes
fully saturated.

At large but finite z, in partially saturated regime, field
amplitudes are also effected by random scattering on atmo-
spheric inhomogeneities but still preserve some properties of
initial statistics. In this case one should consider nondiago-
nal terms in four-wave correlations and two regions of wave
vectors space, derived from two terms of Eq. (13), where
pair correlations of the field operators should be taken into
account [25]: (i) k, k′ � R−1

b , (ii) |q − q′ + (k + k′)/2|, |q −
q′ + (k + k′)/2| � R−1

b , where R2
b ≡ 〈r2〉T (see Ref. [33]) is

the turbulent part of beam radius, R2
b = 4z3cα/(3ω2

0 ), α =
0.5πω2

0c−1
∫

dgg2ψ (g), and r0 is the initial radius of the
beam. The region (ii) considers correlation between differ-
ent pairs of waves b†

q+k/2, bq′−k′/2 and b†
q′+k′/2, bq−k/2. Such

region could be distinguished from (i) only if turbulent contri-
bution to divergence of the beam, q⊥, is sufficiently large. In
other words, turbulent term should be dominant to initial ra-
dius of the beam and the diffraction term, R2

b > r2
0 , 4z2q−2

0 r−2
0 ,

to distinguish certain levels of saturation of the fluctuations,
i.e., partially saturated and fully saturated regimes. Regions
(i) and (ii) approach each other when the turbulence effect
becomes weaker, and in the limit of small turbulence they join
into a single region [23,28].

Exploiting the approach from Refs. [25,32], for these two
regions corresponding terms of fourth moment are obtained
for the case of Gaussian beams (see Appendix for details),
�4(r, r′) = �

(i)
4 (r, r′) + �

(ii)
4 (r, r′):

�
(i)
4 (r, r′) = 2πC

∫ ∞

0
dq̃q̃

[
F q̃,ρ‖

1 F q̃,ρ‖
2

(
F q̃,ρ‖

3 Hq̃,ρ‖
1 − Gq̃,ρ‖

1

2)(
F q̃,ρ‖

4 Hq̃,ρ‖
2 − Gq̃,ρ‖

2

2)]− 1
2

× exp

⎧⎪⎪⎨
⎪⎪⎩−

(
q̃ − ρ‖

G
q̃,ρ‖
1

2F
q̃,ρ‖

3

)2

(
Hq̃,ρ‖

1 − Gq̃,ρ‖
1

2
/F q̃,ρ‖

3

)
⎫⎪⎪⎬
⎪⎪⎭ exp

{
− ρ2

⊥Hq̃,ρ‖
2(

Hq̃,ρ‖
2 F q̃,ρ‖

4 − Gq̃,ρ‖
2

2)
}

exp

{
−
(

ρ ′2
‖

F q̃,ρ‖
1

+ ρ ′2
⊥

F q̃,ρ‖
2

+ ρ2
‖

4F q̃,ρ‖
3

)}
, (14)

�
(ii)
4 (r, r′) = 2πC

∫ ∞

0
dq̃q̃

[
F q̃

1 F q̃
2

(
F q̃

3 Hq̃
1 − Gq̃

1
2)(

F q̃
4 Hq̃

2 − Gq̃
2

2)]− 1
2

× exp

{
− q̃2

Hq̃
1 − Gq̃

1
2
/F q̃

3

}
exp

{
−
(

ρ ′2
‖

F q̃
1

+ ρ ′2
⊥

F q̃
2

)}
exp

{
−i2q̃ρ‖

q0

z

}
, (15)

where ρ = r − r′, ρ′ = (r + r′)/2 are two-dimensional (2D)
vectors transverse to propagation direction z; F , G, H are
functions of ρ‖ and q̃ for (i) and functions of q̃ for (ii) contri-
butions to �4; C is constant derived from total flux. It is worth
to emphasize that while intensity correlations are evaluated
for two points r and r′, the expression for fourth moment
is expressed via the difference r − r′ and the center-of-mass
position (r + r′)/2. Although the dependence on ρ, which
accounts for the correlations of different trajectories, is quite
intricate, the dependence on ρ′ has a simple Gaussian form.
The latter could be favorable for the calculation of integral
quantities (transmittance fluctuations, beam wandering, etc.)

that consider spatial distribution of the radiation in detector
aperture plane.

Fourth moment �4(r, r′) characterize spatial correlation
properties of the laser beam in (x, y) plane in atmosphere.
Functions F , G, H (see Appendix) incorporate the effect
of correlation for different photon trajectories with {r, q}
and {r′, q′} on intensity correlations. As it was shown in
Refs. [25,32] such correlations of trajectories are responsible
for intensity fluctuations in the range of moderate and strong
turbulence.

For the case of asymptotically large distances,
z → ∞, cross-correlation term vanishes [see (A7), (A8),
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(A13)–(A20)] due to randomization of the particle
displacements from the straight lines, so functions F , G, and
H do not depend on q̃ and ρ. Therefore, the values of functions
are expressed via Rb: F ≈ R2

b/2, G ≈ 3R2
b/4, H ≈ 3R2

b/2.

(Free-space terms are omitted since turbulence is assumed
to give dominant contribution.) Also since cross correla-
tion is vanished the integration over directions for q̃ is
preserved

�
(i)
4 (r, r′) = C

∫∫
dq̃[F (FH − G2)]−1 exp

{
−

(
q̃ − (r − r′) G

2F

)2

(H − G2/F )

}
exp

{
−

(
r2

2F
+ r′2

2F

)}
, (16)

�
(ii)
4 (r, r′) = C

∫∫
dq̃[F (FH − G2)]−1 exp

{
− q̃2

(H − G2/F )

}
exp

{
−

(
(r + r′)2

4F

)}
exp

{
− i2q̃(r − r′)

q0

z

}
, (17)

In this case it is easy to perform integration analytically. The
contribution �

(i)
4 (r, r′) can be expressed via average intensity,

〈Î (r)〉 ∝ exp{−( r2

R2
b
)}/R2

b (see Ref. [33]) and �
(ii)
4 (r, r′) has a

simple Gaussian form, so

�4(r, r′) = 〈Î (r, t )〉〈Î (r′, t )〉 + Cπ

(
1

F

)2

× exp

[
− (r+r′)2

4F
− (r−r′)2q2

0(H − G2/F )

z2

]
,

(18)

which is exactly the result of Ref. [33], taking into account
that q2

0(H − G2/F )/z2 ≈ 〈q2〉T /8, where change of photon
momentum caused by atmospheric turbulence 〈q2〉T = 4αt ,
and corresponding relation between constants.

Applicability of approximation

The applicability of expressions (14) and (15) is inherent
from main approximations of the approach, i.e., collisionless
Boltzmann equation and the concept of photon trajectories.
As it was pointed out in Ref. [25] all components of the mo-
mentum of photons should be much bigger than characteristic
wave vectors of turbulence. Effect of turbulence is negligible
for qz because of its large values, so one should consider
only the transverse momentum. Since the upper limit of the
spectrum is defined by the inner scale of the turbulence, l0, the
relation 〈q2〉T l2

0 should be large enough. On the other hand,
throughout the paper we account for the effect of correlation
of photon trajectories, so such concept should be justified.
To consider photons as particles, whose density in the (r, q)
domain is defined by the distribution function f̂ (r, q, t ), the
uncertainty of the momentum q should be small [32]. The
value of the uncertainty can be estimated from the definition
of the distribution function (1) as k/2. Initial values of q
and k/2 are equal and proportional to inverse of initial ra-
dius r0 [25]. For large distances and Tatarskii spectrum [19],
ψ (g) = 0.033C2

n exp{−(gl0/2π )2}g−11/3, where C2
n is known

as the index-of-refraction structure constant, such uncertainty
is estimated by the relation

〈q2〉T R2
b ≈ 15q2

0l−2/3
0 C4

n z4, (19)

which also should be large compared to unity.

IV. FLUCTUATIONS OF TRANSMITTED RADIATION

For many practical cases, e.g., development classical and
quantum communication, the fluctuation of transmittance in
Earth’s atmosphere is a key parameter that defines the prop-
erties of atmospheric channel [50–52]. The magnitude of
fluctuations is estimated via variance

σ 2
η = 〈η̂2〉 − 〈η̂〉2

〈η̂〉2
, (20)

where transmittance of the optical channel is defined as

η̂ = (4Cπ3)−
1
2

∫
A

drÎ (r, t ) (21)

and accounts for the finite size of detector aperture. In the
following, we adopt the normalizing condition 〈η̂〉 = 1 for
area A much larger than the beam cross section. The variance
(20) could be also considered as aperture-averaged scintilla-
tion index.

Two moments for η̂ are defined as [53,54]

〈η̂〉 = (4Cπ3)−
1
2

∫
A

dr�2(r), (22)

〈η̂2〉 = (4Cπ3)−1
∫
A

dr
∫
A

dr′�4(r, r′). (23)

To obtain the fluctuations of transmitted radiation σ 2
η we

calculate numerically (fivefold integration) 〈η̂2〉 = 〈η̂2〉(i) +
〈η̂2〉(ii) for circular aperture with radius R using the expres-
sions (14) and (15).

First of all, it is informative to compare approximations
where partially saturated (PS) and fully saturated (FS) regimes
were assumed (Fig. 1) for atmospheric channels considered
in Ref. [33]. Such comparison allows us to both estimate
the accuracy of asymptotic approximation, z → ∞, and to
emphasize the differentiation of correlation properties for
two regimes. For partially saturated radiation scintillations
are slightly larger because of the additional contribution of
nondiagonal terms in fourth moment, which incorporate larger
region of the phase space and account for residual effect of
the initial statistics of radiation. Remarkably, the values of
aperture-averaged scintillations differ from unity for pointlike
aperture. That is a natural outcome for partially saturated
regime where radiation still preserves some properties of ini-
tial statistics and does not fully acquire Gaussian statistics. In
contrast to approximation of fully saturated radiation there is
clear dependence of the values of scintillations, σ 2

η , for small
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FIG. 1. Effect of nondiagonal terms in �4 on aperture-averaged
scintillations. In each pair of lines bottom curve depicts the results
from Ref. [33], where it is assumed that intensity fluctuations are
fully saturated; top curve represents the results for (14) and (15).
Dash-dotted lines: z = 20 km, C2

n = 2.5 × 10−14 m−2/3, Rytov vari-
ance σ 2

R = 62; dashed lines: z = 17 km, C2
n = 5.8 × 10−15 m−2/3,

σ 2
R = 60; solid lines: z = 100 km, C2

n = 2.5 × 10−16 m−2/3, σ 2
R = 66.

Common parameters of the beam and channel for all curves: r0 =
0.01 m, l0/2π = 10−3 m, q0 = 107 m−1.

aperture sizes on Rytov parameter (σ 2
R = 1.23C2

n z11/6q7/6
0 ).

Consistent with other studies, there is such size of aperture
where the detector could not be considered as pointlike and
steep reduction of the fluctuations is observed. These val-
ues are strongly dependent on the transverse momentum of
photons 〈q2〉T . In addition, unlike the fully saturated approxi-
mation the beam spreading R2

b also plays significant role to the
behavior of aperture-averaged scintillations via both (14) and
(15). Figure 2 shows that the present result more adequately
accounts for the values of �

(i)
4 and corresponding correlation

length. Since Ref. [33] considers fully saturated regime, �
(i)
4

does not contribute to the fluctuations there. In contrast term
(14) has a sizable effect till the sizes of aperture are less than
beam radius.

Also, there are two basic properties for scintillations av-
eraging that are preserved in the current approximation:
for pointlike detectors, r = r′ = 0, (14) and (15) contribute
equally, which repeats the result of previous works [25,33];
for aperture sizes reasonably larger than beam radius the fluc-
tuations of transmittance tend to zero.

For atmospheric channels under partially saturated regime
(Fig. 3) asymptotic result (18) significantly differs from one
that considers nondiagonal terms in the expression for �4.
First of all, �

(i)
4 term contributes substantially to the values

of transmittance fluctuations. Particularly it is responsible for
long tails of the curves at large detector apertures. This effect
is reminiscent of the leveling effect mentioned in Ref. [55],
where there are two characteristic scales, ρ0 ∝ 〈q2〉1/2

T and
ρ0z/q0 ∝ Rb, which define correlation properties of the light
radiation. Particularly one may see from Fig. 3 that correlation
length in term �

(ii)
4 being proportional to 〈q2〉1/2

T is much

10-5 10-4 10-3 10-2 10-1 100 101
0.0

0.2

0.4

0.6

0.8

1.0

1.2
PS

Aperture radius R (m)

FS

FIG. 2. Contributions of two regions (i) (solid lines) and (ii)
(dashed lines) for partially saturated (top pair of curves) and fully
saturated regimes (bottom pair of curves) for 〈q2〉1/2

T = 600 m−1 from
Fig. 1.

smaller than correlation length of �
(i)
4 , which comes from the

values of beam radius.
Figures 4 and 5 depict aperture effect on scintillations in

relation to values of Rytov parameter for fixed C2
n and z, re-

spectively. One might see that both magnitude of fluctuations
and steepness of its decrease with larger sizes of the detector
aperture strongly depends on parameters of the atmospheric
channel. Generally, for bigger values of Rytov parameter
the effect of saturation of the fluctuations is responsible for
decrease of σ 2

η . That is, magnitude of intensity fluctuations
decrease for atmospheric channels with stronger turbulence
regime.

V. SUMMARY AND CONCLUSIONS

The fourth moment of light fields in atmosphere was de-
rived under collisionless Boltzmann equation approximation
where smooth random force represents the effect of turbu-
lence on the laser beam. Such approximation is justified for
the case of moderate and strong turbulence where fluctua-
tions are saturated for particular degree. Randomization of the
electromagnetic waves allows us to distinguish two separate
regions in the phase space that contribute to noise level in
optical system and its correlation properties. For the case of
partially saturated regime intensity correlations are not fac-
torized to product of two-wave correlations and additional
nondiagonal terms should be considered. For Gaussian beams
the effect of photon trajectories correlations is enclosed in a
set of functions that define distribution of photon density in
the phase space. Values of such functions strongly depend on
properties of the atmospheric channel.

The fourth moment is applied for the problem of trans-
mittance fluctuations. It is shown that current calculations
describe more wide range of parameters of the atmospheric
channels. There are two characteristic scales whose relation
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FIG. 3. Aperture-averaged scintillation index vs. radius of de-
tector aperture. Parameters for both graphs: r0 = 0.01 m, l0/2π =
10−3 m, q0 = 1.29 × 107 m−1, z = 3 km.

defines correlation length for detected radiation. Found results
could be useful for practical purposes.
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APPENDIX: CALCULATION OF �4

In the main text we consider Gaussian beams and Tatarskii
spectrum for the fluctuations of index of refraction. Therefore,
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tio
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 5mm
 10mmC2

n=5.8x10-15m-2/3

FIG. 4. Aperture-averaged scintillation index vs. Rytov parame-
ter. Parameters of the channel: r0 = 0.01 m, l0/2π = 10−3 m, q0 =
107 m−1.

for Gaussian beam the initial configuration of radiation de-
fines [33]

〈φ(k, q)〉qm = 2πr2
0

V LxLy
〈b†b〉qme−(q2

⊥+k2
⊥/4)r2

0 /2, (A1)

where the symbol 〈. . .〉qm indicates a quantum-mechanical
averaging of operators in the angle brackets. Coefficient C′
can be obtained if the total photon flux is known. Tatarskii
spetrum is defined as

ψ (g) = 0.033C2
n exp

{−(gl ′
0)2

}
g−11/3, (A2)

where l ′
0 = l0/2π .

In the similar manner to the works [25,32] we can write
down the general expression for fourth moment in terms of
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FIG. 5. Aperture-averaged scintillation index vs. Rytov parame-
ter, q0 = 1.29 × 107 m−1, other parameters are the same as in Fig. 3.
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random fluctuating force F⊥

〈I (r, t )I (r′, t )〉 =
(

2πr2
0

V LxLy

)2

〈b†b†bb〉qm

∑
q,k,q′,k′

〈
e−ik[r−cqt+ c

q0

∫ t
0 dt ′t ′F⊥(r(q,t ′ ))]−ik′[r′−cq′ t+ c

q0

∫ t
0 dt ′t ′F⊥(r(q′,t ′ ))]

× exp

(
−

(
Q2 + Q′2 + k2 + k′2

4

)
r2

0

2

)〉
atm

, (A3)

where Q = q − ∫ t
0 dt ′F⊥(r(q, t )) and Q′ = q′ − ∫ t

0 dt ′F⊥[r′(q′, t )] are the solutions of evolution equations for momenta,
〈. . .〉atm indicates averaging over different configurations of atmosphere (refractive index reliefs). It is reasonable to express

all turbulent parts in the exponent in linear form for F⊥. So the factor e−(Q2
⊥+Q′

⊥
2 )

r2
0
2 in (A3) is expressed in the integral form as

e−(Q2
⊥+Q′

⊥
2 )

r2
0
2 =

∫
dp dp′(
2πr2

0

)2 eip·Q⊥+ip′ ·Q′
⊥−(p2+p′2 )/2r2

0 . (A4)

In this case (A3) can be expressed as

〈I (r, t )I (r′, t )〉=〈b†b†bb〉qm

(V LxLy)2

∫
dpdp′ ∑

q,k,q′,k′
e−ik[r−cqt]−ik′[r′−cq′ t]e−(k2+k′2 )r2

0 /8eip·q⊥+ip′ ·q′
⊥−(p2+p′2 )/2r2

0 〈M〉atm, (A5)

where the factor

M= exp

(
−i

∫ t

0
dt ′

{(
p+kt ′ c

q0

)
F[r(q, t ′)] +

(
p′+k′t ′ c

q0

)
F[r(q′, t ′)]

})
(A6)

includes all fluctuating parts in fourth moment. (For the sake of brevity from here on we omit ⊥ notation for perpendicular to
propagation direction.) Using similar to Refs. [25,32] approach, the average of M is expressed as

〈M〉atm = exp

{
−π2q2

0

∫ z

0
dx

∫
dgψ (g)

[
((p + kx/q0) · g)2 + ((p′ + k′x/q0) · g)2

+ 2(p + kx/q0) · g(p′ + k′x/q0) · g exp

{
ig · �r − R2

b

480l ′
0

2 r2(1 − x/z)3g2

[
1 + R2

b(1 − x/z)3

672l ′
0

2

]}]}
, (A7)

where g = |g| and we also used Markov approximation index-of-refraction spectrum is δ correlated in the direction of
propagation, which was rigorously justified in Ref. [32]. After integration over direction of g

〈M〉atm = exp

{
− 0.033C2

n π2q2
0

∫ z

0
dx

∫ ∞

0
dgg−2/3e−g2l ′20

[
(p + kx/q0)2 + (p′ + k′x/q0)2

+ (2(p‖ + k‖x/q0)(p′
‖ + k′

‖x/q0)(J0(gr) − J2(gr)) + 2(p⊥ + k⊥x/q0)(p′
⊥ + k′

⊥x/q0)(J0(gr) + J2(gr)))

× exp

{
− R2

b

480l ′
0

2 r2(1 − x/z)3g2

[
1 + R2

b(1 − x/z)3

672l ′
0

2

]}]}
, (A8)

where J0 and J2 are zeroth- and second-order Bessel functions, vector �r = (r − r′) − (q − q′)(z − x)/q0, r = |�r|. The
indices {‖} and {⊥} indicate the parallel and perpendicular to �r components of the corresponding 2D vectors. The first two
terms in square brackets represent correlation of waves with same pairs {r, q} and {r′, q′}. The terms that include Bessel functions
consider cross correlation of photon trajectories ({r, q} and {r′, q′} are different), which were extensively reviewed in Ref. [32].
In (A7) and (A8) we omit the dependence on angle between �r and g (see Eq. (40) in Ref. [32]) in the last exponent as
its contribution is small. After substitution of (A8) to (A5) and change of variables, most of integrations could be performed
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analytically. As a result expression for fourth moment can be written as

�
(i)
4 (r, r′) = 2πC

∫ ∞

0
dq̃q̃

[
F q̃,ρ‖

1 F q̃,ρ‖
2

(
F q̃,ρ‖

3 Hq̃,ρ‖
1 − Gq̃,ρ‖

1

2)(
F q̃,ρ‖

4 Hq̃,ρ‖
2 − Gq̃,ρ‖

2

2)]− 1
2

× exp

⎧⎪⎪⎨
⎪⎪⎩−

(
q̃ − ρ‖

G
q̃,ρ‖
1

2F
q̃,ρ‖

3

)2

(
Hq̃,ρ‖

1 − Gq̃,ρ‖
1

2
/F q̃,ρ‖

3

)
⎫⎪⎪⎬
⎪⎪⎭ exp

{
− ρ2

⊥Hq̃,ρ‖
2(

Hq̃,ρ‖
2 F q̃,ρ‖

4 − Gq̃,ρ‖
2

2)
}

exp

{
−
(

ρ ′2
‖

F q̃,ρ‖
1

+ ρ ′2
⊥

F q̃,ρ‖
2

+ ρ2
‖

4F q̃,ρ‖
3

)}
, (A9)

functions F , G, and H are defined as

F1,2,3,4 = r2
0

4
+ z2

q2
0r2

0

+ ϕ1,2,3,4 (A10)

G1,2 = z2

q2
0r2

0

+ γ1,2 (A11)

H1,2 = z2

q2
0r2

0

+ χ1,2 (A12)

ϕ1 = α

∫ 1

0
dττ 2

[
1�+

(
1+βr̃2τ 3)−

1
6

[
1F1

(
1

6
, 1;

−r̃2

4l ′
0

2(1 + βr̃2τ 2)

)
�+ r̃2

48l ′
0

2(1 + βr̃2τ 2)
1F1

(
7

6
, 3;

−r̃2

l ′
0

2(1 + βr̃2τ 2)

)]]

(A13)

ϕ2 = α

∫ 1

0
dττ 2

[
1�+ (1+βr̃2τ 3)−

1
6

[
1F1

(
1

6
, 1;

−r̃2

4l ′
0

2(1 + βr̃2τ 2)

)
�− r̃2

48l ′
0

2(1 + βr̃2τ 2)
1F1

(
7

6
, 3;

−r̃2

l ′
0

2(1 + βr̃2τ 2)

)]]

(A14)

ϕ3 = α

∫ 1

0
dττ 2

[
1�− (1+βr̃2τ 3)−

1
6

[
1F1

(
1

6
, 1;

−r̃2

4l ′
0

2(1 + βr̃2τ 2)

)
�− r̃2

48l ′
0

2(1 + βr̃2τ 2)
1F1

(
7

6
, 3;

−r̃2

l ′
0

2(1 + βr̃2τ 2)

)]]

(A15)

ϕ4 = α

∫ 1

0
dττ 2

[
1�− (1+βr̃2τ 3)−

1
6

[
1F1

(
1

6
, 1;

−r̃2

4l ′
0

2(1 + βr̃2τ 2)

)
�+ r̃2

48l ′
0

2(1 + βr̃2τ 2)
1F1

(
7

6
, 3;

−r̃2

l ′
0

2(1 + βr̃2τ 2)

)]]

(A16)

γ1 = α

∫ 1

0
dττ

[
1−(1+βr̃2τ 3)−

1
6

[
1F1

(
1

6
, 1;

−r̃2

4l ′
0

2(1 + βr̃2τ 2)

)
�− r̃2

48l ′
0

2(1 + βr̃2τ 2)
1F1

(
7

6
, 3;

−r̃2

l ′
0

2(1 + βr̃2τ 2)

)]]

(A17)

γ2 = α

∫ 1

0
dττ

[
1−(1+βr̃2τ 3)−

1
6

[
1F1

(
1

6
, 1;

−r̃2

4l ′
0

2(1 + βr̃2τ 2)

)
�+ r̃2

48l ′
0

2(1 + βr̃2τ 2)
1F1

(
7

6
, 3;

−r̃2

l ′
0

2(1 + βr̃2τ 2)

)]]

(A18)

χ1 = α

∫ 1

0
dτ

[
1−(1+βr̃2τ 3)−

1
6

[
1F1

(
1

6
, 1;

−r̃2

4l ′
0

2(1 + βr̃2τ 2)

)
�− r̃2

48l ′
0

2(1 + βr̃2τ 2)
1F1

(
7

6
, 3;

−r̃2

l ′
0

2(1 + βr̃2τ 2)

)]]

(A19)

χ2 = α

∫ 1

0
dτ

[
1−(1+βr̃2τ 3)−

1
6

[
1F1

(
1

6
, 1;

−r̃2

4l ′
0

2(1 + βr̃2τ 2)

)
�+ r̃2

48l ′
0

2(1 + βr̃2τ 2)
1F1

(
7

6
, 3;

−r̃2

l ′
0

2(1 + βr̃2τ 2)

)]]
,

(A20)

and parameters are defined as α = 3
2 R2

b, β = R2
b

480l ′0
4 [1 + R2

bτ
3

672l ′0
2 ], r̃ = ρ‖ − 2q̃τ , and 1F1(a, b; z) = ∑∞

n=0
a(n)zn

b(n)n! is a confluent

hypergeometric function (Kummer’s function), a(n), b(n) are the Pochhammer symbols. Addition and subtraction operations are
highlighted with squares, �+ and �− , to emphasize the difference between corresponding functions. Here notations ρ = r − r′,
ρ′ = (r + r′)/2 are used since r and r′ enters expression for �4 only in such combinations (see more details in main text).
Functions (A13)–(A20) depend on ρ‖ and q̃.
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For the region of the phase space defined with conditions (ii) |q − q′ + (k + k′)/2|, |q − q′ + (k + k′)/2| � R−1
b one should

perform change of indices similar to one in Refs. [27,33]

k → q − q′ + k + k′

2
, k′ → q′ − q + k + k′

2

q → 1

2

(
q + q′ + k − k′

2

)
, q′ → 1

2

(
q + q′ − k − k′

2

)
.

Then �
(ii)
4 is expressed as

�
(ii)
4 (r, r′) =

∑
q,q′

ei(q′−q)·(r−r′ )
〈

f

(
r + r′

2
, q

)
f

(
r + r′

2
, q′

)〉
, (A21)

which is reminiscent of the asymptotic expression for fluctuations of intensity [33]. However, for smaller distances, accounting
for partial saturation of fluctuations, it is not factorized to the product of first moments for PDF. Calculation of (A8) is
similar to one for term (A5). However since PDFs in (A8) depend on the same coordinate (r + r′)/2 both autocorrelations and
cross-correlation terms in (A8) do not include space coordinates. After integrations

�
(ii)
4 (r, r′) = 2πC

∫ ∞

0
dq̃q̃

[
F q̃

1 F q̃
2

(
F q̃

3 Hq̃
1 − Gq̃

1
2)(

F q̃
4 Hq̃

2 − Gq̃
2

2)]− 1
2 exp

{
− q̃2

Hq̃
1 − Gq̃

1
2
/F q̃

3

}

× exp

{
−
(

ρ ′2
‖

F q̃
1

+ ρ ′2
⊥

F q̃
2

)}
exp

{
−i2q̃ρ‖

q0

z

}
, (A22)

where functions F , G, and H does not depend on r, r′ and one should put 2q̃τ instead of r̃ in corresponding expressions.
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