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Simple way to incorporate loss when modeling multimode-entangled-state generation
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We show that the light generated via spontaneous four-wave mixing or parametric down conversion in
multiple, coupled, lossy cavities is a multimode squeezed thermal state. Requiring this state to be the solution of
the Lindblad master equation results in a set of coupled first-order differential equations for the time-dependent
squeezing parameters and thermal photon numbers of the state. The benefit of this semianalytic approach is that
the number of coupled equations scales linearly with the number of modes and is independent of the number
of photons generated. With this analytic form of the state, correlation variances are easily expressed as analytic
functions of the time-dependent mode parameters. Thus, our solution makes it computationally tractable and
relatively straightforward to calculate the generation and evolution of multimode entangled states in multiple
coupled, lossy cavities, even when there are a large number of modes and/or photons.
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I. INTRODUCTION

Multimode squeezed states can be generated via a nonlin-
ear interaction in resonant structures, such as ring resonators
[see Figs. 1(a) and 1(b)] or coupled-resonator optical waveg-
uides (CROWs) in a photonic crystal [see Fig. 1(c)]. They
are a source of continuous-variable (CV) entanglement, since
the quadratures of the photons in different modes in the state
can be correlated. CV entanglement has applications in boson
sampling [1,2], quantum computing [3–5], and CV cluster
states [6–8].

The theoretical generation of multimode squeezed states
via spontaneous four-wave mixing (SFWM) or spontaneous
parametric down conversion (SPDC) has been studied exten-
sively for ring resonators [9], nonlinear waveguides [10,11],
and CROWs [12,13]. Photon loss is an important problem in
these systems, since it can reduce the squeezing and insepara-
bility of the state.

Loss in ring resonators and waveguides due to photon
scattering can be handled by introducing reservoir modes
that photons can couple into [9,14]. The waveguide-reservoir
coupling parameters can be estimated with phenomenological
values taken from experiment. In contrast, loss in CROWs or
coupled cavities [see Fig. 1(d)] can be handled intrinsically
by calculating the complex frequencies of the CROW Bloch
modes or cavity modes [12,13]. In this approach, the evolution
in these lossy systems is expressed as the nonunitary evolu-
tion of the reduced density operator of the generated light,
obtained from the solution of the Lindblad master equation.
This is the approach that we use in this paper.

Before discussing our approach, we present in Fig. 1 four
different lossy coupled-cavity structures in which our theo-
retical method can be used to determine the quantum state
of light generated via SFWM or SPDC. In Fig. 1(a), a ring
resonator coupled to a waveguide is shown. The pump pulse
is injected into the straight waveguide; it then couples into

*colin.vendromin@queensu.ca

the ring, where it generates multimode entangled light via
SFWM or SPDC in the multiple, lossy modes of the ring.
In Fig. 1(b) a series of three coupled rings is shown. This
structure allows for the generation and propagation of the
multimode state in the coupled rings. Figure 1(c) shows a
CROW in a photonic crystal. The pump pulse propagates in
a set of Bloch modes of the CROW and generates signal
and idler photons as it propagates. Lastly, Fig. 1(d) shows
a three-mode cavity coupled to a waveguide in a photonic
crystal. The state is predominantly generated inside the cavity
and couples out into the waveguide.

FIG. 1. Schematics of structures of potential interest. The thick
arrow indicates where the pump field is injected. (a) Ring resonator
coupled to a waveguide. (b) Series of coupled ring resonators coupled
to an input and output waveguide. The thin black arrows in panels
(a) and (b) indicate the direction of the field components at the
coupling points. (c) CROW made by periodically removing air holes
(shown as white circles) along a row in the crystal. (d) Three high-Q
cavities coupled to a waveguide.
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In this paper, we prove that the density operator for en-
tangled light generated in multiple lossy modes via SFWM
or SPDC takes the form of a multimode squeezed thermal
state (MSTS), where the thermal part of the state captures the
effects of photon loss. The loss can be handled either phe-
nomenologically or intrinsically, depending on the structure.
For M modes, we derive a set of 3M coupled first-order dif-
ferential equations that provide the complete evolution of the
squeezing parameters and thermal photon numbers in the den-
sity operator. The number of equations is independent of the
number of generated photons which is generally many fewer
equations than must be solved when using numerical methods
that rely on Fock states [15], since in those methods the
number of equations can be as large as (M + N )![M!N!]−1,
where N is the total photon number.

Our solution of the Lindblad master equation applies to
the discrete modes of a structure, for example, the modes of
the rings in Figs. 1(a) and 1(b), and the Bloch modes of the
CROW in Fig. 1(c). Our solution can also be applied to the
structure in Fig. 1(d) as long as the modes are discretized (e.g.,
by using periodic boundary conditions).

In the limit that the modes are lossless, our for-
malism reproduces the results for a multimode squeezed
vacuum state given by Quesada et al. [16]. Also, in the case
of only one or two lossy modes, our multimode formalism
reproduces the results of previous work [17–19].

The rest of the paper is organized as follows. In Sec. II
we define the lossy modes of a structure, called quasimodes.
In Sec. III we present the nonlinear Hamiltonian for SFWM,
and the Lindblad master equation in the basis of quasi-
modes. In Sec. IV we show that the analytic solution to the
Lindblad master equation is the density operator for a mul-
timode squeezed thermal state, and obtain a set of coupled
first-order differential equations for the squeezing amplitudes,
squeezing phases, and thermal photon numbers. In Sec. V we
give expressions for the correlation variance and the expec-
tation value of the photon number operator. In Sec. VI we
show that in the limit when the modes are lossless our coupled
equations describe a squeezed vacuum state that agrees with
other work, and that they produce results that are consistent
with previous work on single- and two-mode squeezed states.
In Sec. VII we present our results from solving the coupled
differential equations for a squeezing process in the Bloch
modes of a four-cavity CROW. Finally, in Sec. VIII we con-
clude. Additionally, there are three appendices. In Appendix A
we derive the Takagi factorization, starting from the sym-
metric singular value decomposition (SVD). In Appendix B
we give the details on deriving the coupled equations for the
squeezing process, and in Appendix C we discuss how to
numerically solve them for a general system initially in the
vacuum state.

II. QUASIMODES

The positive frequency part of the electric field in a lossy
mode m takes the form

Ẽ
(+)
m (r, t ) = Ñm(r)e−iω̃mt , (1)

where Ñm(r) is the spatial profile of the mode and we define
ω̃m = ωm − iγm the complex frequency with real part ωm,

and the imaginary part γm quantifies the energy leakage. The
spatial profile solves the Helmholtz equation

∇ × ∇ × Ñm(r) − ω̃2
m

c2
ε(r)Ñm(r) = 0, (2)

where ε(r) is the relative dielectric function of the structure.
Throughout this paper we refer to the solutions of Eq. (2)
as quasimodes [20], and we assume the quasimodes are or-
thonormal in the following sense:∫

d3rε(r)Ñ
∗
m(r) · Ñl (r) = δml . (3)

The orthogonality of the modes is strictly obeyed if there is
symmetry in the structure (e.g., rotational or translational).
For example, the Bloch modes of the CROW in Fig. 1(c) are
orthogonal due to the translational symmetry of the CROW,
and the modes of the ring resonator are orthogonal due to the
rotational symmetry of the ring. In structures that lack sym-
metry, such as the cavity coupled to a waveguide in Fig. 1(d),
the orthonormality in Eq. (3) is not generally strictly obeyed.
However, modes that are separated in frequency by more than
their linewidths will be very nearly orthogonal [21]. There-
fore, in what follows, we will assume mode orthogonality.

In the next section we present a quantized theory of sponta-
neous four-wave mixing and the Lindblad master equation in
the basis of these quasimodes.

III. THE LINDBLAD MASTER EQUATION FOR A
MULTIMODE LOSSY STRUCTURE

Before discussing the solution to the Lindblad master
equation for multiple lossy modes, we present the system
Hamiltonian in the undepleted pump approximation and the
Lindblad master equation that we reference throughout the
paper.

In a lossy dielectric structure, a discrete basis of orthogonal
quasimodes can be used to construct the system Hamiltonian

H = HL + HNL, (4)

where the linear Hamiltonian in the basis of the quasimodes is

HL =
∑

m

h̄ω̃mb†
mbm, (5)

where b†
m and bm are the creation and annihilation operators

for photons in the mth quasimode satisfying the standard
commutation relation

[bm, b†
l ] = δml . (6)

Now we include the SFWM nonlinear interaction where
two pump photons p1 and p2 are annihilated to create a pair of
signal and idler photons m and l . The nonlinear Hamiltonian
in the basis of the quasimodes is [22]

HNL =
∑

m,l,p1,p2

Gml p1 p2 b†
mb†

l bp1 bp2 + H.c., (7)
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where

Gml p1 p2 ≡ 9h̄2

16ε0

√
ωmωlωp1ωp2

∑
i, j,k,h

∫
d3rχ (3)

i jkh(r)

× Ñ∗
mi(r)Ñ∗

l j (r)Ñp1k (r)Ñp2h(r) (8)

is the effective nonlinear parameter that depends on the spatial
overlap of the quasimodes Ñm(r). The subscripts i, j, k, and
h label the Cartesian components of the electric field and
the medium nonlinear tensor χ (3). In deriving this result we
have assumed that the imaginary parts of the frequencies are
small, such that we can neglect them under the square root, so
that

√
ω̃m ≈ √

ωm. This is valid for modes that have a quality
factor on the order of 103 or higher. For a CROW studied in
previous work [23], it was shown that the quality factors of
the Bloch modes varied from approximately 104 to 103. The
relative dielectric function does not appear in HNL, because
we have constructed it using the electric fields. If we used the
displacement fields, then the relative dielectric function would
appear in the nonlinear parameter in Eq. (8).

The dynamics of the density operator ρ for the pump,
signal, and idler light can be modeled using the Lindblad
master equation [24]

dρ

dt
= − i

h̄
[H, ρ] +

∑
m

γm(2bmρb†
m − b†

mbmρ − ρb†
mbm),

(9)

where H is the Hermitian part of the Hamiltonian in Eq. (4),
given by

H =
∑

m

h̄ωmb†
mbm +

∑
m,l,p1,p2

Gml p1 p2 b†
mb†

l bp1 bp2 + H.c.

(10)

General expressions for the Hamiltonian and Lindblad master
equation, that are applicable to any lossy structure, can be
derived using a set of nonorthogonal quasimodes [25]. The
extension from the orthogonal to the nonorthogonal case is
not straightforward. All derivations, however, in this paper are
done assuming the quasimodes are orthogonal according to
Eq. (3).

Restrictions on the pump field and nonlinear parameter

The Hamiltonian presented in Eq. (10) is valid for a general
pump field with a quantum description. However, since we
are concerned with generating squeezed states, we let the
pump be a classical field and make the undepleted pump
approximation. Furthermore, we restrict our analysis to pump
fields that can be factored into a function of space multiplied
by a function of time. These two restrictions on the pump
are shown in Sec. IV to be necessary in order to derive our
solution to the Lindblad master equation.

To make the undepleted pump approximation, we let the
classical pump field be represented by a lossy multimode
coherent state |α(t )〉, defined as a product of single-mode
coherent states |αp(t )〉

|α(t )〉 ≡
∏

p

|αp(t )〉, (11)

where the single-mode coherent states are defined as

|αp(t )〉 = exp(αpe−iω̃pt b†
p − H.c.)|vac〉. (12)

For a mode p with a frequency in the pump bandwidth
we have

bp|α(t )〉 = αpe−iω̃pt |α(t )〉, (13)

where αp is the pump amplitude in the pth mode. The average
total photon number for the pump is

〈α(t )|
∑

p

b†
pbp|α(t )〉 =

∑
p

|αp|2e−2γpt . (14)

To obtain the dynamics of the generated light only, the co-
herent state of the pump is traced out from the Lindblad master
equation in Eq. (9). This amounts to replacing the total density
operator with the reduced density operator 〈α(t )|ρ(t )|α(t )〉
and replacing the nonlinear Hamiltonian in Eq. (7) with its
form in the undepleted pump approximation [26], given by

HNL =
∑

m,l,p1,p2

Gml p1 p2αp1αp2 e−i(ω̃p1 +ω̃p2 )t b†
mb†

l + H.c., (15)

where the pump operators bp1 and bp2 were replaced with
the expectation value using the coherent state. We now make
the crucial assumption that the pump is in a single mode P.
Putting p1 = p2 ≡ P into Eq. (15), we obtain

HNL = α2(t )
∑
m,l

GmlPPb†
mb†

l + H.c., (16)

where

α(t ) = αPe−iω̃Pt (17)

is the time-dependent pump amplitude. For example in the
CROW in Fig. 1(c), this assumption corresponds to the pump
being in a single Bloch mode. For some systems, however, this
assumption can be relaxed. If, for example, one were to take
a Gaussian pump pulse that was normal to the surface of the
CROW (as was done in Ref. [12]), then the pump would be in
a continuum of free-space modes. However, if the transverse
profile of the pump inside the crystal slab does not depend on
frequency, then only a single pump mode is important to the
nonlinear interaction. Another example is where one consid-
ers a pulsed pump in the continuum of modes of the channel
waveguide in Fig. 1(a). If the duration of the pump pulse in
the channel is much longer than the ring round-trip time, then
the pump fits mostly into a single mode of the ring (as we have
shown in Ref. [27]). Since we neglect the nonlinear interaction
in the channel and only consider generation in the ring, then
only a single pump mode is crucial to the nonlinear interaction
in the ring. In both of the last two examples we can replace
the constant pump amplitude αP in Eq. (17) with a slowly
varying temporal envelope αP(t ). The crucial point is that the
nonlinear Hamiltonian must take the form in Eq. (16) in order
to derive our solution to the Lindblad master equation.

Note that, although we are using the undepleted pump
approximation, this formalism does include linear pump loss,
through the imaginary parts of the pump mode frequencies.
Note also that one can easily adapt this formalism for SPDC,
and all the results below will follow, by just replacing α(t )2

with a single pump amplitude α(t ) and using the nonlinear
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parameter χ (2) for a second-order nonlinear process [12] in
Eq. (16) instead.

In the next section we derive a semianalytic solution to
the Lindblad master equation for the Hamiltonian given by
Eqs. (4) and (16).

IV. ANALYTIC SOLUTION TO THE LINDBLAD MASTER
EQUATION

In previous work we studied squeezed light generation in
two-mode lossy cavities. We showed that the density operator
for the generated light in the cavity is a two-mode squeezed
thermal state for all time [19]. In this paper we show that for
a structure with many lossy quasimodes, the density operator
for the generated light is the MSTS:

ρ(t ) = S(t )ρth(t )S†(t ). (18)

Here, S(t ) is the unitary multimode squeezing operator given
by [28]

S(t ) = exp

(
1

2

∑
m,l

zml (t )b†
mb†

l − H.c.

)
, (19)

where zml (t ) are the elements of the complex symmetric
squeezing matrix z(t ). The multimode thermal state ρth(t ) is
a product of single-mode thermal states in each mode [17],
such that

ρth(t ) =
∏

m

1

1 + nm(t )

(
nm(t )

1 + nm(t )

)b†
mbm

, (20)

where nm(t ) is defined as the average thermal photon number
for the mth mode. We stress that the thermal photons are not
related to actual thermal effects, but rather capture the process
of photon loss. The presence of nm(t ) is due to a scattering
process that breaks the entanglement between the generated
signal and idler photon pairs. At this point the matrix z(t ) and
functions nm(t ) are unknown functions of time; in Secs. IV A
and IV C we will derive equations of motion for them.

To show that the MSTS in Eq. (18) is the solution to
the Lindblad master equation in Eq. (9), we require that the
equality

I = ρ
−1/2
th (t )S†(t )ρ(t )S(t )ρ−1/2

th (t ) (21)

is satisfied for all times, where I is the identity operator.
Taking the time derivative of Eq. (21), it can be shown that

0 = −ρ
−1/2
th S† dS

dt
ρ

1/2
th + ρ

1/2
th S† dS

dt
ρ

−1/2
th

+ ρ
−1/2
th S† dρ

dt
Sρ

−1/2
th + 2

dρ
−1/2
th

dt
ρ

1/2
th , (22)

where we drop the time dependence for convenience.
The majority of the rest of this section is devoted to sim-

plifying the four terms on the right-hand side of Eq. (22).
Let the argument of the exponential squeezing operator be

σ ≡ 1

2

∑
m,l

zmlb
†
mb†

l − H.c., (23)

such that S = exp(σ ) and S† = exp(−σ ). In order to simplify
Eq. (22) we need to know the time derivative of the squeezing

operator of Eq. (19). This is not straightforward since σ does
not commute with its time derivative. The derivative of the
squeezing operator can be written as

dS

dt
= d

dt

(
1 + σ + σ 2

2!
+ σ 3

3!
+ . . .

)

=
∞∑

n=0

∞∑
k=0

σ nσ̇ σ k

(n + k + 1)!
, (24)

where σ̇ ≡ dσ/dt . The sum in the last line of Eq. (24) has the
integral representation

∞∑
n=0

∞∑
k=0

σ nσ̇ σ k

(n + k + 1)!
=

∫ 1

0
dye(1−y)σ σ̇eyσ . (25)

To prove this, we expand the exponentials in the integral in a
series∫ 1

0
dye(1−y)σ σ̇eyσ =

∞∑
n=0

∞∑
k=0

σ nσ̇ σ k

n!k!

∫ 1

0
dy(1 − y)nyk

=
∞∑

n=0

∞∑
k=0

σ nσ̇ σ k

(n + k + 1)!
, (26)

where the last line follows from the Euler integral of the first
kind: ∫ 1

0
dy(1 − y)nyk = n!k!

(n + k + 1)!
. (27)

Thus, using Eqs. (25) into (24) we obtain

dS

dt
=

∫ 1

0
dye(1−y)σ σ̇eyσ . (28)

Using the well-known Baker-Campbell-Hausdorff formula
[29] on the integrand in Eq. (28) and multiplying the
equation by S† = exp(−σ ) from the left, we obtain

S† dS

dt
=

∞∑
k=0

(−1)k

(k + 1)!
Sk, (29)

where the terms Sk can be obtained recursively from

Sk+1 = [σ,Sk], (30)

for k = 0, 1, . . ., where

S0 ≡ σ̇ . (31)

Each σ or σ̇ that appears in Eqs. (30) or (31) involves a double
sum over the quasimodes [see Eq. (23)]. Thus, calculating
the k > 0 terms of Sk becomes intractable for multiple modes
since each term has 2(k + 1) sums. However, by introducing a
new Schmidt basis via a Takagi factorization of HNL, in which
the squeezing operator is diagonal, we are able to calculate
the terms Sk and show that the sum in Eq. (29) converges even
for the case of a multimode squeezing operator [see Eq. (50)].
In the next subsection we introduce this new Schmidt basis.

A. The Schmidt basis and the diagonal multimode
squeezing operator

In this subsection we diagonalize the nonlinear
Hamiltonian in Eq. (16) and the multimode squeezing
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operator in Eq. (19) so that we can simplify the four terms
in Eq. (22) and prove that the MSTS is the solution to the
Lindblad master equation.

We start by performing a Takagi factorization of the nonlin-
ear parameter G in HNL. The Takagi factorization decomposes
the complex symmetric square matrix G into the form

G = U
U T, (32)

where 
 = diag(λ1, λ2, . . .) is a diagonal matrix with com-
plex entries, U is a unitary matrix with U †U = 1, and U T

is the transpose of U . The Takagi factorization is a special
case of symmetric SVD [30]. In Appendix A we show that
the diagonal matrix 
 from the Takagi factorization is just a
scaled version of the matrix of singular values obtained from
the symmetric SVD.

Putting Eq. (32) into Eq. (16) we obtain the diagonalized
nonlinear Hamiltonian

HNL = α2(t )
∑

μ

λμB†2
μ + H.c., (33)

where λμ (μ = 1, 2, . . .) are the diagonal entries of 
, and we
define the new creation and annihilation Schmidt operators

B†
μ ≡

∑
m

Umμb†
m, (34)

Bμ ≡
∑

m

U ∗
μmbm, (35)

that have the standard commutation relation

[Bμ, B†
ν] = δμν (36)

due to the orthogonality of the basis (
∑

m U ∗
μmUmν = δμν ). We

call the Bμ Schmidt operators, since when there is no loss they
give the Schmidt decomposition of the multimode squeezed
state. The inverse transformation is

bm =
∑

μ

UmμBμ. (37)

It is clear now why we have to assume the pump is separa-
ble into a spatial and temporal part [see HNL in Eq. (16)]. This
makes the Schmidt mode basis independent of time. Other-
wise, a new Takagi factorization would have to be done at each
time and the operators Bμ would become time dependent. In
practice one calculates the nonlinear parameters G for a given
structure by first calculating the quasimodes of the structure
using a method such as finite-difference time domain and
then calculating the spatial overlap given in Eq. (8). Then one
performs the Takagi factorization of G to obtain the matrices
U and 
.

We now make the ansatz for the squeezing parameter ma-
trix z(t ),

z(t ) = Ur(t )eiφ(t )U T, (38)

where r(t ) and φ(t ) are real diagonal matrices contain-
ing the squeezing amplitudes and squeezing phases of the
Schmidt modes, that is, r(t ) = diag(r1(t ), r2(t ), . . .) and
φ(t ) = diag(φ1(t ), φ2(t ), . . .). Putting Eq. (38) into Eq. (19),

we obtain the diagonal multimode squeezing operator

S(t ) =
∏
μ

Sμ(t ), (39)

where Sμ(t ) is the single mode squeezing operator for the μth
Schmidt mode, given by

Sμ(t ) ≡ exp

(
1

2
rμ(t )eiφμ(t )B†2

μ − H.c.

)
. (40)

We show in Sec. IV C that this is the correct form of the
multimode squeezing operator, because when we impose this
form, we can derive equations for the rμ(t ) and φμ(t ) [see
Eqs. (71) and (72)] that describe a MSTS that is a solution
to the Lindblad master equation. Note, one can obtain the
squeezing matrix in the quasimode basis z(t ), after solving
the equations for the rμ(t ) and φμ(t ) and putting them into
Eq. (38).

Before moving to the next subsection, where we take the
time derivative of S(t ), we present the squeezing transforma-
tion for the Bμ and bm operators. These transformations are
necessary when squeezing the terms in Eq. (22). Using the
squeezing operator in Eq. (39), we obtain

S†BμS = S†
μBμSμ

= cosh(rμ)Bμ − eiφμ sinh(rμ)B†
μ, (41)

where the time dependence is dropped for convenience.
All other squeezing transformations involving products of
Schmidt operators (such as BμBν) can be derived from
Eq. (41) and the fact that different Schmidt operators com-
mute. The squeezing transformation of the bm operators is
derived with the help of the inverse transformation in Eq. (37).
For the operator bm, we obtain

S†bmS =
∑

μ

UmμS†
μBμSμ. (42)

B. The time derivative of the multimode squeezing operator

In this subsection we simplify the first two terms in Eq. (22)
that involve the derivative of the squeezing operator. We show
that using the diagonal squeezing operator in Eq. (39), we can
calculate the sum in Eq. (29).

Using Eq. (39), along with the fact that the Sμ commute and
that S†

μSμ = I , the left-hand side of Eq. (29) can be written as

S† dS

dt
=

∑
μ

S†
μ

dSμ

dt
. (43)

Each term in the sum in Eq. (43) can be expanded using the
right-hand side of Eq. (29):

S†
μ

dSμ

dt
=

∞∑
k=0

(−1)k

(k + 1)!
Skμ. (44)

Putting Eq. (44) into Eq. (43), we obtain

S† dS

dt
=

∑
μ

∞∑
k=0

(−1)k

(k + 1)!
Skμ, (45)
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where the terms Skμ in Eq. (45) can be obtained recursively
from

Sk+1μ = [σμ,Skμ] (46)

for k = 0, 1, . . ., where the k = 0 term is defined as

S0μ ≡ σ̇μ, (47)

where

σμ ≡ 1
2 rμ exp(iφμ)B†2

μ − H.c. (48)

Since the definition of σμ does not contain sums over
Schmidt modes, the problem is reduced to just evaluating
a series of commutators involving only single mode oper-
ators. This is straightforward to do using the commutation
relation for the Bμ operators. The odd k and even k terms
of the sum are

Skμ =
⎧⎨
⎩

− i
4 (2rμ)k+1φ̇μ(2B†

μBμ + 1), odd k � 1

i
4 (2rμ)k+1φ̇μ

(
eiφμB†2

μ + H.c.
)
, even k � 2.

(49)

Putting σ̇μ and the terms in Eq. (49) into Eq. (45) and sum-
ming over k, we obtain

S† dS

dt
=

∑
μ

(
i

2
sinh2(rμ)

dφμ

dt
(2B†

μBμ + 1)

+
(

1

2

drμ

dt
+ i

4
sinh(2rμ)

dφμ

dt

)
eiφμB†2

μ

−
(

1

2

drμ

dt
− i

4
sinh(2rμ)

dφμ

dt

)
e−iφμB2

μ

)
. (50)

In order to derive Eq. (50) it is necessary that the Schmidt
operators are time independent and have the standard commu-
tator. In the next subsection we put Eq. (50) into Eq. (22) and
derive the set of coupled first-order differential equations for
the squeezing amplitudes (rμ), squeezing phases (φμ), and
thermal photon numbers (nm).

C. Differential equations for the squeezing parameters and
thermal photon numbers

We are now in a position to simplify the four terms in
Eq. (22). To make the derivation clearer we redefine the terms
in Eq. (22) to obtain

0 = T 1 + T 2 + T 3, (51)

where

T 1 ≡ −ρ
−1/2
th S†(z)

dS(z)

dt
ρ

1/2
th + ρ

1/2
th S†(z)

dS(z)

dt
ρ

−1/2
th , (52)

T 2 ≡ ρ
−1/2
th S†(z)

dρ

dt
S(z)ρ−1/2

th , (53)

T 3 ≡ 2
dρ

−1/2
th

dt
ρ

1/2
th . (54)

The transformations involving ρ
±1/2
th in T 1 and T 2 are per-

formed using the identity

ρ
±1/2
th Bμρ

∓1/2
th =

∑
m

U ∗
mμbmx∓1/2

m , (55)

where

xm ≡ nm

1 + nm
. (56)

It is simple to generalize this identity to transformations in-
volving the product of operators, such as ρ

±1/2
th BμBνρ

∓1/2
th .

Our strategy is to reduce T 1, T 2, and T 3 to expres-
sions that are a sum of Schrödinger operators multiplied by
time-dependent coefficients that depend on the squeezing am-
plitudes rμ(t ), squeezing phases φμ(t ), and thermal photon
numbers nm(t ), respectively, as well as their first derivatives.
Then we force these coefficients to be zero, such that Eq. (51)
is satisfied. The result is a set of coupled first-order differential
equations for ṙμ(t ), φ̇μ(t ), and ṅm(t ).

Using Eq. (50) in T 1 and using Eq. (55), we obtain

T 1 =
∑
m,l

(Dmlb
†
mb†

l + D∗
mlbmbl + Fml b

†
mbl ), (57)

where the time-dependent coefficients Dml and Fml are

Dml = xmxl − 1

2
√

xmxl

∑
μ

UmμUlμ(ṙμ + i

2
sinh(2rμ)φ̇μ)eiφμ,

(58)

and

Fml = i
xm − xl√

xmxl

∑
μ

UmμU ∗
lμφ̇μ sinh2(rμ). (59)

Obtaining these coefficients requires many lines of algebra but
it is a straightforward exercise.

In order to derive the equations for ṙμ and φ̇μ, we define
new Schrödinger operators

V̂ml ≡ bmbl + b†
mb†

l , (60)

Ŵml ≡ −ibmbl + ib†
mb†

l , (61)

such that Eq. (57) can be written as

T 1 =
∑
m,l

(ReDmlV̂ml + ImDmlŴml + Fml b
†
mbl ), (62)

where ReDml and ImDml are the real and imaginary
parts of Dml .

Next we write T 2 in terms of the operators V̂ml and Ŵml .
The main calculation in T 2 is the squeezing transformation of
dρ/dt . This is the Lindblad master equation in Eq. (9). The
nonlinear Hamiltonian in the master equation is replaced with
its diagonal form in Eq. (33). The squeezing transformations
are performed using Eq. (42). Then by using Eq. (55), it can
be shown that Eq. (53) simplifies to

T 2 =
∑
m,l

(ReEmlV̂ml + ImEmlŴml + Kml b
†
mbl )

+
∑
μ,ν

�μν cosh(rμ) cosh(rν )
∑

m

UmμU ∗
mνxm

−
∑

μ

�μμ sinh2(rμ), (63)

where

�μν ≡ 2
∑

m

γmU ∗
mμUmν, (64)
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and the time-dependent coefficients Eml and Kml are

Eml =
∑
μ,ν

UmμUlνeiφν cosh(rμ) sinh(rν )

(
− i�μν

xmxl − 1√
xmxl

+ 1

2
�μν

1 + xmxl − 2xm√
xmxl

)

+ i

h̄

xmxl − 1√
xmxl

∑
μ

UmμUlμeiφμ [α2λμe−iφμ cosh2(rμ) + α∗2λ∗
μeiφμ sinh2(rμ)], (65)

Kml =
∑
μ,ν

UmμU ∗
lν cosh(rμ) cosh(rν )

(
i�μν

xm − xl√
xmxl

+ 1

2
�μν

2xmxl − xm − xl√
xmxl

)

+
∑
μ,ν

UmμU ∗
lνei(φμ−φν ) sinh(rμ) sinh(rν )

(
i�∗

μν

xm − xl√
xmxl

+ 1

2
�∗

μν

2 − xm − xl√
xmxl

)

− 2

h̄

xm − xl√
xmxl

∑
μ

UmμU ∗
lμ cosh(rμ) sinh(rμ)(α2λμe−iφμ + α∗2λ∗

μeiφμ ), (66)

where

�μν ≡
∑

m

ωmU ∗
mμUmν . (67)

Since the derivative of the thermal state ρth in Eq. (20) is
easy, T 3 requires no special treatment in order to simplify.
Putting Eq. (20) into Eq. (54) we obtain

T 3 =
∑

m

(
− ẋm

xm
b†

mbm + ẋm

1 − xm

)
. (68)

To form the differential equations for ṙμ and φ̇μ, we set the
sum of the coefficients in front of V̂ml and Ŵml in Eqs. (62) and
(63) to zero. This gives

Re[Dml ] = −Re[Eml ], (69)

Im[Dml ] = −Im[Eml ]. (70)

In Appendix B1, we show that Eq. (69) leads to an equa-
tion for ṙμ and Eq. (70) for φ̇μ. The resulting differential
equations are

ṙμ = 1

ih̄
(α2λμe−iφμ − c.c.) − 1

2

∑
ν,σ

cosh(rν ) sinh(rσ )

×
(

�νσ ei(φσ −φμ )
∑
m,l

−nm+nl+1

nm+nl+1
UmνUlσU ∗

mμU ∗
lμ+ c.c.

)
,

(71)

φ̇μ = 2�μμ − 2

h̄ tanh(2rμ)
(α2λμe−iφμ + c.c.)

+ i

2

∑
ν,σ

cosh(rν ) sinh(rσ )

cosh(rμ) sinh(rμ)

(
�νσ ei(φσ −φμ )

×
∑
m,l

−nm + nl + 1

nm + nl + 1
UmνUlσU ∗

mμU ∗
lμ − c.c.

)
. (72)

In order to obtain an equation for ṅm, the operators b†
mbl

in T 1 and T 2 and b†
mbm in T 3 are expanded in terms of the

Schmidt operator B†
μBν using Eq. (37). This is necessary since

it creates a common operator B†
μBν that is shared between T 1,

T 2, and T 3. Then setting the sum of the coefficients in front

of B†
μBν equal to zero, we show in Appendix B2 that this leads

to the following equation for ṅm:

ṅm = (1 + nm)
∑
ν,σ

UmνU ∗
mσ �∗

νσ ei(φν−φσ ) sinh(rν ) sinh(rσ )

− nm

∑
ν,σ

UmνU ∗
mσ �νσ cosh(rν ) cosh(rσ ). (73)

In order to complete the derivation, we have to show that the
sum of the coefficients in front of the identity operator in T 2
[Eq. (63)] and T 3 [Eq. (68)] is zero. Collecting the appropriate
terms from Eqs. (63) and (68), we obtain

0 =
∑

m

ṅm

1 + nm
−

∑
μ

�μμ sinh2(rμ)

+
∑
μ,ν

�μν cosh(rμ) cosh(rν )
∑

m

UmμU ∗
mν

nm

1 + nm
. (74)

Putting Eq. (73) into Eq. (74) and summing over m, it is easily
shown that the right-hand side is equal to zero, where we use
the fact that

∑
m UmνU ∗

mσ = δνσ , and �∗
μμ = �μμ. This com-

pletes the derivation since we have shown that the coefficients
in front of the operators V̂ml , Ŵml , and B†

μBν and the identity
operator sum to zero.

The key results of this paper are Eqs. (71)–(73), which
describe the time dependence of the squeezing amplitudes,
squeezing phases, and thermal photon numbers of the MSTS.
For a system of M quasimodes, they form a set of 3M coupled
first-order differential equations, which can be easily solved
on a standard PC. The benefit of having these equations is
that once they are solved, we have the time-dependent density
operator of the MSTS and with it we can calculate any ob-
servables such as the correlation variance and photon number.
Note that the number of equations does not depend on the
number of photons at all. In contrast, numerical techniques
for calculating the density operator often require solving a
large number of coupled equations that depend on the photon
number [15]. Therefore our approach can greatly reduce the
number of coupled equations, making it more feasible to study
large, multimode, lossy structures.

We note that the coupled equations as formulated apply
only to a set of discrete modes. If one has a continuum of
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modes, such as for the Bloch modes of a CROW, one needs
to simply discretize the modes by applying the appropriate
(e.g., periodic) boundary conditions. Otherwise, the equa-
tions become a set of coupled integrodifferential equations,
which become difficult to solve computationally without dis-
cretization. In Sec. VII we solve these equations for a CROW
with four cavities, where we use periodic boundary conditions
to quantize the allowed Bloch vectors. In Appendix C we
discuss how to solve Eqs. (71)–(73) when the initial state is
the vacuum state.

In the next section we derive expressions for the expecta-
tion value of the photon number operator and the same-time
correlation variance between different quasimodes using the
MSTS.

V. EXPECTATION VALUES AND THE CORRELATION
VARIANCE

In this section we use the MSTS to evaluate the expectation
value of the quasimode number operator and to calculate the
same-time correlation variance between pairs of quasimodes.
Let Xm(ϕm) and Ym(ϕm) be orthogonal quadrature operators
defined as

Xm(ϕm) = bme−iϕm + b†
meiϕm

2
, (75)

Ym(ϕm) = bme−iϕm − b†
meiϕm

2i
, (76)

where ϕm is an angle in phase space. In order to quantify
the inseparability of the MSTS, the correlation variance [31]
between two quasimodes m and l is defined as

�2
ml (t ) = 〈[�(Xm ± Xl )]

2〉 + 〈[�(Ym ∓ Yl )]
2〉, (77)

where

〈[�(Xm ± Xl )]
2〉 = 〈(Xm ± Xl )

2〉
≡ Tr[ρ(t )(Xm ± Xl )

2], (78)

〈[�(Ym ∓ Yl )]
2〉 = 〈(Ym ∓ Yl )

2〉
≡ Tr[ρ(t )(Ym ∓ Yl )

2] (79)

is defined as the variance of the operator and ρ(t ) is the
density operator for the MSTS. Here we have used the fact
that 〈Xm〉 = 〈Ym〉 = 0. It can be proved [32,33] that the MSTS
is inseparable, and thus contains entanglement, if and only if
�2

ml < 1.
In order to calculate the correlation variances one needs

to know the expectation values 〈b†
mbl〉 and 〈bmbl〉. Using the

Schmidt operators, we obtain

〈b†
mbl〉 =

∑
μ,ν

U ∗
mμUlν〈B†

μBν〉, (80)

〈bmbl〉 =
∑
μ,ν

UmμUlν〈BμBν〉, (81)

where the expectation values of the Schmidt operators are

〈B†
μBν〉 = Tr[ρth(t )S†(t )B†

μBνS(t )], (82)

〈BμBν〉 = Tr[ρth(t )S†(t )BμBνS(t )]. (83)

These can be simplified using the squeezing transformation
in Eq. (41) followed by the thermal state transformation in
Eq. (55). Doing this, Eqs. (80) and (81) become

〈b†
mbl〉 =

∑
μ,ν

[U ∗
mμUlν cosh(rμ) cosh(rν )

+ U ∗
mνUlμ sinh(rμ) sinh(rν )ei(φμ−φν )]ημν

+
∑

μ

U ∗
mμUlμ sinh2(rμ), (84)

〈bmbl〉 = −
∑
μ,ν

(UmμUlν + UmνUlμ) sinh(rμ) cosh(rν )eiφμημν

−
∑

μ

UmμUlμ cosh(rμ) sinh(rμ)eiφμ, (85)

where

ημν (t ) ≡
∑

m

UmμU ∗
mνnm(t ). (86)

The time-dependent expectation value of the photon number
operator for the mth quasimode 〈b†

mbm〉 can be obtained by
letting m = l in Eq. (84). Also, putting Eqs. (84) and (85) into
Eq. (77) one can calculate the time-dependent correlation vari-
ance between any two modes and quantify the inseparability
of the MSTS.

VI. LIMITING CASES AND COMPARISON TO
OTHER WORK

In this section we discuss three limiting cases to our multi-
mode theory presented above and compare the results to other
work. The first limit is when the modes are all lossless, such
that the imaginary part of every quasimode is equal to zero
(γm = 0). In this limit we show that our theory gives a mul-
timode squeezed vacuum state, and show that the squeezing
parameter and squeezing phase we obtain agree with other
work [16]. The second limit we consider is when there is only
a single lossy mode that holds the squeezed light. We show
that in this limit our multimode theory gives a single-mode
squeezed state in agreement with previous work [18]. In the
third limit we allow two lossy modes for the squeezed light
and show that our theory gives a two-mode squeezed thermal
state in agreement with our previous work [19].

A. Lossless modes

If the modes are lossless, then the thermal photon number
nm of each mode is equal to zero and the thermal state in
Eq. (18) gets replaced with the vacuum state |0〉〈0|. Further-
more, the terms proportional to γm are dropped in the Lindblad
master equation, so it becomes the quantum Liouville
equation. Therefore the density operator becomes

ρ(t ) = S(t )|0〉〈0|S†(t ), (87)

which is the density operator for a multimode squeezed
vacuum state. One can determine the squeezing parameter rμ

and squeezing phase φμ for this state by letting γm = 0 in
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Eqs. (71) and (72). Doing this we obtain

ṙμ = 1

ih̄
(α2λμe−iφμ − c.c.), (88)

φ̇μ = 2�μμ − 2(α2λμe−iφμ + c.c.)

h̄ tanh(2rμ)
. (89)

Assuming that the system starts initially in vacuum at t = ti
with rμ(ti ) = 0, the second term in Eq. (89) goes to infinity.
To prevent this we force the numerator to be zero initially and
also at all later times. Thus to obtain our final solution we put

Reα2λμe−iφμ = 0. (90)

Writing α2(t ) = |α(t )|2 exp[iβ(t )] and λμ = |λμ| exp(iθμ),
where β(t ) is a time-dependent phase and θμ is a time-
independent phase, we obtain from Eq. (90) the phase
condition

β(t ) + θμ − φμ(t ) = π/2. (91)

Putting Eq. (91) into Eqs. (88) and (89) and integrating gives

rμ(t ) = 2|λμ|
h̄

∫ t

ti

dt ′|α(t ′)|2, (92)

φμ(t ) = 2(t − ti )�μμ + φμ(ti ). (93)

Therefore the multimode squeezing operator can be written as

S(t ) =
∏
μ

exp

( |λμ|
h̄

rμ(t )e−2i�μμt B†2
μ − H.c.

)
, (94)

where we let φμ(ti ) = 2�μμti. The squeezed vacuum state we
obtain is given by S(t )|0〉. This is the same state obtained
by Quesada et al., following a similar procedure that uses
the Takagi factorization [see Eqs. (204), (237), and (238) in
Ref. [16]]. We note that this state has the same form one
obtains in the weak pump limit (i.e., α � 1) by keeping only
the first-order terms in the Dyson or Magnus expansion of the
evolution operator, a result that is also noted by Quesada et al.
[16]. For lossless modes the expectation values of Eqs. (84)
and (85) become

〈b†
mbl〉 =

∑
μ

U ∗
mμUlμ sinh2(rμ), (95)

〈bmbl〉 = −
∑

μ

UmμUlμ cosh(rμ) sinh(rμ)eiφμ . (96)

These are the same results that were derived by Quesada et al.
[see Eqs. (234) and (235) in Ref. [16]].

B. Lossy single-mode squeezed states

In this subsection we show that for a single lossy mode the
coupled differential equations Eqs. (71)–(73) give a squeezing
amplitude, squeezing phase, and thermal photon number that
agrees with previous work on single-mode squeezed thermal
states [18]. In this case, the Takagi factorization of the non-
linear parameter is trivial since there is only one mode. The

matrix U has only a single entry U11 = 1. The single-mode
squeezing operator can be written as

S[z(t )] = exp

(
1

2
z11(t )b†2

1 − H.c.

)
, (97)

where the single squeezing parameter z11(t ) is given
simply by

z11(t ) = r1(t )eiφ1(t ). (98)

Thus, using Eq. (41) the quasimode and Schmidt operators are
identical, b = B. Only keeping the m = l = μ = ν = 1 terms
in Eqs. (71)–(73) and putting U11 = 1 we obtain

ṙ1 = 2|α|2|λ|
h̄

− 2γ1

2n1 + 1
cosh(r1) sinh(r1), (99)

φ̇1 = 2ω1, (100)

ṅ1 = 2γ1(sinh2(r1) − n1), (101)

where we have used the phase condition in Eq. (91) again
to simplify the equations. These equations are derived for
SFWM, but they can be easily adapted for SPDC. The only
things that need to change are that in Eq. (99) |λ| has to be
redefined for SPDC, and |α|2 becomes |α|. Therefore, the
structure of the equations is unchanged for SPDC. In light of
this, these equations are seen to agree with previous work for
single-mode squeezed states in a lossy cavity [18].

For a single lossy mode, the expectation values in Eqs. (84)
and (85) become

〈b†
1b1〉 = n1 cosh(2r1) + sinh2(r1), (102)

〈b1b1〉 = −(2n1 + 1) cosh(r1) sinh(r1). (103)

These are the same equations that were derived in previous
work [17].

C. Lossy two-mode squeezed states

In this subsection, we show that for two lossy modes the
coupled equations give results that agree with our previous
work on two-mode squeezed states. For two modes, the non-
linear parameter is a 2 × 2 symmetric matrix and its Takagi
factorization is[

0 G12

G12 0

]
= U

[
G12 0
0 G12

]
U T, (104)

where we neglect generation of squeezed light in single modes
by letting G11 = G22 = 0. The unitary matrix U is given by

U = 1

2

[
1 − i 1 + i
1 + i 1 − i

]
, (105)

Using Eq. (38), the squeezing parameter is given by[
0 z12(t )

z12(t ) 0

]
= U

[
r(t )eiφ(t ) 0

0 r(t )eiφ(t )

]
U T, (106)

where z12 ≡ r exp(iφ). There is a single squeezing amplitude
[r(t )] and squeezing phase [φ(t )], but the thermal photon
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numbers for the two modes, n1(t ) and n2(t ), are allowed to be
different. This means that the photon loss rates are different
for each mode. Putting this U into Eqs. (71)–(73) and letting
λ = G12, we obtain

ṙ = 2|α|2|λ|
h̄

− cosh(r) sinh(r)

1 + n1 + n2

× [γ1 + γ2 + (γ1 − γ2)(n2 − n1)], (107)

φ̇ = (ω1 + ω2), (108)

ṅ1 = 2n1[γ2 sinh2(r) − γ1 cosh2(r)] + 2γ2 sinh2(r), (109)

ṅ2 = 2n2[γ1 sinh2(r) − γ2 cosh2(r)] + 2γ1 sinh2(r). (110)

These equations have the same form as those that were de-
rived in our previous work on two-mode squeezed states
[see Eqs. (19)–(22) in Ref. [19]] generated via SPDC.
As mentioned in the previous subsection, we can adapt
Eqs. (107)–(110) for SPDC by replacing |α|2 and λ with |α|
and the nonlinear parameter for SPDC.

VII. RESULTS FOR A FOUR-CAVITY CROW

In this section we present our results from solving the
coupled equations Eqs. (71)–(73) for SFWM in a system of
four coupled cavities. The structure is the CROW in Fig. 1(c),
but we take the structure to have only four cavities and we
enforce periodic boundary conditions at the two ends of the
four-cavity system. Thus, the quasimodes are Bloch modes,
but the allowed Bloch vectors, k, are quantized, such that
there are only four allowed values. Although such boundary
conditions are not physically realizable, we choose this sys-
tem because it is simple and gives analytic expressions for
the complex mode frequencies and the effective nonlinear
parameters. This toy model is intended to demonstrate how
to go about solving the system of equations when there are
more than the two modes that have been modeled in previous
work [19].

To obtain our results we use parameters from a CROW
studied in previous work. The photonic crystal slab that con-
tains the coupled cavities has a refractive index of n = 3.4 and
a second-order refractive index of n2 = 4.5 × 10−18 m2/W,
corresponding to Si at telecom wavelengths [34]. The pho-
tonic crystal is a square lattice with lattice constant, d . The
slab thickness is 0.8d and the air-hole radius is 0.4d . Using
these parameters, with find from finite-difference time do-
main calculations that each individual cavity contains a single
mode at the frequency ω̃0 = (0.305 − i7.71 × 10−6)2πc/d ,
resulting in a quality factor Q0 = 19 800 [23]. The Bloch
modes and their frequencies are obtained using a nearest-
neighbor tight-binding model, where the individual cavity
modes form a basis [13]. The computed frequencies of the
four Bloch modes at kD = {−π/2, 0, π/2, π} are shown in
Table I, where D ≡ 2d is the periodicity of the CROW.
Since the CROW is effectively a one-dimensional system,
we do not consider transverse wave-vector components.
The expression for the CROW dispersion is approximately

TABLE I. Bloch mode wave vectors k and their complex fre-
quencies ω̃k for a CROW with four cavities. Here D ≡ 2d is twice
the lattice spacing d .

μ λμ �μμd/(2πc)

1 1.21 0.304877
2 1.16 0.304999
3 0.742 0.304953
4 0.665 0.305170

given by [12]

ω̃k ≈ ω̃0[1 − β̃1 cos(kD)], (111)

where β̃1 = 9.87 × 10−3 − i1.97 × 10−5 is the complex cou-
pling parameter between individual nearest-neighbor cavity
modes [23]. This expression gives the loss dispersion of the
CROW as well, which can be obtained by −2Imω̃k .

We let the pump be a continuous wave with frequency ωP,
modeled by a coherent state with amplitude

α(t ) = |α|e−iωPt , (112)

where |α|2 is the average pump photon number. The pump
is in the single Bloch mode with wave vector kP = π/(2D)
and frequency ωP = 0.305(2πc/d ). Signal and idler photons
are generated via SFWM into modes with wave vectors k1

and k2, respectively. The effective nonlinear parameter for this
process [see Eq. (8)] has been shown to be approximately
given by [13]

Gk1k2kPkP ≈ G0e−i�kD/2 sinc(M�kD/2)

sinc(�kD/2)
, (113)

where �k ≡ k1 + k2 − 2kP is the phase mismatch between the
different Bloch modes, M is the total number of cavities, and

G0 ≡ h̄2ω2
0χ

(3)
eff

16ε0MVeff
, (114)

where χ
(3)
eff is the effective nonlinear coefficient, and Veff is the

effective mode volume of the individual cavity mode.
Now we perform a Takagi factorization of the nonlinear

parameter in Eq. (113). The resulting diagonal values λμ and
Schmidt mode frequencies �μμ [see Eq. (67)] are shown in
Table II. We note that the λμ do not add to 1, since these are
not the eigenvalues of the density operator. The frequencies
�μμ are all within 0.06% of the pump frequency ωP. This
is due to the dispersion of the Bloch mode frequencies hav-
ing a small bandwidth and choosing the pump to be at the

TABLE II. Diagonal values λμ and Schmidt frequencies �μμ

for the μth Schmidt mode. The four Schmidt modes are obtained
by taking the Takagi factorization of the nonlinear parameter in
Eq. (113).

kD ω̃kd/(2πc)

π 0.308010 − i1.38 × 10−5

±π/2 0.305000 − i7.71 × 10−6

0 0.301990 − i1.63 × 10−6
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center of the band. This will not be the case for a general
structure. As we show below, however, the Schmidt modes
with frequencies that are nearly on resonance with the pump
have larger squeezing amplitudes than those that are off
resonance.

To obtain a particular solution, we initially let the system
be in the vacuum state by setting all the squeezing amplitudes
and thermal photon numbers equal to zero. In Appendix C
we discuss how to solve the coupled equations starting from
the vacuum, particularly how to choose the initial squeezing
phase. At time t = 0 the pump is put into the Bloch mode
kP = π/(2D) and then it generates signal and idler photons
in the Bloch modes k1 and k2, respectively. Using these ini-
tial conditions, we solve Eqs. (71)–(73) numerically using a
Runge-Kutta method (such as the ode45 function in MATLAB).
For four modes it takes on the order of 10 s to solve the
equations using a standard PC.

In what follows, we use tc as our unit of time, where tc is
defined as the time it takes a pulse of light with group velocity
v to propagate the total distance, L, of the coupled-cavity
structure:

tc ≡ L

v
. (115)

For four cavities with a lattice constant of d = 480 nm, the
length of the structure is L = 2.9 μm. If the pulse is centered
at kD = π/2, and assuming linear dispersion in Eq. (111),
then the group velocity of the pulse is approximately v =
c/26.6. Therefore, we obtain tc = 0.25 ps. Additionally, we
define the pumping strength dimensionless parameter,

g ≡ 4G0|α|2tc
h̄

, (116)

which scales the squeezing amplitude in all the Schmidt
modes. In all that follows, we set g = 1/12. This value of
g can be achieved with an average pump photon number
of |α|2 = 4.6 × 107 and an effective mode volume of Veff =
3(μm)3 for the cavity mode with frequency ω̃0. It gives
squeezing amplitudes in the Schmidt modes that are on the
order of 1, while keeping the thermal photon number many
orders of magnitude below the number of photons in
the pump.

We start by considering the Schmidt mode squeezing am-
plitudes in Fig. 2(a). At t = 0 the pump is turned on and the
rμ initially increase linearly with time, where it can be shown
using Eq. (71) that the slope is approximately given by ṙμ ≈
g|λμ|/2 [see also Eq. (C7)]. This is because for short times
the thermal noise and detuning |�μμ − ωP| can be neglected.
The Schmidt modes that are detuned from the pump will have
oscillations in their rμ and an rμ that is smaller than that of the
modes that are on resonance with the pump. The oscillations
exist for Schmidt modes that have a detuning from the pump
frequency that satisfies |�μμ − ωP|tc > g|λμ|/2. Thus, these
oscillations will disappear if we increase the pumping strength
g. If, however, g is small, then the period of the oscillations
is approximately given by π (|�μμ − ωP|tc)−1. For example,
using this expression, the squeezing amplitudes in the μ = 1
and 4 Schmidt modes have periods of approximately 26tc and
19tc, respectively. As time increases, the amplitudes of the

FIG. 2. (a) Squeezing amplitudes rμ and (b) derivatives of the
squeezing phases φ̇μ in the four Schmidt modes of four coupled
cavities. Here tc = 0.25 ps is the time for a light pulse to cross the
length of the structure.

oscillations are dampened due to the intrinsic losses of the
Bloch modes.

Next, we consider the derivative of the Schmidt mode
squeezing phases, φ̇μ, in Fig. 2(b). Initially the derivative is
approximately constant, corresponding to the phases increas-
ing linearly with time. In Appendix C we show that for short
times φ̇μ(t ) ≈ �μμ + ωP. The modes μ = 2 and 3 that are
close to resonance with the pump have an approximately con-
stant phase derivative approaching 2ωP. The detuned modes
μ = 1 and 4 have peaks in their phase derivatives whenever
the squeezing amplitude is close to zero. This is because in
Eq. (72) the term proportional to 1/ tanh(2rμ) is large when
rμ � 1, which causes φ̇μ to increase.

Now, we present the average thermal photon numbers in
the Bloch modes, nk , in Fig. 3(a). At short times t < 10tc
the nk are negligible. The nk do not go above approximately
10 for the pumping strength g = 1/12. The majority of the
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FIG. 3. (a) Thermal photon number nk and (b) average total
photon number in the Bloch modes of four coupled cavities.

thermal noise is generated in the Bloch modes with positive
wave vectors. The nk in the Bloch mode with kD = −π/2 is
only approximately 0.01.

In Fig. 3(b) we calculate the average total photon number
using Eq. (81). There are on the order of approximately 103

total photons generated by the nonlinear process. The ma-
jority are generated in the forward-propagating Bloch mode,
kD = π/2 and π and k = 0. Only approximately 0.1 photons,
on average, are generated in the backward-propagating Bloch
mode, kD = −π/2.

VIII. CONCLUSION

The key finding in this paper is that the solution to the
Lindblad master equation for a set of lossy quasimodes is
the density operator for a multimode squeezed thermal state
[see Eq. (18)]. In order to prove this we introduce an orthog-
onal Schmidt basis via the Takagi factorization in Sec. IV A
to diagonalize the nonlinear Hamiltonian and squeezing

operator. The main result is a set of coupled first-order dif-
ferential equations that the squeezing amplitude, squeezing
phase, and thermal photon numbers must obey in order for
the multimode squeezed thermal state to be a solution [see
Eqs. (71)–(73)].

In order to derive the solution, we make the undepleted
pump approximation on the nonlinear Hamiltonian and as-
sume that the nonlinear parameter is essentially the same
for all pump modes in the pump bandwidth and neglect its
dependence on the pump frequencies (see Sec. III). The latter
assumption is valid for a pump pulse in a waveguide or free
space as long as the pulse is long in duration.

Our theory is applicable to the orthogonal set of discrete
lossy modes in structures, such as ring resonators, coupled-
ring resonators, CROWs, and high-Q cavities coupled to a
waveguide in a photonic crystal (see Fig. 1).

Our results are consistent with previous work done on
single-mode and two-mode squeezed thermal states (see
Refs. [18,19]) as presented in Sec. VI. Also in the limit where
the quasimodes become lossless, our solution reduces to a
multimode squeezed vacuum state, and it agrees with other
work [16] that used a similar approach also using a Takagi
factorization.

In this paper the analytic solution for the quantum state
of light generated via nonlinear processes in M > 2 lossy
modes has been derived. Not only is the solution of the-
oretical importance, it can greatly reduce the number of
coupled differential equations required to solve for the density
operator. One alternative way to determine the density oper-
ator numerically is by calculating its matrix elements using
Fock states. The number of possible states for N photons in
M quasimodes is

∑N
j=0

( j+M−1
j

) = (M + N )!/(M!N!) [15],

where
(n

k

) = n!/[k!(n − k)!] is the binomial coefficient. In
order to find the matrix elements, the number of coupled
equations one has to solve is the square of this. However,
using our results one can determine the density operator by
solving only 3M coupled first-order differential equations that
are independent of N . For example if N = 20 and M = 4 there
are 10 626 basis states and thus (10 626)2 coupled equations.
But our theory would only require solving 12 coupled
equations.

The expressions we derive for the correlation variances
(see Sec. V) only contain double sums over the Schmidt
modes and do not require one to solve any additional coupled
equations. Thus, the differential equations only need to be
solved once and then any same-time correlation variances of
interest can be quickly calculated.

We believe that our solution to this important problem
will make it more feasible to study large multimode lossy
structures and to optimize them for a wide variety of quantum
information applications. In future work, we will apply our
theory to more physically realistic structures, such as many-
cavity CROWs and ring resonators. We then hope to show
that the generated multimode squeezed thermal state is an
approximate Gaussian cluster state [7,35]. To do this, one
needs to determine under what conditions on the nonlinear
parameter and/or the squeezing matrix does the state satisfy
nullifier equations. If it is possible to determine these condi-
tions for the multimode squeezed thermal state we derived,
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then it can be used as a cluster state resource for quantum
computations [8].
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APPENDIX A: CONNECTION BETWEEN SVD AND THE
TAKAGI FACTORIZATION

As mentioned in the text, the Takagi factorization is a
special case of the symmetric SVD, where the diagonal ma-
trix from the Takagi factorization is just a scaled version of
the singular values from the SVD. In this section we derive
the Takagi factorization from the SVD, and show how the
diagonal values are related to the singular values.

The SVD of the nonlinear parameter G is

G = U�W †, (A1)

where � is a diagonal matrix of real and positive singular
values, and U †U = 1 and W †W = 1. To obtain the Takagi
factorization we define the diagonal complex matrix


 = �W †U ∗, (A2)

where U ∗ denotes the complex conjugate of U . Therefore the
Takagi factorization is

G = U
U T, (A3)

where the SVD can be recovered by putting Eq. (A2) into
Eq. (A3), since U ∗U T = 1. Therefore, to obtain the Takagi
factorization of G, one can perform the SVD to get the matrix
U , and multiply the singular value matrix � by the diagonal
matrix W †U ∗.

Now we prove that W †U ∗ in Eq. (A2) is diagonal. If
it is diagonal, then it must be equal to its transpose, such
that W †U ∗ = U †W ∗. Taking the Hermitian conjugate of both
sides, we obtain

W TU = U TW. (A4)

Moreover, since G is a symmetric matrix we have GT = G.
Taking the transpose of Eq. (A1) we obtain

W ∗�U T = U�W †,

�U TW = W TU�,

�U TW = U TW �,

�U TW �−1 = U TW, (A5)

where to go from the second line to the third line we used
Eq. (A4). The last line of Eq. (A5) is the definition of a diago-
nalizable matrix, where the diagonal form of U TW is the same
as U TW . Thus, U TW is diagonal and so is its Hermitian con-
jugate W †U ∗. Therefore we have proved that 
 is diagonal.

APPENDIX B: DETAILS ON THE DERIVATION OF
THE COUPLED DIFFERENTIAL EQUATIONS

FOR Ṙμ, φ̇, AND ṄM

In this section we provide the details on the derivation of
the coupled differential equations Eqs. (71)–(73).

1. Equations for ṙμ and φ̇μ

To start, we add Eqs. (69) and (70), to obtain

Dml = −Eml . (B1)

Putting the expression for Dml in Eq. (58) into Eq. (B1), we
obtain

xmxl − 1

2
√

xmxl

∑
μ

UmμUlμ

(
ṙμ + iφ̇μ

2
sinh(2rμ)

)
eiφμ = −Eml .

(B2)

Multiplying both sides by
∑

m,l U ∗
μmU ∗

μl and using the orthog-
onality relation

∑
m U ∗

νmUmμ = δνμ, we obtain

ṙμ + iφ̇μ

2
sinh(2rμ) =

∑
m,l

2
√

xmxlEmlU ∗
μmU ∗

μl e
−iφμ

1 − xmxl
. (B3)

Equating the real and imaginary parts of both sides of Eq. (B3)
gives the following equations for ṙμ and φ̇μ:

ṙμ =
∑
m,l

√
xmxl (EmlU ∗

μmU ∗
μl e

−iφμ + E∗
mlUmμUlμeiφμ )

1 − xmxl
, (B4)

φ̇μ =
∑
m,l

2
√

xmxl (EmlU ∗
μmU ∗

μl e
−iφμ − E∗

mlUmμUlμeiφμ )

i(1 − xmxl ) sinh(2rμ)
.

(B5)

Now, to simplify Eqs. (B4) and (B5), we focus on the first
term of the sum. Using the expression for Eml in Eq. (65), we
obtain

∑
m,l

√
xmxlEmlU ∗

μmU ∗
μl e

−iφμ

1 − xmxl
=

∑
σ,ν

∑
m,l

UmσUlνU ∗
μmU ∗

μl e
i(φν−φμ ) cosh(rσ ) sinh(rν )

(
i�σν + 1

2
�σν

1 + xmxl − 2xm

1 − xmxl

)

− i

h̄

∑
ν

∑
m,l

UmνUlνU ∗
μmU ∗

μl e
i(φν−φμ )[α2λνe−iφν cosh2(rν ) + α∗2λ∗

νeiφν sinh2(rν )]

= i�μμ cosh(rμ) sinh(rμ) − i

h̄
[α2λμe−iφμ cosh2(rμ) + α∗2λ∗

μeiφμ sinh2(rμ)]

+ 1

2

∑
σ,ν

ei(φν−φμ )�σν cosh(rσ ) sinh(rν )
∑
m,l

UmσUlνU ∗
μmU ∗

μl

1 + xmxl − 2xm

1 − xmxl
. (B6)
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Using Eq. (56) we can write Eq. (B6) in terms of the thermal photon numbers as

∑
m,l

√
xmxlEmlU ∗

μmU ∗
μl e

−iφμ

1 − xmxl
= i�μμ cosh(rμ) sinh(rμ) − i

h̄
[α2λμe−iφμ cosh2(rμ) + α∗2λ∗

μeiφμ sinh2(rμ)]

− 1

2

∑
σ,ν

ei(φν−φμ )�σν cosh(rσ ) sinh(rν )
∑
m,l

UmσUlνU ∗
μmU ∗

μl

−nm + nl + 1

nm + nl + 1
. (B7)

The complex conjugate of Eq. (B7) is

∑
m,l

√
xmxl E∗

mlUμmUμl eiφμ

1 − xmxl
= −i�μμ cosh(rμ) sinh(rμ) + i

h̄
[α2λμe−iφμ sinh2(rμ) + α∗2λ∗

μeiφμ cosh2(rμ)]

− 1

2

∑
σ,ν

e−i(φν−φμ )�∗
σν cosh(rσ ) sinh(rν )

∑
m,l

U ∗
mσU ∗

lνUμmUμl
−nm + nl + 1

nm + nl + 1
, (B8)

where we have used the fact that �∗
μμ = �μμ. Adding

Eqs. (B7) and (B8) together gives the equation for ṙμ in
Eq. (71) in the main text. Subtracting Eq. (B8) from Eq. (B7)
and dividing by i

2 sinh(2rμ) [see Eq. (B5)] gives the equa-
tion for φ̇μ in Eq. (72) in the main text.

2. Equation for ṅm

As mentioned in Sec. IV C we obtain an equation for ṅm by
writing the operators b†

mbm and b†
mbl found in the expressions

T 1, T 2, and T 3 in terms of the Schmidt operator B†
μBν , and

then force the sum of the coefficients in front of B†
μBν to

be equal to zero. The appropriate term in T 3 [i.e., Eq. (54)]
becomes

−
∑

m

b†
mbm

ẋm

xm
= −

∑
μ,ν

∑
m

U ∗
mμUmν

ẋm

xm
B†

μBν, (B9)

where we have used Eq. (37). The appropriate terms in T 1 and
T 2 [i.e., Eqs. (62) and (63)] become∑

m,l

Fml b
†
mbl =

∑
μ,ν

∑
m,l

FmlU
∗
mμUlνB†

μBν (B10)

and ∑
m,l

Kml b
†
mbl =

∑
μ,ν

∑
m,l

KmlU
∗
mμUlνB†

μBν . (B11)

Since we require that 0 = T 1 + T 2 + T 3 [see Eq. (51)], the
sum of the coefficients multiplying B†

μBν in Eqs. (B9)–(B11)
must be equal to zero:

∑
m,l

U ∗
mμUlν

(
Fml + Kml − ẋm

xm

)
= 0. (B12)

Multiplying Eq. (B12) by
∑

μ,ν U ∗
mνUmμ and using the orthog-

onality relation
∑

μ U ∗
mμUlμ = δml , we obtain

Fmm + Kmm − ẋm

xm
= 0, (B13)

but from Eq. (59) we have that Fmm = 0. Therefore

ẋm

xm
= Kmm. (B14)

Using Eq. (66) in Eq. (B14), we obtain

ẋm

1 − xm
=

∑
μ,ν

UmμU ∗
mν[−xm�μν cosh(rμ) cosh(rν )

+ �∗
μνei(φμ−φν ) sinh(rμ) sinh(rν )]. (B15)

Expressing Eq. (B15) in terms of nm gives

ṅm

1 + nm
=

∑
μ,ν

UmμU ∗
mν

(
− nm

1 + nm
�μν cosh(rμ) cosh(rν )

+ �∗
μνei(φμ−φν ) sinh(rμ) sinh(rν )

)
, (B16)

which is the same as Eq. (73) in the text.

APPENDIX C: SOLVING THE COUPLED EQUATIONS,
EQS. (71)–(73)

In this section we discuss how to solve Eqs. (71)–(73) for a
system that initially starts in the vacuum state. At time t = 0
the vacuum state is defined by

rμ(0) = 0, (C1)

nm(0) = 0, (C2)

for all μ and m. Putting these initial conditions into Eq. (71)
we obtain

ṙμ(0) = 2|α(0)|2|λμ|
h̄

sin(−φμ(0) + θμ), (C3)

where we define

α(t )2 = |α(t )|2 exp(2iωPt ), (C4)

and

λμ = |λμ| exp(iθμ), (C5)

where θμ is a real number. We choose the initial squeezing
phase, φμ(0), to be

φμ(0) = θμ − π

2
, (C6)
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such that it maximizes the squeezing amplitude at the next
time step, rμ(�t ):

rμ(�t ) = 2|α(0)|2|λμ|
h̄

�t + O[(�t )2]. (C7)

Now, let us move on to the equation for the squeezing phase,
Eq. (72). It is easily shown that using Eqs. (C1), (C2), and
(C6) will result in the second and third terms in Eq. (72) being
indeterminate (0/0). Thus, at t = 0, we write this equation as

φ̇μ(0) = 2�μμ − ζμ, (C8)

where we let ζμ be the indeterminate form. We are unable to
solve these equations unless we define ζμ. We define ζμ by
requiring that the derivatives of the squeezing phase at t = �t
and 0 are the same,

φ̇μ(�t ) = φ̇μ(0), (C9)

such that initially the squeezing phase is a linear function of
time. Putting Eqs. (C1), (C2), (C6), and (C7) into Eq. (72)
and using the fact that nm(�t ) = 0 [which can be proven by
writing Eq. (73) as a difference equation and using the initial

conditions] it can be shown that
φ̇μ(�t ) = 2ωP + ζμ. (C10)

Using Eq. (C10) in Eq. (C9), the indeterminate form ζμ is
defined as

ζμ = �μμ − ωP. (C11)

To solve Eqs. (71)–(73) we use MATLAB’s ode45 function,
that is based on a Runge-Kutta method. The initial conditions
that we use for the squeezing amplitudes, thermal photon
numbers, and squeezing phases are in Eqs. (C1), (C2), and
(C6). We have to write an additional condition in the code
that imposes the condition that at t = 0 the derivatives of the
squeezing phases are equal to φ̇μ(0) = �μμ + ωP, otherwise
the program will return a division-by-zero error (as discussed
above). The solution is sensitive to the initial squeezing phases
φμ(0). It is crucial that they are set to precisely the values
given in Eq. (C6) in order to obtain the results we present
in Sec. VII. We find, however, that the initial value of the
derivative of the phase φ̇μ(0) has little impact on the final
solution, since it quickly settles to the correct value, given by
�μμ + ωP.
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