
PHYSICAL REVIEW A 105, 063712 (2022)

Time-resolved observation of a dynamical phase transition with atoms in a cavity
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We present a dynamical, multilevel atom-cavity blockade effect and monitor its breakdown transition in time.
As in the case of optical bistability, atoms initially impede transmission by detuning a cavity mode from the driv-
ing laser. The interacting system, however, eventually transitions into an uncoupled state via a critical runaway
process, resulting in maximum transmission. These two extremes of transmission are macroscopic reflections of
well-defined atomic states, and thus are interpreted as phases of a dynamical transition. By monitoring the output
of the cavity, we make time-resolved measurements of the order parameter and that of the enhanced photon
number fluctuations. Considering these results for different cavity driving intensities, we establish finite-size
scaling relations that suggest such a runaway effect is in fact a genuine dynamical phase transition.

DOI: 10.1103/PhysRevA.105.063712

I. INTRODUCTION

Cavity QED, with strong coupling between atoms and a
single mode of a resonator, opened a way to study nonlinear
light-matter interactions for different sizes of atomic media.
A well-known example is that of optical bistability [1,2],
where the output of an optical resonator filled with atoms
can have two stable stationary solutions for the same input
intensity, according to hysteresis. In the limit of low or high
drive intensity, however, the cavity fully blockades or permits
the transmission, respectively. Therefore, taking the drive in-
tensity as the control parameter and the cavity transmission
as the order parameter, this driven-dissipative open system
exhibits a genuine phase transition. Hereafter we will consider
the concept of dynamical phase transitions in relation to the
nonanalytic change of the steady state at a critical point or
domain of control parameters.

In practice, however, this general phenomenon has many
different realizations depending on the specific nonlinear in-
teraction in the cavity. The active medium can consist of two-
[3,4] or many-level atoms [5,6], or the origin of the nonlin-
earity can arise even from the collective motion of an atomic
cloud [7–10]. A key parameter describing the nonlinearity
is the cooperativity, C = Ng2/γ κ , where N is the number
of atoms, g is the coupling strength between the resonator
mode and a single atom (in terms of the single-photon Rabi
frequency), and κ and γ are the linewidths of the mode and
atomic resonance, respectively.

The cooperativity can then be used to define some of the
regimes of interaction. Early experiments on many-atom sys-
tems showed optical bistability to occur for cooperativity C �
1: Where atoms were weakly coupled to a single, resolved
cavity mode (g � κ, γ ). For low drive, the atoms remain close
to their ground states and the transmission is suppressed by
their absorptive [11] or dispersive effects [12,13] on the mode.
For high drive, the other robust state of bistability, the atoms
are in a full statistical mixture of ground and excited states

due to saturation, averaging out any effect on the transmission
of the laser through the resonator. In this type of bistability,
the thermodynamic limit corresponds to weak coupling and
a large number of atoms, all while keeping the cooperativity,
C ∝ Ng2, constant. In strongly coupled systems (g > κ, γ ),
however, the effect can be studied with a low number of atoms
[14,15], far away from the thermodynamic limit. Although
remnants of bistability have been observed experimentally in
the limit of small numbers of atoms [16], even individually
[17,18], full bistability and hysteresis effects were obscured
by quantum fluctuations [19,20].

Recently, however, in the regime of extreme nonlinearity,
C � 1, it was discovered [21,22] that bistability appears even
for a single two-level atom. In this case, the thermodynamic
limit corresponds to infinite cooperativity, C → ∞, with N =
1, as opposed to C ∼ 1 and N → ∞ [23]. In this quantum
limit of bistability, for strong coupling and low drive intensity,
the transmission is blockaded by the lack of near-resonant
levels in the highly nonlinear Jaynes-Cummings spectrum
[24,25]. Increasing the drive intensity, the blockade breaks
down in favor of the other branch via high-order multiphoton
excitation processes [21]. A distinctive feature of this photon
blockade breakdown phase transition, with respect to optical
bistability, is that the phases are represented by pure quan-
tum states of the coupled system. These are stabilized, with
macroscopic signatures, due to a continuous measurement
of the transmitted intensity. As the required strong-coupling
regime is only available with circuit QED systems [26,27], an
analogous phase transition was observed with a single super-
conducting artificial atom, coupled to a microwave resonator
[28]. The effect has incited significant interest [23,29–34].

In this paper, we introduce a third blockade effect whose
breakdown, in contrast to that of optical bistability, undergoes
a dynamical phase transition involving multilevel atoms. In
the limit of both high cooperativity, C � 1, and large atom
number, we realize a strong collective coupling of atoms to
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FIG. 1. Schematic representation of the transmission blockade breakdown phase transition. Atoms can be in (a) “red” (open circles) or
(c) “green” (filled circles) states, blocking or permitting the light transmission through the cavity, respectively. (b) In the transition domain,
the atoms are in a mixture of red (open) and green (filled) states. Upper level schemes show the cavity mode frequency with respect to the
angular frequency of the pump laser, ω, and (d) red (open) and green (filled) states are identified with the hyperfine states of 87Rb (only a part
of the 5 2S3/2 ↔ 5 2P5/2 structure is shown). Far-off-resonance σ−-polarized light provides an excitation path that assists the atoms’ escape
from the blockading state, |g〉, to the F = 1 manifold of the electronic ground state. Atoms are first weakly excited to an intermediary state,
|i〉 = (F, mF ) = (2, 1), before spontaneously decaying to the manifold, which is optically dark with respect to the cavity mode. (e) The time
evolution of the transmitted intensity is plotted, exhibiting the switch from blockaded to transparent phase around 100 ms after turning on the
cavity drive. It is expressed in units of cavity photon number deduced from the detected photon flux. (f) The transition is accompanied by the
increase in cavity field fluctuations in terms of thermal photon numbers extracted from the displaced, thermal-state statistics of the transmitted
light.

a mode of an optical cavity [35]. In our case, interaction
between the cavity light field and the atomic transitions are
dispersive, �A � γ , such that the relevant cooperativity pa-
rameter is C ′ = Ng2/|�A|κ ≈ 100. Similarly to the photon
blockade breakdown effect, there are two distinct, robust sta-
tionary states of the system, i.e., phases, in which the internal
electronic state of the atoms is a pure quantum state. These
are two atomic hyperfine ground states, associated with an
empty and a highly excited coherent state of the cavity mode,
respectively. The cavity photon number corresponds thus to
an appropriate order parameter for the state of the system,
which can be directly monitored in real time by measuring
the photocurrent at the cavity output.

In the experiment, we study single transitions from one of
the stationary states to the other. In particular, the system is
prepared in an unstable phase and the transition to the stable
phase is monitored, as if we observed the freezing of over-
cooled water. Since the large cooperativity brings the system
close to the thermodynamic limit, the spontaneous collapse
of the unstable phase takes place after a macroscopic waiting
time. As the atoms were stably trapped in the resonator, we
could not only observe these long periods in the unstable
phase, but also obtain time-resolved recordings of the nonlin-
ear runaway dynamics of the transition. The time resolution
allows us, on the one hand, to see that the switchlike tran-
sition is not a measurement-induced quantum jump between
atomic states, unlike the population shelving in fluorescence

measurements [36], and, on the other hand, to quantify the
enhancement of photon number fluctuations found to accom-
pany the transition. The amplitude of these fluctuations shows
a power-law divergence with drive intensity to suggest a finite-
size scaling approach to a phase transition [37–39].

II. TRANSMISSION BLOCKADE BREAKDOWN
PHASE TRANSITION

The system and the basics of the transmission blockade
phase transition are schematically represented in Fig. 1. A
single, standing-wave mode of a cavity with frequency ωC and
linewidth κ is externally driven by coherent laser light at a
frequency ω. The transmission of the laser through the cavity
exhibits a Lorentzian resonance which is modified if atoms
are present in the cavity. Consider a number of atoms, N , with
electric dipole resonance ωA, which is far from the laser fre-
quency, such that the atomic detuning, �A = ω − ωA, satisfies
|�A| � γ , where γ is the linewidth of the atomic resonance.
In this limit, the atoms act on the light field as a dispersive
medium. Each atom in its electronic ground state, |g〉, shifts
the frequency of the mode by δ| f (r j )|2, where δ = g2/�A, g

is the single-photon Rabi frequency, g =
√

ωC
2ε0 h̄V deg, and deg is

the atomic dipole moment. The second factor of the shift is the
spatial mode function for atom j = 1, . . . ,N . As the mode
function, f (r), is real and normalized to have a maximum of
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1, the mode volume is V = ∫
d3r| f (r)|2. The frequency shift

is additive and so the collective effect of the atoms gives a
diminished transmission,

Iout

I0
= 1

(�C − Nδ)2/κ2 + 1
, (1)

relative to the resonant transmitted intensity of the empty
cavity, I0. For resonant drive, �C = ω − ωC = 0, and a res-
onance shift much larger than the linewidth, Nδ � κ , the
transmission is suppressed, which is the blockaded phase. The
key variable governing the phase transition is the effective
number of atoms, N , which depends both on the position and
the internal state of the atoms:

N =
N∑
j=0

| f (r j )|2 p j . (2)

The internal state is represented by p j = Tr{ρ̂ (|g〉〈g| −
|e〉〈e|)}, the difference in probability for the jth atom to oc-
cupy the ground or excited state, respectively, where |g〉 ↔ |e〉
labels the electric dipole transition coupled to the cavity mode.
This concisely accounts for both a change in sign of the reso-
nance, −δ, due to population inversion and the actual number
of atoms coupled to the mode, as optical pumping into dark
states leads to Tr{ρ̂ (|g〉〈g| + |e〉〈e|)} = 1.

Initially, all of the atoms are prepared in the state |g〉, such
that pj = 1 for all j [Fig. 1(a)]. In the limit of cooperativity
C′ ≡ Nδ/κ → ∞, the transmission would completely vanish,
and the atoms, being in the dark, would remain in the ground
state |g〉. Because of the finite C′, the blockaded phase is
not stable; however, it protects itself for a long, macroscopic
time. Some light infiltrating into the cavity leads to a small
atomic excitation into |e〉, and an even smaller component into
another state, |i〉 [cf. the level scheme in Fig. 1(d)]. From this
latter state, the atoms can decay into a state decoupled from
the cavity mode [green (filled) atoms in Fig. 1(b)]. Both of
these processes, in turn, reduce the variable N and thus the
collective mode shift, letting more light enter the cavity. This
positive feedback loop is closed, causing a system runaway
into the fully transparent state [Fig. 1(c)]. The occurrence
of the transmission blockade breakdown after a significantly
long time (200 ms � γ −1, κ−1) and its associated dynamics
are shown in Fig. 1(e).

III. EXPERIMENTAL REALIZATION AND MODELING

In our system, we used 87Rb atoms: first captured from
vapor in an ultrahigh-vacuum chamber and then precooled
in a magneto-optical trap (MOT) above a high-finesse
optical resonator. The atoms were further cooled by po-
larization gradient cooling to reach typical temperatures of
T ∼ 100 μK. Following an optical pumping cycle, the
magnetically polarized sample of cold 87Rb atoms in the
(F, mF ) = (2, 2) hyperfine ground state was loaded into a
magnetic quadrupole trap. The magnetic trap center was
shifted, in a controlled way, to transport the atoms vertically
∼1 cm into the horizontally aligned cavity. The cavity is
l = 15 mm long and so has a relatively large access from the
direction transverse to the propagation axis. The mode waist,
w = 127 μm, was an order of magnitude smaller than the size

of the atomic cloud in this direction, placing approximately
N ∼ 105 atoms within the cavity mode volume. The mode
linewidth was measured to be κ = 2π × 3.22 MHz [half
width at half maximum (HWHM)], and the single-atom cou-
pling constant was calculated as g = 2π × 0.33 MHz on the
(F, mF ) = (2, 2) ↔ (3, 3) hyperfine transition of the D2 line.

Such conditions were achieved by driving the fundamental
Gaussian mode of the resonator with an appropriate laser
through the incoupling mirror. The driving laser was locked
to an atomic resonance and the resonator length was actively
stabilized to the same atomic reference line via a transfer cav-
ity at a far-detuned wavelength (805 nm). Thus the detuning,
�C , was an actively controlled variable, set on resonance,
�C = 0, and far below the F = 2 ↔ 3 atomic resonance
by �A = −2π × 35 MHz. The single-atom frequency shift
was δ ≈ 2π × 3 kHz; thus an effective number of atoms,
N ≈ 104, led to a shift of the mode by more than 10κ away
from resonance. The transmission was suppressed under these
conditions.

The magnetic quadrupole trap was centered in the cavity
mode; i.e., the mode was situated in the central plane of the
trap where the magnetic field points radially outward from
the symmetry axis. The atoms typically revolved around the
(vertical) symmetry axis at a distance much larger than the
mode waist. Within the cavity mode, therefore, the atoms
experienced a magnetic field oriented parallel to the cavity
axis. The quantization axis was thus aligned with the cavity
axis, although pointing in opposite directions within each
(longitudinal) half of the cavity mode. The circularly polar-
ized light injected into the cavity, σ+, excited the (F, mF ) =
(2, 2) ↔ (3, 3) closed-cycle transition with a Clebsch-Gordan
coefficient equal to 1 in one-half of the cavity. In the other
half, however, the light effectively had a σ− polarization
with respect to the quantization axis and weakly drove the
(F, mF ) = (2, 2) ↔ (3, 1) transition and, off resonantly, the
(F, mF ) = (2, 2) ↔ (2, 1) transitions with Clebsch-Gordan
coefficients of 1/15 and 1/3, respectively. This latter off-
resonant excitation (�′

A = 230 MHz) by σ− light led to
optical pumping into the F = 1 manifold of the electronic
ground state, which were dark states for the cavity field [cf.
Fig. 1(d)]. As this two-photon transition involved a virtual
excitation of the state |i〉, intracavity intensity was needed.
This constituted a nonlinear decay channel for losing atoms
from state |g〉, the state blockading the cavity transmission.
Such an effect can underlie the phase-transition-like switch
from the ensemble of atoms in the state (F, mF ) = (2, 2) to the
state (F, mF ) = (1, mF ), with mF = 0, 1. A simple semiclas-
sical model captures the phase transition dynamics. The usual
atom-cavity interaction is complemented by an additional loss
process with rate � describing the escape to the dark states
by spontaneous emission from the excited state. The mean-
field approximation to the full quantum problem leads to the
equations

ȧ = (i�C − κ )a + gM + η ,

Ṁ = (i�A − γ − �)M + g[Ne − Ng]a ,

Ṅe = −g[a∗M + M∗a] − 2(γ + �)Ne ,

Ṅg = g[a∗M + M∗a] + 2γ Ne ,

(3)
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FIG. 2. The time evolution of the intracavity intensity around
the phase transition for both the measurement data (squares) and
the mean-field simulation (dashed, dotted, and dash-dotted lines). A
selection of external laser drive powers, in units of the corresponding
empty cavity photon number (η/κ )2, are presented, where increasing
drive power leads gradually from a crossover to the transmission
blockade breakdown phase transition. After horizontally shifting the
curves to have a common midpoint, the simplified model, with a
single fitting parameter �, simultaneously accounts well for the slope
of the transition for all drive powers (� = 0.93 × 10−3γ ).

where a is the complex amplitude of the cavity field mode
driven by the effective amplitude, η. Concerning the other
variables, M = N Tr{|g〉〈e|} describes the atomic polariza-
tion and Ng = N Tr{|g〉〈g|}, Ne = N Tr{|e〉〈e|} the atomic
populations. In this mean-field model the atoms are assumed
to identically couple to the mode with an average coupling
constant. The effective atom number in the transmission for-
mula of Eq. (1) is then N = (Ng − Ne)/2, where the factor 1

2
accounts for the reduction of the average coupling constant
compared to its maximum. With the real atomic level scheme,
atoms escape from the two-level space {|g〉, |e〉} from |g〉
via the state |i〉. Note that the population in the state |i〉 is
proportional to that in |e〉; hence the � decay term from |e〉
accounts for the dependence of the loss on the cavity light
intensity, without introducing extra variables. On integrating
these equations from the appropriate initial conditions, i.e.,
cavity vacuum, a = 0, and all of the atoms in the ground state,
Ng = N , Ne = M = 0, one can obtain the time evolution of
the transmitted intensity signal, 2κ|a|2, which serves as an
order parameter for the phase transition.

This can be seen in Fig. 2, where, focusing on the transition
region, the slow crossover from the blockaded transmission
to the empty cavity phase (Ng = Ne = 0) develops into ever
faster transition on increasing the laser drive. Three different
drive amplitudes are shown, spanning an intensity range of
over two orders of magnitude. For the largest power (blue
dashed lines), the mean-field solution is matched to the ex-
perimental data by using the escape rate, �, as the only fitting
parameter and the number of atoms is set to N = 104. For the
same value of the escape rate, � = 0.93 × 10−3γ , the slope
of the transition around the midpoint exhibits good agreement
between measurement and simulation simultaneously for the

FIG. 3. Left: The width of the transition as a function of the laser
drive power, highlighting a finite-size feature of the transition in the
transmission blockade breakdown. Right: The scaling of the excess
noise in terms of thermal photon number as a function of transition
width, where the latter indicates distance from the thermodynamic
limit. The power-law fit suggests an exponent of −1.9 ± 0.1.

other two drive powers, suggesting that the essence of the
phase transition dynamics is well captured by Eqs. (3).

IV. FINITE SIZE SCALING AND FLUCTUATIONS

With increasing laser drive power the transition happens
more quickly, as plotted in Fig. 3. Here, the transition width
was defined as the time taken for the transmitted intensity to
rise from 10% to 90% of the resonant empty cavity trans-
mission [cf. the shaded region of the sample trajectory in
Fig. 1(e)]. In order to approach the thermodynamic limit, the
enhanced drive power should be accompanied by an increas-
ing number of atoms so that the collective dispersive effect
counteracts the larger incoming light intensity. On doing such
scaling, the transition tends to an instantaneous change. In our
experiment the atom number is not varied, however, but the
transition width can be operationally used as a measure for
how far the system is from the thermodynamic limit.

Our experiment reveals a generic feature of phase tran-
sitions beyond the mean-field level, i.e., the emergence of
enhanced fluctuations in the course of the transition [40].
The intensity of cavity field fluctuations was extracted from
the running variance of the recorded transmission signal with
500 μs time resolution. The variance can be connected to
the g(2) intensity correlation function of the single-mode field
[41–43] which expresses the enhancement of the cavity field
fluctuations with respect to the Poissonian statistics. As shown
in detail in the Appendix, this excess noise can be expressed
in terms of a thermal photon number by using the ansatz for
the state of the cavity mode that it is a statistical mixture
of coherent states with a Gaussian distribution, Pth,disp(α) =

1
πnth

exp(−|α − β|2/nth ). This is the P function of a dis-
placed thermal state, with mean field denoted by the complex
amplitude β and where the distribution width, nth, can be
interpreted as the number of thermally distributed photons.
For this mixed state, the intensity correlation function obeys
g(2)(0) = 2 − |β|4

(nth+|β|2 )2 . This value lies between 1 and 2 for a
coherent (nth = 0) and thermal (β = 0) state, respectively. In
the course of the transition, the mean-field amplitude evolves
from β = 0 to β = η/κ , as shown in Fig. 1(e). The width of
the distribution, nth, also changes during the transition, and
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its time-resolved evolution was derived from the measured
data, as exemplified in Fig. 1(f). The excess cavity photon
fluctuations exhibit a sharp peak in the time evolution, just
at the moment where the order parameter transitions from the
blockaded phase.

The excess noise with thermal statistics is related to the in-
ternal dynamics of the atoms and its description is beyond the
scope of our mean-field model (3). In the blockaded regime
the transmitted field must be close to a vacuum state. In the
transparent phase the transmitted field statistics is expected to
retain the Poissonian statistics of the laser source. In between,
when the atoms are partially excited, the atomic state can be
a statistical mixture of states |g〉 and |e〉, which is encoded via
the distribution of the probabilities, pj , in the effective atom
number, N , in Eq. (2). This mixture amounts to additional sta-
tistical features in the detected field on top of the Poissonian
noise.

We show next that the fluctuations generated in the transi-
tion increase as a power law as the thermodynamic limit is
approached. In Fig. 3, the integrated excess noise in terms
of thermal photon number, nth, is plotted as a function of the
transition width in a log-log scale together with a power-law
fit. This function represents a finite-size scaling. Theoretical
confirmation of the measured exponent, −1.9 ± 0.1, requires
more involved modeling. Nevertheless, the good agreement
with the fit over two orders of magnitude confirms a char-
acteristic feature of phase transitions, i.e., the power-law
divergence of the fluctuations as the thermodynamic limit
is approached. We can conclude that the experimentally ob-
served breakdown of the transmission blockade corresponds
to a finite-size realization of a genuine phase transition.

V. CONTROL PARAMETER

Finally, let us discuss the control parameter of this phase
transition. As it had a fixed value in the presented experiment,
the system was only in equilibrium in one of the phases, i.e.,
in the “bright” phase. In order to vary the control parameter,
the system would need an additional, driven, cavity mode at a
frequency close to the (F, mF ) = (1, 1) ↔ (2, 1) transition.
This additional laser beam (drive 2) would “repump” the
system from the “green” (filled) to the “red” (open) phase in a
similar manner to the demonstrated phase transition between
the “red” and “green” phases. In the “green” phase, the atoms
would be in the state (F, mF ) = (1, 1), with the transmission
of the additional laser blockaded because of the same disper-
sive shift on the respective cavity mode.

This blockade could also break down in a runaway process.
If both laser drives were continuously on, there would be
a competition between the two directions. Either drive 1 or
drive 2 would be transmitted depending on the phase: the
atoms in state (F, mF ) = (1, 1) or (F, mF ) = (2, 2) blockad-
ing the transmission of the other laser drive, respectively.
The photodetector, with a frequency discriminating mea-
surement method (e.g., heterodyning), could then reveal if
drive 1 or drive 2 was transmitted, thereby distinguishing the
“red” (open) and “green” (filled) phases. In such an extended
scheme, the control parameter would be the intensity ratio of
the two pump beams, I1/I2. Depending on this ratio, there
would be a regime (I1/I2 too small or too large) where only

one of the phases is stable. For a given midrange of the ratio
there would be a coexistence of phases, i.e., a statistical mix-
ture of the two robust phases. In the time domain one could
observe a telegraph signal, a random sequence of transitions
between the two phases, as reported in [28] for the case of a
photon-blockade breakdown phase transition, and analyzed in
[23] in the thermodynamic limit. Within this extended frame-
work, since drive 2 was absent, our experiment represents a
single extreme value of the control parameter, I1/I2 = ∞.

VI. CONCLUSION

Thus, by only considering single transitions at a given
value of the control parameter, we could experimentally
analyze such important conceptual quantities of phase tran-
sitions as thermal fluctuations and finite-size scaling. This
analysis refers to criticality in driven-dissipative open systems
which is a class of dynamical phase transitions [44]. As a next
step, we aim to extend the experiment with a second, laser-
driven, cavity mode in order to vary the control parameter and
gain access to other regimes of the phase diagram.
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APPENDIX: EXPRESSING THE ENHANCED CAVITY
FIELD FLUCTUATIONS IN TERMS OF THERMAL

PHOTON NUMBER

Let us assume that the cavity field during the whole time
evolution belongs to the class of Gaussian states; that is, the P
function is of the general form [41]

Pth,disp(α) = 1

πnth
e− |α−β|2

nth , (A1)

where β gives the displacement amplitude (the “mean field”
coherent component), and the width of the distribution, nth,
can be interpreted as the number of thermal photons in the
state. This state is the displaced thermal state. The hypothesis
assumes that the source laser field is a coherent state and that
the distribution of atoms (both their “random” position and
the statistical mixture of the internal state) introduces classical
statistics for the cavity field amplitude, β, and Poissonian pho-
ton statistics for the coherent state, |α〉. The transition includes
the time evolution of the mean-field amplitude from zero to
the stationary amplitude of the resonantly driven empty cavity.
Simultaneously, the width of the distribution departs from
zero, temporarily, and takes on nonvanishing values in the
course of the phase transition.

For a displaced thermal state, it can be straightforwardly
calculated that

g(2)(0) = 〈a† a† a a〉
〈a† a〉2

= 2 − |β|4
(nth + |β|2)2

, (A2)
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where it can be seen that g(2)(0) is equal to 2 and 1 for no
displacement (a thermal state) and large displacement (β →
∞ or for nth → 0), respectively. Thus, the displaced thermal
state interpolates the g(2)(0) factors between that of a coherent
and a thermal state. For large time differences, τ , the inten-
sity correlation function must obey g(2)(τ ) → 1. As the field
emanating from a cavity is a single-mode field, with homo-
geneous broadening, the decay of the second-order intensity
correlation function must follow an exponential decay,

g(2)(τ ) = 1 + c e−2κτ , (A3)

where κ (HWHM) is the Lorentzian linewidth of the cavity
mode. The parameter c describes the photon bunching accord-
ing to Eq. (A2).

Assume a linear relationship between the detector volt-
age signal and the cavity photon number, u = χ â†â. The
coefficient χ can be obtained accurately by considering the
temporal evolution of the transmission signal statistics. On
dividing the raw transmission signal into 500-μs bins, the
mean, ū, and the variance, �u2, could be calculated as discrete
functions of time, which were related to the statistical mo-
ments of the cavity photon number. The raw signal, however,
contained noise components from both the bias-voltage dark
current, Ñ , and the amplification (so-called excess noise), F .
We therefore assumed that the dark-current noise also had
a mean and variance denoted by N and �N2, respectively.
The avalanche amplification noise, on the other hand, was
represented in the model by taking the coefficient, χ , as a
random number, χ̃ , with a mean, 〈χ̃〉 ≡ χ , and excess noise
factor, F = 〈χ̃2〉/χ2 ≈ 2, as this is valid for high avalanche
photodiode (APD) gain [45]. Under these conditions, the
mean voltage can be simply related to the mean cavity photon
number by

ū = 〈χ̃ â†â + Ñ〉 = χ〈â†â〉 + N , (A4a)

where N incorporates an arbitrary offset in the voltage mea-
surement. The important dimensional quantity characterizing
the whole detection setup is then χ , which determines the
calibration from measured voltage signal to cavity photon
number.

The variance of the voltage fluctuations can be calcu-
lated from the Mandel formula [41]. Using the linear relation
between the voltage and the photon number, it can be trans-
formed into the form

�u2 = F χ (ū − N ) + F (ū − N )2

×
(

2
∫ T

0
dτ (1 − τ ) g(2)(t, t + τ ) − 1

)
+ �N2,

(A4b)

where the time resolution T is given by the APD bandwidth
(10 MHz in our case, i.e., T = 100 ns). The first two moments
of the voltage signal are thus related to the input photon signal
in an expression that includes the calibration coefficient of
the detection setup, χ , the excess noise of the APD, F , and

the dark-current noise, �N2. These quantities can then be
calibrated, as follows.

There are two time windows where Eq. (A4b) simplifies
considerably: when there are no cavity photons and when
g(2)(t, t + τ ) reaches unity. We can first measure the offset and
variance of the amplifier noise in the first case, i.e., before the
laser shutter is released:

N = ū and

�N2 = �u2, for 〈a†a〉 = 0.

Then, we choose a point where the g(2)(t, t + τ ) function is
unity, such as the empty cavity (bright region), where the
transmitted light is in a coherent state. For calibration, a better
working point is when the drive laser is far away from cavity
resonance, and when the drive power is large. Then the classi-
cal fluctuations from the cavity lock system are suppressed. In
this case the second term on the right-hand side of Eq. (A4b)
vanishes, and thus

F χ ≈ �u2 − �N2

ū − N
. (A5)

As the amplifier offset, N , and the dark-current noise, �N2,
are determined from independent measurement data, the cali-
bration coefficient, χ , can be obtained from this formula by
using the estimated value of the excess noise factor, F =
2, valid for high APD gain [45]. In our setup, performing
this calibration measurement at �C = −2π × 30 MHz, we
obtained the calibration coefficient χ = 18.44 μV/photons.
This is in good agreement with the value derived from the
specification of the APD and the optical coupling parameters
of our setup (χ ≈ 16 μV/photons).

The integral in the Mandel formula, Eq. (A4b), can be
evaluated by using the exponential function in Eq. (A3),

2
∫ 1

0
dx(1 − x) g(2)(0, xT ) − 1 = c

(
1

κT
+ e−2κT − 1

2(κT )2

)
,

such that the photon bunching parameter can be deduced from
the measurement data as

c = �u2 − Fχ (ū − N ) − �N2

F (ū − N )2

(
1

κT
+ e−2κT − 1

2(κT )2

)−1

.

(A6)

The measured c can then be used to express the thermal
photon number by inverting Eq. (A2),

nth

|β|2 = 1√
1 − c

− 1, (A7)

and using the fact that the displacement corresponds to the
mean, i.e., ū − N = χ |β|2. The thermal photon number can
then be expressed from measured data using

nth = ū − N

χ

(
1√

1 − c
− 1

)
. (A8)

This value was used to describe the enhanced fluctuations of
the cavity field in the paper, where it is referred to as both the
thermal noise and, equivalently, the thermal photon number.
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