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Resonant dipole-dipole interaction (RDDI) emerges in strong light-matter interacting systems, which leads to
many fascinating phenomena such as cooperative light scattering and collective radiation. Here, we theoretically
investigate the role of RDDI in electromagnetically induced transparency (EIT). The resonant dipole-dipole
interactions manifest themselves in the cooperative spontaneous emission of the probe light transition, which
give rise a broadened linewidth and associated collective frequency shift. This cooperative linewidth originates
from the nonlocal and long-range RDDI, which can be determined by the atomic density, optical depth, and
macroscopic length scales of the atomic ensemble. We present the finding that EIT spectroscopy essentially
demonstrates all-order multiple scattering of RDDI. Furthermore, we find that the EIT transparency window
becomes narrower as the cooperative linewidth increases, which essentially reduces the storage efficiency of
slow light as an EIT-based quantum memory application.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) [1–4] is
a robust technique to store a light field while preserving its
quantum coherence with little dissipation. This facilitates a
quantum interface [5] of light and matter with high efficiency
and controllability. Due to the dramatic modification of the
dispersive properties accompanying the induced transparency,
the probe field propagates through the interacting medium
with a reduced group velocity [6,7]. Furthermore, the picture
of the dark-state polariton [8] can be adopted to describe
light-matter dynamics, where light can be stopped and trans-
ferred to atomic coherences and then retrieved back to light
again by turning off and on the control field. In addition to
neutral atoms [3,4,9,10], EIT has been implemented in various
platforms including quantum degenerate gases [6,7], Rydberg
atoms [11–14], single atoms in a cavity [15,16], embedded
Fe nuclei [17], color centers in a diamond [18,19], semicon-
ductor quantum wells [20], and crystals doped with rare-earth
ions [21–25].

The conventional EIT theory [3,4] is mainly based on
classical electrodynamics with a mean-field treatment of the
dipole operators that govern the light-matter interactions [26].
This theory has been extended to investigate a strongly corre-
lated quantum degenerate gas [27], where intriguing quantum
many-body effects emerge in EIT spectroscopy when the
atoms are coupled to the low-lying Rydberg states [28,29].
On the other hand, even when the atomic ground state is not
in a quantum degenerate regime, which is the case for cold
atoms in general, the conventional EIT theory neglects a full
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account of the effect of resonant dipole-dipole interactions
(RDDIs) [30] in the dissipation channels of both probe and
control fields. This effect is crucial especially for atoms of a
high density or with a large optical depth (OD), which leads
to super-radiance [31,32] and other cooperative spontaneous
emissions. Therefore the conventional EIT theory has to be
extended in this regard to include the essential collective
scattering events mediated by the nonlocal and long-range
RDDIs.

There has been huge progress in recent experiments which
demonstrate the effect of RDDIs in collective radiation. These
rescattering emissions between two atoms can enhance the
light emission in a dense atomic medium [33] and are re-
sponsible for subradiant emissions in neutral atoms [34],
plasmonic nanocavities [35], ultracold molecules [36], and
metamolecules [37]. The associated collective frequency
shifts can also be observed in various two-level atomic sys-
tems of embedded Fe nuclei [38], an atomic vapor layer [39],
ions [40], and cold atoms [41–44]. However, this evident
cooperative phenomenon has been elusive in the EIT platform
of a �-type atomic configuration as shown in Fig. 1. Only
recently has a semiclassical treatment of light-matter interac-
tions been applied in studying EIT properties with comparable
probe and control fields [45], where light-mediated interac-
tions can modify the transparency window. Here in this paper,
in contrast, we include the RDDI in the conventional EIT
theory involving up to single atomic excitation and derive
the effective linewidth broadening and frequency shift in EIT
transmission. We show that the probe field propagates through
a narrowing EIT transmission window when RDDI is sig-
nificant. This reflects the nonlocal nature of RDDI, which
incorporates all pairwise dipole-dipole interactions and could
be observable in future EIT measurements.
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FIG. 1. Schematic plot of multiple scattering of light and the
EIT scheme with RDDI. (a) An excited atom emits and scatters
light through many rescattering events between atoms before leaving
the medium and being observed. (b) A conventional EIT scheme
with control field �c and probe field �p interacting with three-level
configurations as shown in the upper inset plot with spontaneous
emission decay rate γ31. Probe and control field detunings are de-
noted as δp and δc, respectively. With the effect of pairwise RDDI
Kαβ , which involves a collective decay Fαβ and frequency shift Gαβ

between all of the other atoms, a level diagram for two atoms is
presented in the lower inset plot as a demonstration, where super- and
subradiant eigenvalue decay rates γ31 ± Fαβ/2 are associated with
eigenstates |φ1(2)〉 = (|01〉αβ ± |10〉αβ )/

√
2, respectively.

The paper is organized as follows. In Sec. II, we consider
an EIT scheme in an atomic ensemble, where we obtain
the transmission property from the coupled equations with
RDDI and their steady-state solutions. We next investigate the
linewidth of the probe light transition in Sec. III and present
the results of multiple scattering of RDDI in the transmission
spectrum in Sec. IV. We also discuss the extension beyond
the local field approximation in Sec. V. Finally, we discuss
our findings and conclude in Sec. VI. In Appendix A, we
obtain Maxwell-Bloch equations with RDDI in the probe field
transition, and in Appendix B, we present the steady-state
solutions from Maxwell-Bloch equations.

II. RDDI EFFECT IN EIT

A. Hamiltonian and Lindblad forms

The effect of RDDI in light propagation is mainly inves-
tigated in N two-level atoms, where a coupled-dipole model
along with Maxwell-Bloch equations can describe light-atom
dynamics [46]. This treatment is valid when a weak driving
field is considered, which effectively takes into account the
effects from both RDDI and the propagating light field in the
time-evolving atomic coherences. This leads to an effective
linewidth broadening and associated frequency shift for the
light field transition [44,47,48]. We follow a similar treatment
in our EIT setup using �-type atoms (as shown in Fig. 1),
where a probe field �p couples the ground state |1〉 to the
excited state |3〉 while a control field �c couples |3〉 to the
other hyperfine ground state |2〉. The ground-state coherence

is established on absorbing a probe and emitting a control
photon, which excites one of N atoms to |2〉 collectively.
Therefore a probe photon exchanging with atomic coherence
forms a dark-state polariton which propagates through the
medium, almost immune to the intrinsic spontaneous emission
γ31, and thus keeps its waveform intact inside the medium.
Since light couples the atoms collectively, RDDI in the dis-
sipation process should have an effect on EIT spectroscopy,
especially for a dense atomic cloud.

For a conventional EIT setup [9], as an example, the
system parameters are N ∼ 5 × 109 in a cloud size of 3 ×
3 × 14 mm3, which has an average atomic density of ∼4 ×
1010 cm−3. For a peak density around 1011 cm−3 and con-
sidering an interaction volume determined by probe field
propagation along the long axis with a cylindrical geometry
of π (0.2)2 × 14 mm3, we have N ∼ 1.8 × 108 with an op-
tical density of ∼400. This parameter regime is particularly
relevant in conventional EIT experiments as quantum mem-
ory applications, where the propagation effect of the probe
field becomes essential. In this parameter regime, there is
no possible numerical simulation using present computation
technology. Therefore we intend to provide an analytical cal-
culation of EIT spectroscopy in a cigar shape of atoms with
a relatively large optical density under a moderate atomic
density of the order of 1010–1011 cm−3. In such a long sample
of atoms, we note that the Beer-Lambert law for light propa-
gation can be retrieved and sustained, which would otherwise
break down in a thin slab geometry of dense atoms [49].

Here, we include and focus on the effect of RDDI in the
probe transition and investigate how it modifies the conven-
tional EIT theory. This RDDI should also manifest itself in
the control field transition and between two ground states,
with respective intrinsic decay rates γ32 and γ21. However,
a relatively large �c and vanishing populations in |2〉 and
|3〉 are legitimate to neglect this effect on γ32, in contrast
to the weak �p. The ground-state decoherence also involves
an inappreciable dipole transition, and therefore the effect of
RDDI on γ21 should be insignificant compared with that on
γ31.

The Hamiltonian for EIT in the interaction picture readsw

ĤI = h̄δp

N∑
μ=1

σ̂
μ
11 + h̄δc

N∑
μ=1

σ̂
μ
22

+
N∑

μ=1

(
− h̄�p

2
eikp·rμ σ̂

μ,†
13 + H.c.

)

+
N∑

μ=1

(
− h̄�c

2
eikc·rμ σ̂

μ,†
23 + H.c.

)
, (1)

where the wave vectors of the fields are kp and kc with the
Rabi frequencies �p and �c, respectively, and the atomic
dipole operators are σ̂

β
i j ≡ |i〉β〈 j|, σ̂

β,†
i j ≡ σ̂

β
ji . The detunings

are defined as δp = ωp − ω31 and δc = ωc − ω32, where
the central frequencies of light fields are ωp, ωc, and the
atomic transition frequencies are ω31, ω32. To account for the
RDDI effect in the probe field transition, we use Lindblad
forms [50] to fully describe the system dynamics, and the
master equation for arbitrary operators Q̂ in the Heisenberg
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picture becomes

dQ̂

dt
= − i

h̄
[Q̂, ĤI ] − i

N∑
μ �=ν,ν

[
Q̂, Gμνσ̂

μ
31σ̂

ν
13

]
+Lp[Q̂] + Lc[Q̂] + Lg[Q̂], (2)

where

Lp[Q̂] ≡ −
N∑

μ,ν

Fμν

2

(
σ̂

μ
31σ̂

ν
13Q̂ + Q̂σ̂

μ
31σ̂

ν
13 − 2σ̂

μ
31Q̂σ̂ ν

13

)
, (3)

Lc[Q̂] ≡ −
N∑

μ,ν

γ32
(
σ̂

μ
32σ̂

ν
23Q̂ + Q̂σ̂

μ
32σ̂

ν
23 − 2σ̂

μ
32Q̂σ̂ ν

23

)
, (4)

Lg[Q̂] ≡ −
N∑

μ,ν

γ21
(
σ̂

μ
21σ̂

ν
12Q̂ + Q̂σ̂

μ
21σ̂

ν
12 − 2σ̂

μ
21Q̂σ̂ ν

12

)
. (5)

The cooperative spontaneous decay rates Fμν and fre-
quency shifts Gμν can be expressed as [30]

Fμν (ξ ) ≡ 3�

2

{
[1 − (d̂ · r̂μν )2]

sin ξ

ξ

+ [1 − 3(d̂ · r̂μν )2]

(
cos ξ

ξ 2
− sin ξ

ξ 3

)}
, (6)

Gμν (ξ ) ≡ 3�

4

{
−[1 − (d̂ · r̂μν )2]

cos ξ

ξ

+ [1 − 3(d̂ · r̂μν )2]

(
sin ξ

ξ 2
+ cos ξ

ξ 3

)}
, (7)

where � = 2γ31 ≡ ω3
31d2/(3πε0 h̄c3) is the intrinsic decay

rate and d̂ is the dipole orientation with dipole moment d . The
dimensionless scale of mutual separation is ξ = |kp|rμν with
rμν = |rμ − rν |. The above indicates the long-range nature of
dipole-dipole interactions, which is responsible for the coop-
erative radiation of super-radiance or subradiance. As ξ → 0,
Fμν approaches � while Gμν becomes divergent, showing
an incomplete quantum optical treatment in this limit. For
ξ 	 2π or rμν 	 λ (transition wavelength), both cooperative
decay rates and frequency shifts diminish, which reaches the
noninteracting regime of independent atoms.

B. Maxwell-Bloch equations and the transmission coefficient

From the Maxwell-Bloch equations we obtain in Ap-
pendix A, we have truncated the coupled equations at the
first-order cumulants [51] or one-body expectation values.
This allows self-consistent and dynamically coupled equa-
tions, where a hierarchy of many-body correlations are
assumed to be insignificant. We define the cross-grained and
slow-varying atomic coherence in the probe transition as
σ̃13 = N−1

z

∑Nz

β=1 σ̂
β

13(z, t )eiωpt−ikp·rβ , and from Eq. (A5) we
obtain

d

dτ
σ̃13 ≈ (iδp − γ31)σ̃13 + i

�c

2
σ̃12 + i

�p

2

− 1

Nz

Nz∑
α=1

N∑
β �=α

Kαβ σ̃
β

13, (8)

where τ = t − z/c in a copropagating frame, slow-
varying atomic operator σ̃

β

13 ≡ σ̂
β

13eiωpt−ikp·rβ , and Kαβ ≡
(Fαβ + i2Gαβ )e−ikp·rαβ /2. In Eq. (8), we have assumed that
most of the atoms are in the ground state σ̃11 ≈ 1, which is
valid in the linear response regime with a weak probe field.
Nz ≡ N/M denotes the number of atoms in M cross-grained
sections along the propagation direction in ẑ, which is in-
troduced as a functional and does not come into play in the
continuous limit of field quantization under large N , Nz, and
M [52]. Equation (8) shows the nonlocal (r−1

αβ in the long
range) and linear couplings between atoms throughout the
medium via RDDI, in contrast to Rydberg van der Waals in-
teractions (∝ r−6

αβ ) [12,53] where nonlinear interactions result
from two or more Rydberg excitations, and a dipole-blockade
sphere can be established due to the large energy shift.

We then solve the steady-state ground-state coherence as
shown in Appendix A,

σ̃12 = −�∗
c/2

δ2 + iγ21
σ̃13, (9)

where δ2 = δp − δc and δc = ωc − ω32 are two-photon and
control field detunings, respectively. From Eqs. (8) and (9),
we iteratively solve the probe field coherence in perturbations
of Kαβ with local field approximations [53] in Appendix B.

Along with the Maxwell-Bloch equation

d

dz
�p = iD�

2L
σ̃13, (10)

we obtain the EIT transmission T = |�p(L)/�p(z = 0)|2 up
to the Mth order of perturbations as

TM = exp

[
D�

2
Re

(
M∑

m=0

f m
C

Am+1

)]
, (11)

where we define the optical depth as D ≡ ρσL with an atomic
density ρ, scattering cross section σ , and propagation length
L. We further use the intrinsic decay rate � = 2γ31 as a univer-
sal measure with or without RDDI. The above, as M → ∞,
leads to

T = exp

[
D�

2
Re

(
1

A − fC

)]
, (12)

where

A ≡ iδp − γ31 − i�2
c/4

δ2 + iγ21
, (13)

fC ≡ 1

Nz

Nz∑
α=1

N∑
β �=α

Kαβ. (14)

Equation (12) further indicates the effective collective fre-
quency shift and linewidth,

δ̃p = δp − Im[ fC], γ̃31 = γ31 + Re[ fC], (15)

respectively, where RDDIs directly modify the transparency
condition and linewidth. We note that for singly excited col-
lective states in N two-level atoms, we typically have N
eigenmodes and associated eigenstates to fully describe the
system dynamics [48,54]. It is the coherent forward scattering
in the paraxial Maxwell-Bloch equation [46,48] that makes
Eq. (15) a simple relation with a modification in frequency

063711-3



H. H. JEN, G.-D. LIN, AND Y.-C. CHEN PHYSICAL REVIEW A 105, 063711 (2022)

shift and linewidth directly from the RDDI effect in the probe
transition.

The transmission of Eq. (12) is valid only when |A| 	
| fC |, which is easily satisfied since �c/|δ2 + iγ21| 	 1 in-
side the transparency window or |A| ≈ |δp| 	 | fC | when way
off single-photon resonance. Near strong absorption in EIT
spectrum, that is, at small transmission T , the iterative per-
turbations of Kαβ could fail since |A| ∼ γ31, which can be
exceeded by | fC |. However, for a large optical depth when
D 	 | fC |/γ31, the transmission becomes vanishing, and there-
fore Eq. (12) still holds in this limit.

The clear advantage of EIT over fluorescence of two-level
atoms in revealing the cooperative linewidth is manifested in
the role of the control field. It is this large energy scale that
validates infinite (all-order) perturbations of RDDI, and thus
fC can genuinely characterize the collective frequency shift
and linewidth broadening of the probe photon. In contrast,
in two-level atoms, multiple scattering of RDDI cannot be
quantitatively calculated unless | fC | � γ31, which essentially
shows no cooperative effect whatsoever. To get around this
issue, a direct Monte Carlo simulation can be implemented to
configure atomic spatial distributions, which leads to a cou-
pling matrix involving RDDI. Numerically diagonalizing this
coupling matrix between any two radiating dipoles effectively
includes all-order scattering of RDDI [33,34]. However, this
brute-force numerical method only applies well in a small
Hilbert space, that is, of a small number of atoms (up to sev-
eral thousands) with single-photon [33,34,54] or few-photon
excitations [55]. A recently attempted numerical simulation
tackled more than 105 atoms using an iterative method in
calculating scattering rates [56] with repeated exact diago-
nalization of a subset of atoms. Therefore comparing several
millions of atoms operated in fluorescence or even 108 atoms
in EIT experiments, a huge gap nevertheless exists between
theory and measurements [49], making direct comparison and
prediction improbable in the near future.

It seems that modeling a much smaller number of atoms is
feasible in our case, say, 105 atoms at most under the present
computation capability. However, for the typical atomic den-
sity used in EIT experiments we consider here, a thousandfold
decrease in the number of atoms (from 108 to 105) means a
reduction of the optical depth to below 1 (from around 500
to 0.5) if the cross-sectional area of atoms, determined by a
tightly focused probe field, is kept the same. This indicates
a negligible RDDI effect on EIT properties up to N = 105.
The parameter regime in most EIT experiments resides in the
category of moderate atomic density with high optical depth
and therefore large number of atoms as well, and this poses
a dilemma in direct numerical simulations of the regime we
consider here. To reveal the RDDI effect in a small sam-
ple numerically, one can consider an even higher density of
atoms, where, however, the Maxwell-Bloch equations and
Beer-Lambert law in this regime break down [49], and it is be-
yond the scope of our consideration in this paper. Meanwhile,
EIT properties in a small sample with a high atomic density
remain an open question and deserve future exploration.

We note that there has been a recent effort to apply the con-
cept of the renormalization group method [57] to reduce the
complexity of large system under strong RDDI into an ensem-
ble of inhomogeneously broadened and weakly interacting

atoms. This is the essence of cooperativity in light-matter
interactions, where many-atom physics could not be easily
and simply extracted from a few-atom case. This complexity
even augments when nonlocal RDDI is engaged in the dis-
sipation process, where atom-atom correlations are certain to
play important roles [41–43] in fluorescence measurements.

III. LINEWIDTH OF PROBE LIGHT

We proceed to give an estimate of the effective linewidth
fC in Eq. (12) resulting from RDDI in a �-type EIT scheme.
fC is defined in Eq. (14) in the form of a discrete sum, where∑N

β �=α Kαβ can be treated with a referenced atom at position
rα . We will prove later that the leading-order result does not
involve where rα is, and therefore the Nz cross-grained aver-
age can just be replaced by the result of a single referenced
atom.

We first calculate the part of the cooperative linewidth
Fαβ in fC , and the associated frequency shift can be derived
accordingly from the cooperative linewidth. The continuous
form of γ̃31 = ∑N

β=1 Fαβe−ikp·rαβ /2 including the intrinsic de-
cay rate γ31 when β = α becomes [30,58,59]

γ̃31 = Nγ31

∫ ∞

−∞
dxdydz

(
π3/2R−2

⊥ R−1
L

)
e
− x2+y2

R2⊥ e
− z2

R2
L

×
∫

3

8π

(
1 − sin2 θ

2

)
d�ke−ikp·(rα−r)eik·(rα−r), (16)

where we have assumed Gaussian distributions with R⊥ and
RL for the transverse and longitudinal (propagation) length
scales, respectively. The 4π solid angle integration d�k in
the above comes from the original integral form of Fαβ [30],
where circular polarizations are assumed and |k| = |kp|. We
further assume that rα lies on the x̂-ẑ plane with an angle θ ′ to
ẑ, and we obtain

γ̃31 =
∫

3Nγ31

8π

(
1 − sin2 θ

2

)
sin θdθdφ

× e−|kp|2R2
⊥ sin2 θ/4e−|kp|2R2

L (1−cos θ )2/4

× ei|kp||rα |(cos θ cos θ ′+sin θ cos φ sin θ ′−cos θ ′ ). (17)

We further integrate out the part of
∫

dφ, which gives
2πJ0(|kp||rα| sin θ sin θ ′), a Bessel function of the first kind.
Since there are exponentially small weightings for θ ∼ π/2 in
the above Gaussian functions, we consider θ � 0 and J0(x′) ≈
1 − x′2/4 for small x′. We then take its leading order and set
x = cos θ , and we obtain

γ̃31 = 3Nγ31

8

∫ 1

−1
(1 + x2)dx e− |kp|2R2⊥ (1−x2 )

4 e− |kp|2R2
L (1−x)2

4

× e−i|kp||rα | cos θ ′(1−x). (18)

When R⊥ = RL and with |kp|RL 	 1, we can further simplify
the above to

γ̃31 = 3Nγ31

8

2

|kp|2R2
L/2 + i|kp||rα| cos θ ′ (19)

≈ 3Nγ31

2|kp|2R2
L

. (20)
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Expressing the above in terms of an effective Dc = 2ρσRL

with σ = 3λ2/(4π ) and using the total volume V = π3/2R3
L of

Gaussian density distributions and the averaged density ρ =
N/V , we have γ̃31/γ31 = √

πDc/4. We note that Eq. (20) has
the same dependence of sizes as in a spherical geometry with
considering only long-range terms in RDDI [59].

In general for a cigar shape, let a = |kp|2R2
⊥/4, b =

|kp|2R2
L/4, and m ≡ b/a, and from Eq. (18) we obtain

γ̃31

γ31
= 3N

8

1

4a3/2(m − 1)5/2

{
e

a
m−1

√
π (4am2 − 4ma + m

− 1 + 2a)

[
Erf

(
(2m − 1)

√
a√

m − 1

)
− Erf

( √
a√

m − 1

)]

+ 2
√

a
√

m − 1(e−4ma − 2m + 1)

}
, (21)

where Erf is the error function. We note that the above ex-
pression provides a general recipe to describe the collective
decay constant in a cigar shape of atoms with Gaussian dis-
tributions, which are relevant for realistic EIT experiments on
long samples of atoms [9]. In the extreme needlelike shape
where ma 	 1 and m 	 1, we can further have the simple
form

γ̃31/γ31 = 3N

8

√
π4am2

4a3/2m5/2
× 1

2
= 3

√
π

8

N

|kp|RL
, (22)

which shows the same dependence of the size in the long axis
as in a uniform distribution of a needlelike geometry [58].
Again by using the total volume V = π3/2R2

⊥RL of Gaussian
density distributions and the averaged density ρ = N/V , we
derive the cooperative linewidth as

γ̃31/γ31 = 3
√

π

8

N

|kp|RL
= π

8
Dc

|kp|R2
⊥

2RL
, (23)

where Dc = 2ρσRL is the effective optical depth. We note
that the relevant parameters ρ, optical depth Dc, total number
of atoms N , R⊥, and RL deterministically characterize the
cooperative phenomena and enable a direct connection with
EIT transmission measurements. These parameters are not in-
dependent of each other, since ρ = N/V with V = π3/2R2

⊥RL

and optical depth Dc = 2ρσRL.
In Fig. 2, we demonstrate the γ̃31 of Eq. (21) for three

different R⊥. For a fixed ρ, γ̃31 is saturated as Dc increases
for a small ρ, while it approaches a linear dependence for a
larger ρ. For a smaller R⊥, γ̃31 appears less significant due
to the small N or V involved for the cooperative linewidth at
the same Dc. The interplay between R⊥ and ρ can be hardly
distinguished in γ̃31, which we show in the upper bounds of
Fig. 2, where the case of ρ = 1–5 × 1011 cm−3 with a larger
R⊥ almost overlaps with the case of ρ = 5 × 1011 cm−3 with
a halved R⊥. We also show almost identical lower bounds,
as an example, for the cases of low ρ and smaller R⊥ in
Fig. 2. This reflects the difficulty in determining precise
atomic configurations of N , ρ, or Dc straightforwardly from
the cooperative linewidth γ̃31, and therefore other complimen-
tary and independent measurements are necessary to ensure
that these crucial parameters are relevant to the linewidth of
the probe field. As for an extreme needlelike geometry, we
find a suppressed γ̃31 due to the factor of |kp|R2

⊥/RL.

10 20 30 40 50
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=1011cm-3
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=1010cm-3

FIG. 2. Linewidth broadening from RDDI. We plot the enhanced
decay rates γ̃31 normalized by an intrinsic decay constant γ31 for
various atomic densities with R⊥ = 50 (dashed curves), 25 (solid
curves), and 10 μm (curve with crosses). At a relatively low atomic
density, γ̃31 is gradually saturated as Dc increases, while at a large
density, it approaches a linear dependence on Dc. For a larger R⊥, the
linewidth broadens more significantly.

We note that if ρ and N are fixed (so is V ), increasing
R⊥ would decrease the line broadening as there would be
fewer atoms contributing to the enhanced decay rate along
the propagation direction. This can be seen if we take ρ =
5 × 1010 cm−3 as an example, as shown in Fig. 2. As R⊥
increases from 25 to 50 μm, Dc = 50 decreases to 12.5 for
the same ρ, N , and V . The corresponding γ̃31 in Fig. 2 reduces
from 20 to 12.

The cooperative frequency shift [60,61] is related to the co-
operative spontaneous decay rate, fulfilling Kramers-Kronig
relations in electric susceptibility. We introduce an infrared
cutoff of wave vector km = 2π/

3
√

V in calculating the cooper-
ative frequency shift [61], and we have

δ̃p = δp − 2√
π

(γ̃31 − γ31)
λ

3

√
R2

⊥RL

, (24)

with the probe field transition wavelength λ. For R⊥ = 50 μm
and RL = 1 mm, we estimate a cooperative frequency shift of
∼γ̃31/154.2 for the moderate atomic density we consider in
Fig. 2, which has less effect than the cooperative linewidth
does in EIT spectroscopy.

IV. MULTIPLE SCATTERING OF RDDI IN TRANSMISSION

Next we directly apply the results of γ̃31 in the previous
section from a general cigar-shaped geometry to the trans-
mission property we obtained in Sec. II. Specifically, we
compare the transmission property T of Eq. (12) under all-
order scattering of RDDI to the one under a finite Mth-order
multiple-scattering effect in Eq. (11). With this comparison
shown in Fig. 3, we are able to present the convergence of
multiple scattering of RDDI and uncover the parameter re-
gions in EIT spectroscopy where our perturbative treatment is
most valid.

We first plot T of Eq. (12) in Fig. 3(a). As γ̃31 increases,
the transmission window allows for shorter probe frequency
spreads and thus puts more restrictions on light propagation
and reduces storage efficiency. Larger cooperative linewidth
also broadens the absorption peaks. We have absorbed the
cooperative frequency shifts into δp, which nonetheless can
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FIG. 3. EIT transmission and convergence of multiple scattering
of RDDI. (a) The transmission T near two-photon resonance (inset)
has shorter probe spreads from γ̃31/γ31 = 1 (dotted curve), to 2
(dashed curve), to 5 (solid curve), with Dc = 20, δc = 0, �c = 5γ31,
and γ21/γ31 = 0.001. The absorption peaks become broader at |δp| �
�c as γ̃31 increases. (b) For the case of γ̃31/γ31 = 5 (solid curve),
the multiple scattering of RDDI in TM shows convergence inside
the transparency window and at off resonance in the right and left
panels, respectively, with scattering orders M = 1 (dashed curve), 2
(dash-dotted curve), 3 (dotted curve), and 20 (squares).

also be observable in conventional EIT experiments. Next,
in Fig. 3(b), we further compare the transmission with finite
orders of multiple scattering of RDDI in Eq. (11). A clear
convergence emerges toward a higher order of perturbations,
both near transparency and in the off-resonance regimes.
This demonstrates that our result of transmission T from
Eq. (12) essentially involves all-order scattering of RDDI,
which therefore enables a direct comparison with present
experiments. Meanwhile, close to the transmission valley (ab-
sorption peaks), a divergence shows up, and the perturbation
fails in this region of the EIT spectrum.

Finally, in Fig. 4 we plot the full width at half maximum
(FWHM) of the transparency window as a dependence on
the cooperative linewidth γ̃31 for various optical depths Dc.
As the optical depth increases, this bandwidth decreases, as
expected since in the limit of large �c but �c � √

Dc�, it
becomes [62,63]

FWHM =
√

ln(2)

2

�2
c√

Dc�γ̃31
, (25)

0 10 20 30 40 50 60
0

0.5

1

1.5

2

FIG. 4. FWHM of the EIT transmission window. We plot the
FWHM of the transparency window for Dc = 20 (squares), 40
(diamonds), and 100 (circles), for various cooperative linewidth
broadenings γ̃31. Other parameters of the EIT setup are the same as
in Fig. 3.

which can be fitted by a Gaussian function of the detuning
δp. In contrast, for a finite �c, as the cooperative linewidth
increases, the bandwidth decreases but is saturated for large
Dc. In Fig. 4, we stop the bandwidth calculations at a certain
Dc where Eq. (12) no longer genuinely determines the FWHM
of the transparency regions. Furthermore, we find a scaling
of γ̃ −a

31 with a = 0.34, 0.41, and 0.45 for Dc = 20, 40, and
100, respectively. This presents a significant reduction of the
FWHM of the EIT transmission window in a more optically
thick atomic ensemble.

In contrast, for a Rydberg EIT experiment [12] and the-
ory [64], the transparency is suppressed due to Rydberg
dipole-dipole interactions. This nonlinear interaction results
in an effective photon-photon interaction, which can be
applied in realizing photonic quantum gates and forming
many-body photonic bound states. On the other hand, in EIT
with RDDI here, the transparency does not change signifi-
cantly since no photon-photon interaction is present. What is
significantly modified is the transparency bandwidth, which
is narrowed due to the finite cooperative linewidth. Moreover,
the off-resonance absorption peaks are broadened, which can,
along with the information of decreasing transparency band-
width, further characterize the cooperative effect of RDDI in
EIT.

V. BEYOND THE LOCAL FIELD APPROXIMATION

Here, in the last section of our main results, we release the
local field approximation, where multiple nonlocal scattering
events of RDDI can be envisaged in EIT. In practical exper-
iments for a large optical depth, Kαβ can be of the order of
γ31, and such that a perturbative treatment of Kαβ is only valid
when RDDI is weak in a cold gas with a low density or near
the transparency regions in the EIT scheme. We go beyond
this approximation and proceed from Eqs. (A9) and (A11). We
reevaluate the steady-state solutions still under the condition
of a weak �p, and so we keep only the first order of �p in the
Maxwell-Bloch equations of Eq. (A9).

For the first extension, we include the transverse part of
the field dynamics; we will see later that it is necessary when
RDDI becomes significant. Equation (A9) becomes

(
− i

2kp
∇2

⊥ + ∂

∂z

)
�p(r) = iD�

2L
σ̃13(r), (26)

where ∇2
⊥ denotes the vector Laplacian in the transverse di-

rections of x̂ and ŷ. The above presents a three-dimensional
propagation equation (note that we use r for the field and the
dipole operator) with transverse dynamics, which takes care
of refraction if there is strong RDDI.

The second extension goes to Eq. (A11), where we release
the cross-section average and obtain

0 =
[

iδp − γ31 − i|�c|2
4(δ2 + iγ21)

]
σ̃ α

13 + i
�p(rα )

2

−
N∑

β �=α

Kαβσ̃
β

13, (27)

063711-6



RESONANT DIPOLE-DIPOLE INTERACTIONS IN … PHYSICAL REVIEW A 105, 063711 (2022)

where we have substituted Eq. (B1). From the above, we
further obtain, in discrete forms in space,

iM̂ �σ13 = − ��p

2
, (28)

�σ13 = i

2
M̂−1 ��p, (29)

where �σ13 = [σ13(r1), σ13(r2),..., σ13(rN )], ��p = [�p(r1),
�p(r2),..., �p(rN )], and

M =

⎡
⎢⎢⎢⎢⎢⎣

−A K1,2 K1,3 . . . K1,N

K2,1 −A K2,3 . . . K2,N

K3,1 K3,2 −A . . .
...

...
...

...
. . . KN−1,N

KN,1 . . . . . . KN,N−1 −A

⎤
⎥⎥⎥⎥⎥⎦, (30)

with A = iδp − γ31 − i|�c|2/[4(δ2 + iγ21)], which is also de-
fined in Sec. II. From M̂, we can see that the dipole
operators are induced by or emerge from coupling to nonlocal
fields.

Equations (26) and (29) together describe the propagation
dynamics of a probe field with the effect of RDDI. By com-
bining Eqs. (26) and (29) in the continuous limit, we obtain(

− i

2kp
∇2

⊥ + ∂

∂z

)
�p(r) = −D�

4L

∫
M̂−1(r − r′)

×�p(r′)ρ(r′)dr′, (31)

where ρ(r) is the atomic density. The above results show
that the probe field dynamics can be influenced by RDDI in
both longitudinal and transverse directions. It reduces to con-
ventional EIT in the single-particle picture when Kα,β → 0,
leading to a local field propagation equation dominated simply
by an electric susceptibility χ ∝ A−1.

From Eq. (31), we note that a local field approximation
we apply in perturbative treatments is valid only when the
field is near the transparency or nonresonant regimes, that
is, when the probe field �p(r) at arbitrary positions r is not
significantly attenuated and almost sustains its incident wave-
form at r = 0, i.e., �p(r) ≈ �p(r = 0). Under this condition,
the effect of RDDI on the effective decay rate of the probe
transition is most significant, since the integral in Eq. (31)
goes through all the atoms. On the other hand, when the probe
field is strongly attenuated, according to Eq. (31), no signifi-
cant RDDI manifests in modifying the probe field dynamics.
Therefore, to determine the full EIT spectrum and associ-
ated linewidth of the EIT window, a single quantity of the
effective decay rate is not sufficient owing to this asymmetry
of regimes, especially for an atomic gas with a high optical
density.

We can formally solve Eq. (31) using Laplace transforms
since it has convolution forms between the probe field and
M̂−1. We then obtain (first neglecting the refraction terms and
assuming a homogeneous gas ρ = N/V )

s�̄p(s) − �p(z = 0) = −D�

4L
(N/L)M̄−1(s)�̄p(s), (32)

where F (s) ≡ ∫ ∞
0 f (r)e−srdr and s represents a complex

number as for complex momentum spaces in Laplace trans-

forms of real spatial spaces r and r′. This further gives

�̄p(s) = �p(z = 0)

s + D�
4L (N/L)M̄−1(s)

, (33)

which can be inverse transformed in the complex plane back
to �p(z = L) by

�p(z = L) = 1

2π i

∮ r+iR

r−iR
�̄p(s)esLds. (34)

To further solve the above �p(z = L), we assume again a
perturbative RDDI, such that

M−1 = (−AÎ + K̂ )−1 ≈ −1

A

(
Î + K̂

A

)
, (35)

where K̂ represents the off-diagonal elements in Eq. (30).
Now a weak RDDI can be approximated by a far-field expres-
sion in K (r − r′) → (3�/2)(−ieiξ e−ikp·(r−r′ ) )/ξ . We finally
obtain

�p(z = L)

�p(z = 0)
= 1

2π i

∮
esLds

s − D�
4AL − D�

4AL

(
N

kpL

)( 3�/2
A

)
eas�̄(0, as)

,

(36)

where a is introduced in the Laplace transform of 1/(|r −
r′| + a) to remove the divergence when r → r′ and is in
units of space as a complex length scale to renormalize the
RDDI at divergence, and �̄ is an incomplete gamma function.
The above is a square root of transmission, and the second
term in the denominator of Eq. (36) is exactly the residue of
the complex integral, leading to the EIT transmission [T =
|�p(z = L)/�p(z = 0)|2] without RDDI,

ln

(
�p(z = L)

�p(z = 0)

)
= D�

4A
.

Interestingly, the third term in the denominator of Eq. (36)
shows the RDDI effect leading to multiple residues in the
complex plane, which indicates the failure of expressing the
EIT spectrum in terms of a single effective decay rate. We note
that these multiple scales in decay constants show up even
for the weak RDDI we consider here. In general, the multiple
contributions of collective resonances and decay constants are
most evident in low-dimensional and dense atomic arrays, and
the field propagating through constituent particles cannot be
genuinely described by a typical Beer-Lambert law [49] or
Maxwell-Bloch equation in a macroscopic medium.

VI. DISCUSSION AND CONCLUSION

Generally speaking, RDDIs are universal in all light-matter
interacting systems, which are most prominent in a dense
medium. They are responsible for many intriguing phenom-
ena of super-radiance and subradiance and can be exploited
to significantly enhance the performance of quantum storage
efficiency in EIT under some tailored collective states [65].
Both these cooperative spontaneous emissions emerge from
strong RDDIs, where multiple scattering of light exchanges
between these quantum emitters dominates the dissipation
process of the excited atoms.

This universal effect of RDDI should be observable as
well in EIT media, but a systematic and evidence-based study
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on the collective effect from RDDI has not been reported
yet or fully accounted for in most of the theoretical inves-
tigations. We note that there are two central assumptions
in our theory: weak field excitation and the local field ap-
proximation. The first assumption gives us the lowest level
of hierarchy in the coupled equations, which also is asso-
ciated with the first-order cumulant expansion we apply in
this paper and ignorance of higher-order atom-atom corre-
lations that would be relevant in dense media. The second
assumption allows us to obtain the analytical forms of the
RDDI effect on EIT properties, without which resolving the
RDDI effect would otherwise require the full eigenspectrum
of the system. We think it is the local field approximation
that leads to a dramatic RDDI effect in our theoretical treat-
ments, where the contributions of RDDI throughout the whole
atomic ensemble are included at the local field. Therefore our
predicted RDDI effect here could be overestimated compared
with modern EIT experiments. Furthermore, we elaborate that
a further advanced but computationally exhaustive quantum
Langevin approach may provide a way to get around our
assumptions here and take full account of light propagation,
system dynamics, and atom-atom correlations in the large-N
limit.

For highly efficient EIT-based quantum memory applica-
tions [9,66,67], the atomic system is often prepared to be
elongated along the propagation direction, leading to a high
optical depth for the probe light. In these high-optical-density
experiments, there is no clear observation of the RDDI effect
on EIT spectroscopy, except that in Ref. [9] a mild depen-
dence of the optical depth on the cooperative linewidth is
conjectured in determining the experimental parameters by
fitting EIT spectra and slow light traces. The fitted decay
rate for the probe field transition has been shown to be en-
hanced two to three times as the optical density increases,
which suggests the cooperative effect of RDDI in EIT. As a
comparison with our predictions in Fig. 3, we have γ̃31/γ31 ∼
27 and 4.5 for R⊥ = 25 and 10 μm, respectively, at ρ =
5 × 1010 cm−3 with Dc = 400. This shows the overestima-
tion of our model and quite a deviated range of predicted
collective decay rates owing to different geometries of the
atoms.

To clearly identify the RDDI effect with genuine com-
parisons, a further systematic investigation is needed to (i)
accurately determine the number of atoms and the associated
interacting volume along with its optical density and (ii) ac-
quire a weak enough or single-photon source to serve as a
probe field excitation. This way, our theory here can provide a
direct comparison with EIT experiments to potentially unravel
the effect of the RDDI on the line narrowing of the transmis-
sion window. It seems that the mild optical depth and standard
atomic density in our theoretical consideration in Figs. 3 and 4
already suggest a clear signature of RDDI. We attribute this
clear signature to our perturbative treatments using the local
field approximation. A complexity can arise when this approx-
imation is released as we have demonstrated in Sec. V, where
multiple collective resonances and decay rates may participate
in determining EIT transmission. We also note that the role
of atom-atom correlations from RDDI can be crucial in light
scattering of dense atoms [42,56], and they should as well
be non-negligible in the large-N and high-optical-depth sys-

tem we consider here. To include this effect of light-induced
atom-atom correlations which are not accounted for in our
theoretical treatment, either the next-order cumulants can be
included or a quantum Langevin equation in positive-P phase
space [52,68,69] can be used to go beyond our perturbative
treatments here.

As for Langevin equations on spontaneous emissions [26],
quantum fluctuations or quantum noises play a role in initi-
ating the dissipations of the excited atoms. In EIT, since the
probe field intensity is under the normal order of field opera-
tors, it is commonly believed that the quantum fluctuations do
not play a role in the probe field transmission [3,4]. We note
here that one of the crucial assumptions in previous theoretical
methods is the weak probe field approximation. Under this
perturbation of the probe fields, up to single atomic excitation
is allowed, and the collective spin excitation can form and lead
to the popular picture of the dark-state polariton. This picture
sustains the bosonic commutation relations of the quasipar-
ticles in the large-N limit and can explain some essential
features of quantum storage and retrieval of single-photon
propagation in EIT media. We emphasize that this assump-
tion can be easily broken when the light-matter interacting
system goes beyond the single-excitation limit when multiple
excitations are present. When we have M atomic excitations
in the atomic ensemble with M � N , naturally we face an
exponential growth in the number of states in the dynami-
cal Hilbert space of the order of CN

M ∼ O(NM ) if M � N .
This indicates a dilemma and challenge we would encounter
in any quantum systems when the full capacity of light-
matter interactions is considered in describing their system
dynamics.

A relevant platform which deviates from the conventional
EIT setup and has distinct EIT properties is the Rydberg
EIT scheme [11–14,70,71]. In this platform, which utilizes
the high-lying Rydberg excited states, significant nonlinear
effects of nonlocal dipole-dipole interactions emerge and re-
duce the performance of the probe field transparency. This
interaction leads to the dipole blockade that forbids Rydberg
excitations within the blockade radius, along with a signif-
icant energy shift away from the conventional transparency
condition of two-photon resonance. Here, instead, we inves-
tigate the RDDI effect in the conventional EIT setup, where
the dipole-dipole interactions are induced from the light ex-
changes between the atomic levels of the ground and the first
excited states, even though RDDIs by nature have the feature
of nonlocal interaction, similar to the Rydberg EIT scheme.
By contrast, the dipole-dipole interactions in Rydberg EIT
media directly result from the Rydberg excited levels. The
theory of Rydberg EIT takes the strategy of a single-particle
picture with a mean-field average of the Rydberg interactions,
which results in an effective nonlocal and nonlinear interac-
tion in the EIT spectrum. Two recent studies also present a
demand for a more complete understanding of the Rydberg
EIT system [72,73], where radiation trapping of scattered
photons [72] or emerging nontrivial photon correlations [73]
might be crucial to fill the gap between the mean-field models
and experiments.

In conclusion, we have theoretically investigated the role
of RDDI in EIT properties. We have predicted the ef-
fective cooperative linewidth and frequency shift in EIT
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transmission from the multiple scattering of RDDI, which
provides a direct comparison with experiment on the coopera-
tive phenomena in EIT. The allowed transparent probe spread
in the EIT transmission window is reduced due to a finite
cooperative linewidth, which makes light storage less efficient
in EIT-based quantum memory application. The phenomenon
of RDDI in EIT should be observable in conventional EIT
experiments in atoms with a moderate atomic density and
optical depth. Finally, we note that our work here is just a
starting point of the study of RDDI in EIT. The discrepancy

between the theory and experiment is noted and certainly
deserves further exploration.
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APPENDIX A: MAXWELL-BLOCH EQUATIONS FOR EIT WITH RDDI

In this Appendix, we derive the equations of motion for EIT with cooperative effects in the probe transition. We first define
the slow-varying coherence operators as

σ̃13(z, t ) = 1

Nz

Nz∑
β=1

σ̂
β

13(z, t )eiωpt−ikp·rβ , (A1)

σ̃23(z, t ) = 1

Nz

Nz∑
β=1

σ̂
β

23(z, t )eiωct−ikc·rβ , (A2)

σ̃12(z, t ) = 1

Nz

Nz∑
β=1

σ̂
β

12(z, t )ei�ωt−i�k·rβ , (A3)

where �k = kp − kc and �ω = c|�k|. The same cross-section average is applied for the population operators,

σ̃11 = 1

Nz

Nz∑
β=1

σ̂
β

11(z, t ), σ̃22 = 1

Nz

Nz∑
β=1

σ̂
β

22(z, t ), σ̃33 = 1

Nz

Nz∑
β=1

σ̂
β

33(z, t ).

These cross-grained averages of the slow-varying variables are typical treatments in solving the propagating quantized electric
fields through an atomic medium. Later, for predictions of EIT properties, we shall not encounter the effect from cross-grained
details, which is true since we take N and Nz → ∞. In the following, we will consider only one-body atomic operators in
the dynamically light-matter coupled equations, which truncates the hierarchy of the equations and equivalently neglects small
higher-order multiatom correlations.

In the copropagating frame τ = t − z/c, we obtain the Maxwell-Bloch equations as

d

dτ
σ̃23 = (iδc − γ21 − γ32)σ̃23 + i

�c

2
(σ̃22 − σ̃33) + i

�p

2
σ̃

†
12, (A4)

d

dτ
σ̃13 = (iδp − γ31)σ̃13 + i

�c

2
σ̃12 + i

�p

2
(σ̃11 − σ̃33) − 1

Nz

Nz∑
α=1

N∑
β �=α

Kαβ

(
σ̃ α

11 − σ̃ α
33

)
σ̃

β

13, (A5)

d

dτ
σ̃12 = (iδ2 − γ21)σ̃12 − i

�p

2
σ̃

†
23 + i

�∗
c

2
σ̃13, (A6)

d

dτ
σ̃11 = 2γ31σ̃33 + 2γ21σ̃22 − i

�p

2
σ̃

†
13 + i

�∗
p

2
σ̃13 + 1

Nz

Nz∑
α=1

N∑
β �=α

[
Kαβ

(
σ̃ α

31σ̃
β

13

) + K∗
αβ

(
σ̃

β

31σ̃
α
13

)]
, (A7)

d

dτ
σ̃33 = −γ3σ̃33 + i

�p

2
σ̃

†
13 − i

�∗
p

2
σ̃13 + i

�c

2
σ̃

†
23 − i

�∗
c

2
σ̃23 − 1

Nz

Nz∑
α=1

N∑
β �=α

[
Kαβ

(
σ̃ α

31σ̃
β

13

) + K∗
αβ

(
σ̃

β

31σ̃
α
13

)]
, (A8)

d

dz
�p = iD�

2L
σ̃13, (A9)

where Kαβ ≡ (Fαβ + i2Gαβ )e−ikp·rαβ /2 [30]. The slow-
varying atomic operators, not the cross-grained ones, are
denoted as σ̃ β

μν , and, for example, σ̃
β

13 = σ̂
β

13eiωpt−ikp·rβ .
The optical depth is D ≡ ρσL, and γ3 = 2γ31 + 2γ32. The
two-photon detuning is δ2 = δp − δc. The RDDI in the

probe transition modifies the transition coherence σ̃13 and
redistributes the populations of σ̃11 and σ̃33 through multiatom
correlations.

In this �-type atomic system, we assume that all N atoms
are initially prepared in |1〉. In the limit of a weak probe
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field, which corresponds to a linear dependence of �p in
the coupled equations, we have σ̃11 = 1, σ̃22 = σ̃33 = 0, and
σ̃23 = 0. The relevant equations for atomic coherences (with
implicit spatial dependence of z) are

d

dτ
σ̃12 ≈ (iδ2 − γ21)σ̃12 + i

�∗
c

2
σ̃13, (A10)

d

dτ
σ̃13 ≈ (iδp − γ31)σ̃13 + i

�c

2
σ̃12 + i

�p

2

− 1

Nz

Nz∑
α=1

N∑
β �=α

Kαβ σ̃
β

13. (A11)

APPENDIX B: STEADY-STATE SOLUTIONS

Here, we proceed to find the steady-state solutions of the
coupled equations in Appendix A and present how the effect
of the RDDI modifies the EIT spectrum. The steady-state
solution of the ground-state coherence from Eq. (A10) gives

σ̃12 = −�∗
c/2

δ2 + iγ21
σ̃13. (B1)

We then substitute σ̃12 from the above in Eq. (A11), and in
the zeroth order of Kαβ , for a real constant �c, we derive the
coherence of the probe transition (now retrieving the spatial
dependence for clarity)

σ̃
(0)
13 (z) = −i�p(z)/2

iδp − γ31 − i�2
c/4

δ2+iγ21

≡ −i�p(z)/2

A
, (B2)

which is proportional to the electric field susceptibility in con-
ventional EIT theory without cooperative effects. We define A
above for later concise representation of the cooperative effect
on the linewidth of the EIT spectrum.

Next for the first-order perturbation of Kαβ , we apply the
zeroth-order results of Eq. (B2) to Eq. (A11) and obtain

σ̃
(1)
13 (z) = −i�p(z)/2

A
+ 1

ANz

Nz∑
α=1

N∑
β �=α

Kαβ σ̃
β,(0)
13 (rβ ), (B3)

where a coupling between the atomic coherences at z and
other positions rβ �= rα appears due to RDDI. Equation (B3)
essentially describes nonlocal interactions of the fields. We
proceed to apply the local field approximation to Eq. (B3) and
obtain

σ̃
(1)
13 (z) = −i�p(z)/2

A
+ fC

A

−i�p(z)/2

A
, (B4)

where fC = N−1
z

∑Nz

α=1

∑N
β �=α Kαβ denotes the cooperative

dipole-dipole interactions between the cross-grained region
and all the other atoms in the ensemble. We calculate the
leading order of fC in the main text, which is independent of
the cross-grained region and is cooperatively enhanced due to
the involvement of all N atoms of the medium.

From light propagation of Eq. (A9) in the Maxwell-Bloch
equations, we replace the above σ̃13 with σ̃

(1)
13 (z) of Eq. (B4),

and �p(L) becomes

ln

(
�p(L)

�p(0)

)
= D�

4

(
1

A
+ fC

A2

)
≈ D�

4

1

A − fC
, (B5)

where the approximate form in the above is valid when | fC | �
|A|, and it suggests that there are effective δ̃(1)

p and γ̃
(1)

31 in A,
which are

δ̃(1)
p = δp − Im[ fC], γ̃

(1)
31 = γ31 + Re[ fC]. (B6)

These represent a cooperative frequency shift in δp and
linewidth broadening (larger than γ31), respectively, and their
superscripts denote the single scattering event of RDDI.

To account for the multiple-scattering effect in EIT theory,
similar to the treatment of coherent scattering of two-
level atoms [74–76], we obtain the steady-state solutions of
Eq. (A11) by considering a second-order perturbation, which
reads

0 = Aσ̃
(2)
13 + i�p

2
− fC σ̃

(1)
13 . (B7)

From the above and using the result of σ̃
(1)
13 , we have

σ̃
(2)
13 = −i�p

2

[
1

A
+ fC

A2
+ f 2

C

A3

]
. (B8)

Again from Eq. (A9), we obtain the output field,

ln

(
�p(L)

�p(0)

)
= D�

4L

∫ L

0
dz

[
1

A
+ fC

A2
+ f 2

C

A3

]
,

≈ D�

4

1

A − fC
, (B9)

where the approximate form can be derived from the first line
by using Taylor expansion, (1 − x)−1 = ∑

n=0 xn for x < 1.
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