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Distinguishability theory is developed for quantum interference of the squeezed vacuum states on unitary
linear interferometers. It is found that the entanglement of photon pairs over the Schmidt modes is one of the
sources of distinguishability. The distinguishability is quantified by the symmetric part of the internal state of
n pairs of photons over the spectral Schmidt modes, whose normalization ¢, is the probability that 2n photons
interfere as indistinguishable. For two pairs of photons g5 = (1 + 2P)/3, where P is the purity of the squeezed
states (K = 1/ is the Schmidt number). For a fixed purity IP, the probability ¢,, decreases exponentially fast in
n. For example, in the experimental Gaussian boson sampling of H.-S. Zhong et al., [Science 370, 1460 (2020)],
the achieved purity P &~ 0.938 for the average number of photons 2n > 43 gives ¢, < 0.5, i.e., close to the
middle line between n indistinguishable and » distinguishable pairs of photons. In derivation of all the results,
the first-order quantization representation based on the particle decomposition of the Hilbert space of identical
bosons serves as an indispensable tool. The approach can be applied also to the generalized (non-Gaussian)

squeezed states, such as those recently generated in the three-photon parametric down-conversion.
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I. INTRODUCTION

Nonclassical states of light are useful for the quan-
tum information, computation, and interferometry [1-3]. The
quantum interference of indistinguishable single photons on
unitary linear multiports can serve as a basis of the compu-
tation superiority over digital computers, formulated as the
boson sampling idea [4], a pathway to demonstration of the
quantum advantage [5]. Quantum optical platforms seem to
be the most suitable for this purpose [6]. One can also em-
ploy Gaussian states, instead of single photons, realizing the
boson sampling with Gaussian states [7—11]. Gaussian states
have been found useful in many other quantum information
tasks [12]. With Gaussian states one can efficiently simulate
quantum chemistry with molecules [13,14] and some compu-
tational tasks on graphs [15,16]. These tasks require scaling up
the number of Gaussian states in the interference experiments,
inciting the search for scalable sources [17].

Scaling up the number of interfering photons requires
strong control of their distinguishability due to the fluctuating
parameters. When generalizing the Hong-Ou-Mandel exper-
iment [18] to more than two photons, it was found that the
distinguishability is described by the symmetric group [19].
The effect of the distinguishability in interference with identi-
cal particles, bosons or fermions, has been studied in a number
of theoretical works [20-30] and experiments [25,31-36].
Signatures of interspecies distinguishability are also revealed
in systems of interacting bosons [37]. Distinguishability de-
grades the quantum advantage with single photons [21,23],
allowing for classical simulation of the boson sampling [38].
Such a dramatic effect can also be expected with the squeezed
states, used in the experiments on the Gaussian boson sam-
pling [10,11]. As the experimentally obtained squeezed states
are multimode (i.e., the purity is not exactly 1), one would
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like to know if their multimode structure induces partial dis-
tinguishability. Although some experiments have shown that
the multimode structure is shaping the interference with the
squeezed states [39], there was no clue as to how one could
approach such a problem.

The aim of this work is to give theory of distinguishabil-
ity for interference of the squeezed vacuum states on linear
unitary interferometers. The main result is the output proba-
bility distribution, applicable to the interference of an arbitrary
number of multimode squeezed vacuum states on arbitrary
linear interferometer. The four-photon interference with the
multimode squeezed states [39] and the output probability
formula for the single-mode squeezed states [9] follow from
the main result in these special cases. The measure of partial
distinguishability, analogous to that for single photons [23], is
found for interference with the squeezed states. An estimate
of the degree of distinguishability in the Gaussian boson sam-
pling experiment [11] follows. It is illuminating that all the
results are easily derived by decomposing the Hilbert space
of identical bosons as a direct sum of tensor powers of the
single-particle Hilbert space, i.e., within the first quantization
applied to identical bosons. The approach can be applied also
to generalized squeezed states [40], such as those obtained
in the recently demonstrated three-photon parametric down-
conversion [41].

The rest of the text is organized as follows. In Sec. II it is
shown how to rewrite a squeezed vacuum state in the parti-
cle decomposition of the Hilbert space of identical bosons,
termed here the first-order quantization representation. The
relation of the latter to the oscillator decomposition in the
usual, second-order, quantization, is discussed in Sec. IT A. In
Sec. II B the general multimode squeezed states are rewrit-
ten in this form. In Sec. III the interference of N squeezed
states on a unitary linear interferometer is analyzed. For the
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single-mode squeezed states the familiar expression for the
output amplitude as a matrix Hafnian [9] is recovered in
Sec. IIT A. The case of the multimode squeezed states with
identical Schmidt modes is analyzed in Sec. III B, where we
also recover, as a special case, the previous results for the
four-photon interference on a beam splitter [39]. The case
when there are orthogonal internal modes of photon pairs
coming from different sources is considered in Sec. IIIC
and the general case is discussed in Sec. IIID. In Sec. IV
a measure of the distinguishability in interference with the
squeezed states is proposed and its physical interpretation is
found. The partial distinguishability in the recent Gaussian
boson sampling experiment of Ref. [11] is characterized there.
Possibility of application of the approach to the general-
ized (non-Gaussian) squeezed states is discussed in Sec. V.
Section VI gives concluding remarks. Some mathematical
details, unnecessary for understanding of the main text, are
placed in Appendixes A-E.

II. SQUEEZED STATES IN THE FIRST-ORDER
QUANTIZATION REPRESENTATION

Squeezed states [42,43] are usually produced by the
second-order nonlinearity in the process of spontaneous para-
metric down-conversion [44-46], as well as the third-order
(Kerr) nonlinearity in the four-wave mixing process [47,48].
In the following we will consider only the squeezed vacuum
states, simply referred to as the squeezed states. We will
also distinguish between the degenerate and nondegenerate
squeezed states, where in a degenerate squeezed state photon
pairs occupy the same set of Schmidt modes (giving the spec-
tral shape), whereas in a nondegenerate squeezed state photon
pairs occupy different Schmidt modes due to different po-
larizations (and, possibly, also have different spectral shapes
as well).

The squeezed states can be most conveniently repre-
sented by the singular-value decomposition of the squeezing
Hamiltonian [49] (see also Refs. [50-52]). In general, there
can be infinite number of singular values and the correspond-
ing orthogonal (i.e., Schmidt) modes. The degenerate |r) and
nondegenerate |7) squeezed states can be always cast as fol-
lows:
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where &;I_ is the photon creation operator for Schmidt mode ¢;

and, similarly, &}, o) &; v with H, V denoting two orthogonal
polarizations and j generally different spectral modes, ¢;
for V and v; for H, whereas |0) denotes the vacuum state

(the tensor product of the vacuum states in all the modes).
The polarization is omitted in the degenerate case for sim-
plicity. Here and below the notation |...) is used for the
Fock states and squeezed states, whereas the standard notation
|...) is reserved for the states in the first-order quantization
representation (see details in Sec. I A). The singular values
0 < p; < 1 are conveniently normalized, where Zj’; pj=1
(this choice will become clear below), whereas the normal-
ization factor 0 < r < 1 (we consider r to be real as the
possible phase factor can be incorporated into the boson cre-
ation operators) will be called the squeezing parameter (r =
tanh x, where « is usually called the squeezing parameter).
For a single-mode squeezed state (p; = 1) the parameter r in
Egs. (1) and (2) is related to the average number of detected
photons 27 as follows 27 = r?/(1 — r?) (i.e., 27t = sinh® k).
The set of singular values {p;, p», ...} characterizes mul-
timodeness of the squeezed state, which can be quantified
either by the purity 0 <P < 1 or by the Schmidt number
1 < K < 00[39,49-52], where

> 1
P=) 1 K=g5. (3)
j=1

The Schmidt number was recently shown to shape the four-
photon interference [39].

In Egs. (1) and (2) we have tacitly assumed that the
squeezed states are pure states, i.e., that there is perfect
cross-photon-number coherence, which is sometimes argued
to be unnecessary for understanding the experiments [53,54].
The squeezed states in Eqgs. (1) and (2) represent the usual
parametric approximation, applicable when the pump is suf-
ficiently strong and the interaction times are sufficiently short
[55]. This approximation disregards the precise balance of
annihilated and created photons due to the energy conserva-
tion [56,57]. Taking such a balance into account would result
in imperfect coherence between the multiphoton components
with different n, due to entanglement with generally different
quantum states of the pump. Here, we disregard such effects,
relegating their study to future publications.

Below, we will derive another, more useful for our
purposes, representation of the squeezed states. Our represen-
tation utilizes another possible decomposition of the Hilbert
space of identical bosons, in contrast to the standard decom-
position by independent oscillators. The relation between the
two is discussed below.

A. First- and second-order quantization representations
for identical bosons

The quantization of the electromagnetic field, historically
termed the second quantization, is usually performed by rep-
resenting it as a system of independent oscillators in some
orthogonal modes. In this approach the Hilbert space of quan-
tum states of photons is decomposed as the tensor product of
the Hilbert spaces of independent oscillators.

The term first quantization refers to quantum description
of particles, such as a system of identical bosons. In this
approach the symmetric subspace of the tensor power of the
Hilbert space of individual bosons is the physical Hilbert
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space (in general, it is the direct sum of such subspaces, when
the number of bosons is not fixed).

Photons are bosons, hence, there is a mathematical
equivalence between the above two approaches. Below this
mathematical equivalence is exposed following Ref. [58]
(similar approach is used in Bogolubov [59] and the essential
features are found already in Dirac [60]). We will use the
terms “second-order quantization” and “first-order quantiza-
tion” referring to the above two decompositions of the Hilbert
space of identical bosons.

In the first-order quantization approach n identical bosons
occupy a completely symmetric state in the tensor power
space H®", where H is the Hilbert space of a single boson
(i.e., of the single-particle states). If the occupied single-
particle states are some orthogonal states [yx) € H, k =
1,2, ..., with occupations, say, n = (ny, na, ..., ny), |n| =
ny +ny+---+n, =n (and the rest n; = 0), then the state
of n bosons in H®" in m modes is the following Fock state:

n! .
Ini,ny, ) = \V ;San,) oY)
n! e ® ®
= Sl ) @)

where ki, ky, ..., k, is the multiset of indices corresponding
to the nonzero occupations n, n! = n;!ny!...n,!, and S, is
the projector on the symmetric subspace of H®" defined as
follows:

A 1 N
Sn rjzpa’

" oes,

Po1¢1)|h2) - . - dn) = |bo-10)|Po-12) - - - [ Bo-1(m)s (5)
where o is an element (permutation) of the symmetrlc group
Sy of n objects Due to the group property, PP, =P, we
have £, 8, =8, and S =8, thus §, is a projector on the
symmetric subspace of the tensor power of H®", denoted
below S, {H®"}. More generally, when n bosons occupy some
arbitrary single-particle states | f1), . .., | f4) € H, then the fol-

lowing unnormalized state

fis e fad = Salfi) 1) (6)

corresponds to this case. The normalization factor for the
state in Eq. (6) can be derived from the inner product of two
symmetric states, which reads as

Z H Gilfoi). (D)

o i=1

<g17"'7gn|flv--~a

Any state of n bosons is also some linear combination of Fock
states, as in Eq. (4), in any given basis in . Thus, the state
in Eq. (6) can be rewritten as such by expansion of the single-
particle states |f) in a given basis.

The equivalence between the first- and second-order quan-
tization of identical bosons can be established by introducing
the equivalents of the boson creation and annihilation oper-
ators as some linear operators acting between the symmetric

subspaces S, {H®"} with different n. Consider the following
two operators [58]:

AN fis o ) =+ 18,01 fi - )
Ajlfis o ) = V(@I QT @ ... DIfi, ... fu)
1 n
= ﬁ;<¢|ﬁ>|fl,...,ﬁ4,ﬁ+l,...,fn>, (8)

where for A’ we have wused the expansion S, =

Yo, l)Sr(ll) ,» with (1,i) being the transposition of 1
and i (fixed point for i = 1) and S(’) | the symmetric group of
permutations of (1,2,...,i— 1,1 —|— 1, , n). By definition,
the operator A; acts by adding a boson in the state |¢) to the
state it applies to (and symmetrization), whereas, the operator
A; acts by removing a boson in the state |¢) (replacing a
single-particle state by the amplitude of its projection on |¢)).
One can show [58] that the introduced operators satisfy the
following properties:

A" =
[4;,451=0, ©)
[A,. 471 = (¥|¢),

where [A, B] = AB — BA is the commutator. For a basis |/;),
k=1,2,..., in H, we recover the usual commutation re-
lations for the boson creation and annihilation operators by
associating

AT N ~ .
Lo=AL, ay =4y, (10)

The final step is to complete the sequence of the tensor
powers H®" to that with n > 0 by adding the 0 power H®° =
{] )} (i.e., the state containing no particles; see also Ref. [60])
by postulating | ) = |0), where |0) =[], |0); is the tensor
product of the individual vacuum states |0); of all modes in
some basis. Then, a repeated application of the definition of
the creation operator in Eq. (8) to the vacuum state gives

al ...l 10)=vn18, 1)) - .. |¢n). (1)
where the boson operators &;],. ,&T create arbitrary
(i.e., nonorthogonal, in general) s1ngle particle states
|$1), ..., |¢n) € H. For example, Eq. (11) relates the Fock

state of n bosons in m modes in the second-order quantization
representation and its equivalent Fock state in the first-order
quantization representation, Eq. (4), [60]:

AT \n n
(@) ym.. Y
[ni,ny, ... ny)0 = Ll 1//m 10)
v/n!
n! on on
= S )
n!
= |n1’n2""1nm)(1)s (12)
where n= (n,ny,...,n,), Ml=n+nm+---+n,=n

The oscillator modes themselves form a basis of the Hilbert
space of single-particle states H.

In summary, the Hilbert space of identical bosons .77 in the
second-order quantization representation is the tensor product
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of the Hilbert spaces H}, of the orthogonal oscillators in a basis
of modes |Y) € H, whereas in the first-order quantization
representation it is a direct sum of the symmetric subspaces of
the tensor powers of the Hilbert space H of individual bosons:

dimH 00
A = []®H =Y 28,15, (13)
k=1 n=0

where S, = 1. The action of the boson creation and annihila-
tion operators for a given basis of modes can be represented
schematically as follows:

(lv/k (lwk
H, —— H,

Sy g e,

S MOy 25 8,y {HEeD), (14)

where in the last line n > 1, whereas for n =0 we have

So{H®%) —> 0.

Finally, below we will also utilize a factorization of the
oscillator modes, such as the Schmidt modes in Egs. (1) and
(2), into the spatial mode, below denoted simply by |k), k =
1,..., M, and corresponding to input port of a unitary inter-
ferometer the squeezed state is launched to (this nomenclature
will include also the polarization, fixed in the degenerate
case, but also in the nondegenerate case, see Sec. III) and the
internal states |¢j(.k)), j =2 1. In this case the single-particle
state becomes the product of such states (corresponding to
different degrees of freedom of a photon), e.g., in the case of
the degenerate squeezed state launched into input port k of the
interferometer, the single-particle states become |k)|¢(k))
‘H. Thus, two-index (sometimes three-index) notation for the
creation and annihilation operators will be used (the third
index giving the polarization).

Linearity of the boson operators A*

Note that by the definition the Fock space operator A; is
linear in the state it “creates”:

|¢) = alf) +ble) = Aj =aAl +bA]. (15)

The importance of this property in linear optics can be now

appreciated. If the Hilbert space H has a finite dimension M,

e.g., as for an interferometer, the change of the basis |y;) —
|¢r), k =1,..., M, by some unitary matrix U,

M
W) =D Unlgr), (16)

induces the respective transformation for the operators. In-
deed, by the linearity property in Eq. (15), the corresponding
transformation of the creation operators is

M
A At AT A
al, = ZUM%,, ay = A7 a7)

The linear transformation in Eq. (16) is the result of the
unitary evolution

ah, =U"a, U, U=e { Za E;kal/,} (18)

k,l=1

where the Hermitian matrix E is obtained from the exponent
of the matrix U: U = ¢/F. Observe that in Eq. (16) and its
consequence (17) the words “linear optical operation” have
clear physical interpretation: the single-particle states (the
states in ) for each boson in a multiboson state are simply
expanded in another basis.

One comment on the usage of Eq. (11) is in order.
The projector S, on the right-hand side of Eq. (11) de-
pends on the fotal number of bosons, i.e., the factorization
by mode property of the oscillator decomposition of the
Hilbert space has no equivalent in the particle decomposition.
For example, Eq. (11) cannot be used to get an equiva-
lent first-order quantization representation of a single-mode
Fock state |n), = ( )”|O)k, where |0); € H; but |0); ¢ 7
(when there are other oscillator modes). The common vacuum
|0) = ], I0)x € 42 should be used in Eq. (11), which relates
the above two decompositions of the whole Hilbert space
¢ of identical bosons. Note that it does not matter which
orthogonal basis of modes in the Hilbert space H is used for
the mode factorization of the common vacuum state |0) since
any linear evolution [Egs. (17) and (18)] leaves it invariant.

The first-order quantization representation can be used to
simplify calculations of the quantum probabilities of photon
detection at output of a linear interferometer since it allows the
decomposition the photon degrees of freedom into two classes
[21,22]: the operating modes affected by interferometer ac-
cording to Egs. (16) and (17) and the internal states (or modes)
which are invariant under the action of the interferometer.

B. Squeezed vacuum states in the first-order quantization
representation

Let us find the first-order quantization representation of
the squeezed states of Egs. (1) and (2). Consider first the
degenerate case. It can be viewed as the tensor product of
the single-mode squeezed states, indexed by j in Eq. (1),
and having the squeezing parameters r; = r,/p;. Introduce
n = (ny, ny, . ..), where 2n is the vector of Fock occupation
numbers of the Schmidt modes. We will use the following
identity between the summation over the occupations n and
the product of independent summations over the Schmidt
modes,

S rm=y .y e

[n]=n ji=1 Jn=1

f(n) 19)

valid for an arbitrary function f(n) of the occupations. Using
the identity of Eq. (19) we obtain

(AT )2n,
)= 1"[|r,)—ZZ]"[( )= 10)
j=1 n j=I
o0 1 o0 .
SELE B
n= J1 Jn=la
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where we have introduced the Schmidt mode ¢;, such that
lp;) =a " |0), and used Eq. (11) for the first-order quantiza-
tion representation of the 2n-photon state,

H a7 10) = /@m)180, [ | 193%™ 1)
a=I

Quite similarly, we get the first-order quantization representa-
tion of the nondegenerate squeezed vacuum state

AT )n-

) = 1"[|r,)—221"[r, a”f”,“” 10)

n j=1

[ee] B o0 ®n
- 2n\ 2 A
ZZ;(:) szn<rjzl«/—p,-|ﬂ, IV, wn) , (22)

where ajy, »10)  and

|H o;) =

V) = avl,, 10).

Above we have used a simplified nomenclature, omitting
the spatial mode index (indicating the input port of an in-
terferometer where the squeezed state is launched), since
we have considered a single such multimode squeezed state.
Below, therefore, we will have to add another index to the
boson operators, 1ndlcat1n% the input port where the state is
launched, e.g., |k)|¢;) = U g, |0) and |k)[H)|¢;) = kH¢ 10),
etc., where we have denoted by index k the spatial mode
correspondlng to interferometer input port k. To avoid the
confusion with the input port operators, will use the notation
by 4,100 = 11"V} |¢;), etc., for the boson creation operators in
the spatial output port / of an interferometer.

One can convert a nondegenerate single-mode squeezed
state into two degenerate single-mode squeezed states in two
different spatial modes by a unitary transformation. Such a
transformation can be physically realized by first separating
the polarizations into two spatial modes by the polarizing
beam splitter, changing one of the polarizations by a wave
plate and using a balanced beam splitter on the output modes.
The effect on the two boson operators, say @] ,, and @] ,,, in the
nondegenerate squeezed state of the same spatial mode can be
accounted for by the following unitary transformation:

1 i ~
W b
1LV 2 f 1LV
which will be called below the_polarization-to-propagation
mode beam splitter, where b1 v b'2 v describe two output spa-
tial modes of the same polarlzatlon The product of two boson

operators in the exponent of a nondegenerate squeezed state
transforms as follows:

\H) ;) = V. 9)) =

Q> Q>
|_w

A £ ~42
gty = E(bl,v + bz,v)- (24)

We have seen above that a two-mode squeezed state in two
different polarizations becomes a product of two single-mode
squeezed states in another basis (which requires using an
interferometer). A two-mode squeezed state can always be
represented as a product of two single-mode squeezed states
[61]. This is a particular case of the so-called Bloch-Messiah
reduction [62]: a Gaussian unitary acting on the vacuum
state can always be represented as a product of single-mode
squeezers in a properly chosen modal basis. The physical
setup for such a mathematical transformation necessitates
using an interferometer. The multimode squeezed states in
Egs. (1) and (2) are tensor products of the single-mode
states over the Schmidt modes. However, the spectral Schmidt
modes are not affected by spatial interferometers [39,49—
52]. Therefore, despite the existence of a formal mathemat-
ical equivalence, the multimode squeezed states at input of a
spatial interferometer are not equivalent to the single-mode
squeezed states at input of any other spatial interferometer.
The multimode structure of such squeezed states affects the
interference of them on spatial interferometers, as demon-
strated already in Ref. [39]. Moreover, as we will see below,
the spectral Schmidt modes affect interference of the squeezed
states in a similar way as the mixed internal states of single
photons do. Therefore, in accordance with terminology used
for single photons [20-30], the spectral Schmidt modes will
be called below the internal modes. In Eqs. (20) and (22)
the internal modes are the states |¢;) and [;). Observe also
that degenerate and nondegenerate squeezed states are not
always equivalent in quantum interference experiments. The
nondegenerate squeezed state of Eq. (22) may have different
internal modes for different polarizations (|¢) # |¥)), unlike
the degenerate squeezed state of Eq. (20). Such states cannot
be transformed into one another by a spatial interferometer
since the unitary transformation [61,62] relating them has to
act on the internal modes [e.g., in this case we would have the
product a a1 . ¢aI vy on the left-hand side of Eq. (24), with the
internal modes |¢) # |¥), and no linear unitary transforma-
tion not affecting the internal modes would transform such a
product into the sum of two operators squared].

III. OUTPUT PROBABILITY FROM INTERFERENCE OF
SQUEEZED STATES

We will consider quantum interference of N multimode
squeezed vacuum states having the overall squeezing parame-
ters ry, ..., ry, and impinging on an M-port interferometer,
represented here by a unitary matrix U (schematically de-
picted in Fig. 1). In the nondegenerate case we assume that
photons of different polarizations are allowed to interfere
(e.g., by using the polarizing beam splitters and the wave
plates as components of the interferometer U) and, without
loss of generality, that photons from source k of the two
different polarizations are launched into input ports k£ and
N + k. We will use the simplified nomenclature incorporating
the polarization of photons into the port number, say that the
H-polarized photons are launched to ports 1, ..., N, while the
V -polarized ones to the ports N + 1, ..., 2N (the single-index
nomenclature will be also used for the output ports of the
interferometer). Below, we will use index k exclusively for the
input ports, index / for the output ports. We are interested in
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FIG. 1. A schematic depiction of the considered setup. Here
N degenerate squeezed vacuum states with squeezing parameters
ri, ..., ry are launched at the input of a linear M-port interferometer
given by a unitary matrix U. At the output M particle number re-
solving detectors give a configuration my, ..., my, with m; particles
detected at output port /. In the nondegenerate case, the two polariza-
tion modes from squeezed source k are assumed to be launched into
inputs k and N + k.

the probability to detect 2n photons in an output configuration

= (my, ..., my), where m; photons are detected at output
port / (see Fig. 1). Here 0 < n < oo and can be arbitrary,
not related to N or M. Our model is applicable also to the
experimental realization of Gaussian boson sampling [10,11].

The most general multimode squeezed states at input port
k in the degenerate case and at input ports k and N + k in the
nondegenerate case are as follows:

Ir) = Z exp: Z\/pj“ ! W}w), (25)
Zk = 1_[ (l r,fp(jk))
oo
7 = Z exp{rk D NPPa gl } 0,  (6)
j=1

Zk= (l—r,%p(jk))%,

—

1

J

where k = 1, ..., N and for brevity we use the same notations
for the creation operators in the degenerate and nondegener-
ate cases (where in the latter case the photon polarization is
incorporated into the input port index).

Interference of single photons on a linear unitary inter-
ferometer is usually analyzed by splitting the degrees of
freedom of photons into operating modes, acted upon by
the interferometer, and internal modes, unaffected by the in-
terferometer [18,19,21,22,24-30]. Here, we have &Z ¢(k)|0) =

i

|k)|¢§k)), where on the right-hand side we split the single-

particle state of a photon into the operating mode (|k)), acted
upon by the interferometer U, and the internal state (|¢;]‘))),
unchanged by the interferometer.

A unitary linear interferometer (see Fig. 1) in the first-
order quantization representation expands the basis of input
modes |k), k =1, ..., M, over the output basis /"), [ =
1,..., M, where the unitary matrix U gives the expansion.
From Sec. IT A we can also get the relation between the boson
operators:

M
= ZUk,|l(°”t))
=1

where 13; 5100 =11 ©u)|#) and it is assumed that the interfer-
ometer does not affect the internal states.

Below we will use the internal state of a photon pair. The
internal state of a photon pair coming from the input port k in
the degenerate case will be denoted by |<I>(2)) and that in the

M
= aj,=>Y Udbj,. @7

nondegenerate by |<I>,(< ) ), where

)= 2o o))
j=1

)=l e
j=1

We will see below (in Secs. IIIB and IV) that even when
the squeezed states at different input ports have identical
internal states of photon pairs (i.e., the same for different
input ports k with |¢;) = |)), such internal states still lead
to partial distinguishability, similar to mixed states of single
photons [21,22].

With the definition in Eq. (28), in the degenerate case,
by repeating the steps performed in Eq. (20) of the previous
section we obtain

N

N 00 %
[Tro=2) (2n> SZn[Z 5
k=1 n=0 n k=1 2
N
z=[]z= ]_[1_[
k=1

k=1 j=1
In Eq. (29), according to our splitting of a photon pair state
into the tensor product of the operating and internal modes
(explicitly indicated also by “®”), the action of the particle
permutation operator PU in the projector Sz,, [Eq. (11)] is
split accordingly P, — P, ® P,, where the factors act on the
operating and the internal modes, respectively.

Now, observe that the 2n-particle state to the right of the
symmetrization operator Sy, in Eq. (29) already has some
symmetry by construction. Indeed, if we permute the two
photons in a photon pair from the same source (i.e., with the
same index k), which amounts to permuting coinciding inter-
nal states, or the photon pairs, i.e., the states |k)|k) ® |<I>(2))
the mentioned 2n-particle state does not change. Hence, in-
stead of applying the whole symmetric group S,, of 2n!
permutations to symmetrize such a state, one can use instead
only the set of permutations which are different matchings of
2n objects. Let us denote the (2n — 1)!! different matchings

Q®n
k) |k) ® |<I>;2>)} ,

r,% p(lk) Z 29)
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by My,. The elements of M, can be enumerated by vector
index & = («q, ..., 002,),

e My, 1 onimg < Qpigr,  Ooimp < Qi (30)

where the ith matching pair is (oz;—1, orp;) (observe that oy =
1). For example, My consists of just three permutations

My =1{I,(2,3),(2,3,4)}, €2y

where I stands for the trivial permutation and (iy, i, ..., i)
for the cyclic permutation i; — i — --- — iy — i; [thus,
for instance, (2,3) is the transposition of two elements]. We
have, for example, (2 3y = (1, 3, 2, 4) with the two pairs be-
ing (1,3) and (2,4). Below, the greek letters “o” and “B” are
used exclusively to enumerate matchings of 2n elements.
Denote also by vector « the permutation of 2n elements
a(k) = oy corresponding to the matching. We can project an
arbitrary permutation o € S, on M,,. For such a projection
we will use the notation M (o) = «. Indeed, let us expand o

as follows:
o=nt; @ -Qt,)a, (32)

where 7w € S, permutes 7 pairs, and #; € S, permutes the two
elements of the ith pair. By Eq. (32) the symmetrization pro-
jector S5, in Eq. (11) can be factored as

§2n = S‘,gpair)s‘é@n-/\;bn»

1 A
@i 2 e (33)

aEMz,,

MZn =

where the identity (2n)! = 2"n!(2n — 1)!! was used. Since the
set of matchings M, is not a group (see Appendix A), the
operator M, is not a projector [the other operators in Eq. (33)
are projectors].

Now the crucial step is that the first two factors in the
expression for S5, in Eq. (33) can be dropped in Eq. (29)
since they have no effect [observe that in Eq. (11) the inverse
permutation is applied to indices of states in a tensor product,
thus, a composition of permutations is applied in the reverse
order].

Similar as the above and in analogy to Eq. (22) of the
previous section, in the nondegenerate case we obtain

N o9 ®n
~ 2

[Tr=2> j( ”) Szn[z relk) |N+k>®|<1>(2>>} ,

k=1 k=1

n=0
- N N N oo |
Z=[]z=]][](-rr"). (34)

In this case the quantum state to which the symmetrization
projector S, is applied is not symmetric with respect to
permutations within each photon pair due to different input
modes (|k) and [N + k)). Therefore, only the first factor SP*"
in Eq. (33) has no effect (the state to which it is applied is
the nth power of a two-photon state). The last two factors in
Eq. (33) select n “matchings with order” of 2n objects, where
the order of the two objects in each pair matters. Therefore,
to reduce the projector Sy, to a matching operator_in the
nondegenerate case we need to introduce the set My, of
2"(2n — 1)!! matchings with order. These are given by the

permutations & = (f; ® - - -
ac Mzn :
When the internal modes of the photons with two or-
thogonal polarizations coincide, the two-photon internal state
becomes the same as in the degenerate case |<I>( )) = |<I>(2))
If we apply the projector S®" to such an input state, then the

two-photon term for each pair of inputs in Eq. (34) is replaced
by its projector on the symmetric two-photon state,

S0k IN+k) ® | @)

_ [Ik)|N+k) J;IN + k)lk)} ®|0?).  (36)

In this way, such N special nondegenerate squeezed states
at input ports k = 1, ..., 2N of an interferometer U become
equivalent to N pairs of degenerate squeezed states, where the
factor 1 5 goes to the squeezing parameter ry — r;/2 [com-
pare Eqs (29) and (34)] with the kth pair being launched
to the inputs k and N + k. The equivalence is realized by N
polarization-to-propagation mode beam splitters of Eq. (23),
with the output ports of beam splitter k connected to inputs k
and N + k of the interferometer U (see also Sec. III A).

Below we will give derivations for the output probability
in the degenerate case and only give the respectlve results in
the nondegenerate case. The internal states |<I>( )) [Eq. (28)]
are not affected by the interferometer and are not resolved at
the detection stage (by our definition of the internal modes).
Introduce the sequence of output ports 1 </} < --- < by, <
M, one for each detected photon in an output configura-
tion m = (my,...,my) (see Fig. 1). The photon-counting
detection without internal state resolution is given by the fol-
lowing positive-operator-valued measures (POVM) operator
(see Refs. [21,22])

2n
Z Z |:l_[b j||0)(0|1_[51,.¢j,_, 37

T =1 Jan=1 i=1

®1t,) a [see Eq. (32)], i.e.,

min(@;_1, &) < min(@iy1, @2i42). (35)

where m! = m,!...my! and the summation is over some
(arbitrary) basis |¢;) of the internal modes. Using Eq. (11), the
POVM operator can be also cast in the first-order quantization
representation. We obtain

ﬁm (271) S2n |:1_[|l(oul) l(out)| ® ﬂ:|52n» (38)

where 1 is the identity operator in the subspace of internal
modes. We can omit the two projectors S5, from the expres-
sion in Eq. (38) since the quantum state to which T, will be
applied is already symmetric.

To simplify the presentation below, for each output con-
figuration m = (my, ..., my), such that |m| = 2n, let us
introduce the M x 2n matrix U, derived from the interferom-
eter matrix U [Eq. (27)] by taking therows k = 1, ..., M and
the columns [y, . .., [, (generally, a multiset), i.e., we set

Ui = Uy (39)

The probability pp, of detecting 2n photons in an output con-
figuration m is given by the average of the detection operator
(38) on the quantum state (29). Using that the matching oper-
ator Mo, [Eq. (33)] can replace the symmetrization projector

063703-7



VALERY SHCHESNOVICH

PHYSICAL REVIEW A 105, 063703 (2022)

S‘zn in Eq. (29), we arrive at the following result (see details in
Appendix B):

Pm = Tr{ﬁmﬁ |rk>(rk|}

" ae My, BeMy, k=1 ky=1k|=1 k=1

n
* *
X |:1_[ rkiuki,az,»,luk,-,az,- rki’uk;sﬁziluk,{:ﬂli]

i=1

“(o]. (o

PiBy|e®)...

e7).  (40)

where the factor py = 22 is the probability to detect zero
photons. The output probability in Eq. (40) has a similar form
to the output probability in quantum interference of partially
distinguishable single photons [21,22], where the double sum
over all possible permutations in the product of the quantum
amplitude and the complex-conjugate amplitude is weighted
by a function of the relative permutation.

For N nondegenerate squeezed states at interferometer in-
put, the output probability jn, can be easily recovered from
Eq. (40) by replacmg the normalization 2@ — Z, the in-
ternal states |® 2)) — |<I>(2) ), the second instance of matrix
element Uy; with Uy, and the summation over magh-
ings M», [Eq. (30)] by that over matchings with order M,
[Eq. (35)]. We have py = Z? and

ZZZ

ae/\/(zn BeMy, k=1

n

n
* *
X |:1_[ rk'ukhaz,‘q uN+ki,Olzf rk,{ukf*/32!—luN+k,{v/32ij|
i=1

x(®]...(&

P 9). | @), (41)
Below, we will analyze the probabilities in Eqgs. (40) and
(41) in some special cases.

A. The ideal case: Output amplitude as Hafnian

The ideal case of the interference with squeezed states can
be defined by the absence of any dependence on the internal
modes, similar as with single photons [21,22]. There is no
dependence on the internal modes in the output probability
in Eq. (40) when the matching operator does not affect the
tensor product of the internal states of photon pairs. This
occurs when the internal states coincide and, moreover, there
is just one internal mode, i.e., |<I>,(<2)) = |¢1)|¢1). In this case,
from Eq. (40) we get the well-known expression [9,63] for the
output probability from the Gaussian states pp:

2

14 } : - §N
o 0
Pm = — l—[ Z/lk,,otgﬁ]rkfuknaﬁ
m! .
aeMy, i=1 k=1
n 2
= Z HAO[Zi—lvDQi ’ (42)
“laeM,, i=1

where py = ]_[le1 a1- rk)4 and the 2n-dimensional symmet-
ric matrix A is defined as
N N
Aij =Y Uarddej =Y Un, U, (43)
k=1 k=1

The sum over matchings > cr( [TL| Auy ey in the
last row in Eq. (42) is called Hafnian of a symmetric
matrix A [63].

In the nondegenerate case the conditions for the ideal in-
terference require the same internal mode |¢) = |¢) for the
two polarizations. From Eq. (41) one can get the following
expression for the probability:

Z l_[Am‘

0{6./\/17,, i=1

2
, (44)

R/

where pp = Z= M, (- r]f)% and

N N
Al] = ZZ/[kjrkuN_;rkqj = ZUklirkUN-H(,]j' (45)
k=1 k=1

Only the symmetric part of the matrix in Eq. (45) contributes
in Eq. (44) due to the sum A,, , 4, + Aao, wy - Hence,
the summation over the ordered matchings ./\/12,, [Eq. (35)] can
be reduced to that over the usual matchings M, [Eq. (30)],
while retaining only the symmetric part of A. The probability
in Eq. (44) takes the form

; (46)

Z 1_[ ~gf2)1 1,00

uEMz,, i=1

where flfj) = A+ Aj.

The expression in Eq. (46) is equivalent to that of Eq. (42)
for a different interferometer U’. Indeed, consider the matrix
A with the following matrix elements in Eq. (45):

U;, + iUy U/, — iU,
Uy = X ﬁN—&-k,l’ Uyies = M ﬁN+k,l. @7
Then A% becomes
N
A = A+ Aji =y nUl, U, (48)
=1

The transformation in Eq. (47) is the interferometer U’ pre-
ceded by N auxiliary polarization-to-propagation mode beam
splitters as in Eq. (23) of Sec. II B (recall that in the nondegen-
erate case the input port index includes also the polarization
mode), where beam splitter k receives as the inputs the two
polarization modes of the kth nondegenerate squeezed state
and is connected to inputs k and N + k of the interferometer
U’. The auxiliary beam splitters transform N nondegener-
ate squeezed states into 2N degenerate ones in the same
polarization mode, as in Eq. (24). One can interpret 1%0 of
Eq. (46) as the probability to detect zero photons for the above
2N-degenerate squeezed states with the squeezing parameters
reand ryyg =1, k=1, ..., N. Therefore, the probability in
Eq. (46) has the form of that in Eq. (42) where A;; = ./Tf»j)
of Eq. (48), and corresponding to N pairs of squeezed states,
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where pair k with the squeezing parameter r; is launched to
inputs k and N + k of the new interferometer U’.

B. Identical multimode internal states

Consider now the case of coinciding multimode internal
states of photon pairs in different input ports of the interfer-
ometer U:

@) = 3" V7, l0016) = 197), k=1.....N. (49)

j=1

This model allows for further analysis, on the one hand,
and, on the other hand, applies to the recent experiment on
Gaussian boson sampling [11], where a coherent splitting of a
single pump source was used to generate the squeezed states.

The expression in Eq. (40) can now be further simplified as
follows. First, we can perform the summations over k; and k;
with the result

n
Pm = % Z Z HAZZ,,],(XZ[AﬂZi—Ix,BZI

" aeMy, BeM,, i=1
(@2 By15| @), (50)

where A is given by Eq. (43). Second, the matching operator
in Eq. (50) now acts on the internal state |®®)®" invariant
with respect to permutations of the two-photon states |®®))
and with respect to transposition of two identical internal
modes |¢;)|¢;) of each photon pair [i.e., the same symmetry
as in the input state of Eq. (29)]. Therefore, we can replace the
relative permutation =!8 € S5, in Eq. (50) by its projection
on the matchings M(a~'B) € My,. As the result, we have
to consider only the average of a matching operator on the
internal state of 2n photons, i.e., study a function on My,
defined as

J() = (@D %" F,|9@)®". (51)

1. Disjoint cycle decomposition of a matching

At this point, is it necessary to introduce what will be called
the “cycle decomposition” of a matching & € M, acting on
adouble setx = (1, 1, ..., n, n). The double set appears here
due to coinciding indices of the internal states (|¢;)) in each
photon pair. Let us rearrange a matching of the double set,
a(X) = (Xy,, Xay» - - - » Xap, ), @s follows. Starting from the first
pair (ji, j2), with j; =1 (since xo, = 1) and jr = x,,, We
look for the next pair containing j, say (j», j3) (permuting
the two elements in such a pair, if necessary, to put j, on the
first place). We continue by looking for the pair containing
now js, etc., until we have come to a pair with ji| = j; = 1,
for some 1 < k < n, i.e., we end up with a cycle v of length
k, or k-cycle:

V= {(jl’j2)9 (j27j3)9"'1 (]ks]l)} (52)

(Observe that a matching cycle of length k contains k pairs
of elements and that each element is repeated.) Then, starting
from the smallest j ¢ v of Eq. (52), quite similarly we end up
with another cycle v’ starting and ending with j. We continue
until all the elements of x are arranged in such disjoint cycles
(i.e., not having elements in common). In this way, a matching

(a)

<¢j2 | <¢j2 ‘

1 | ¢j1 | <¢)j3 | <¢j3 | <¢j4 | <¢j4 ‘

(b)

3 — cycle

1 — cycle

FIG. 2. The matching cycles. (a) The ovals represent states of
photon pairs. The action of B, on the ket vectors in |®®)®*
is shown in the bottom ovals (by the curvy lines), whereas the
top ovals give the corresponding bra vectors in the inner product
(®P|®4P,|®P)®* The curvy lines connect the same ket vectors,
whereas the vertical lines connect the ket vectors to the respective
bra vectors in the inner product. (b) The cycle decomposition of the
corresponding matching e € M (in the ovals) acting on the double
set (1,1,2,2,3,3,4,4), composed of the indices of internal modes.
There is a 3-cycle and a 1-cycle (fixed point).

a: @D

permutation, acting on a double set, is cast as a product of
disjoint cycles.

Denote by Cy(a) the total number of k-cycles [Eq. (52)]
in a matching & € My,. The numbers Ci, ..., C, satisfy the
obvious constraint ) _;_, kCy = n.

A permutation & and the inverse permutation a~!' cor-
respond to the same cycle structure (Ci,...,C,). Since
permutation « is cast as the product of disjoint cycles, con-
sider just a single cycle v [Eq. (52)]. The cycle v of Eq. (52)
can be obtained by application of the following cyclic permu-
tation in S, of length &:

Jk=> Jk=1—=> = j1 = i (53)

to the second element in each pair in the trivial matching
{1y J1)s G2y J2)y - -+ Uk Ji)}- Tt is easy to see that the in-
verse permutation j; — j, — -+ — jp — jj results in the
same cycle v (with the pairs permuted; see also Appendix C).
Hence, Cy(a™') = Ci(ar) forallk =1, ..., n.

2. Output probability

Consider now the matching operator £, in Eq. (51). It can
be factorized into a product of operators of disjoint cycles
By, =1, P,,. The inner product in Eq. (51) factorizes accord-
ingly. Due to orthogonality of the internal modes, {(¢;|¢;) =
d;jr, the operator ISW of a single cycle has a nonzero contri-
bution to the average in Eq. (51) only when in each inner
product of the cycle v; the corresponding bra and ket ¢ states
coincide (i.e., have the same index). As seen from Fig. 2,
this necessitates that all the bra and ket ¢ states within each
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independent cycle v; coincide (have the same index). There-
fore, a k-cycle contributes the factor ) j p’; to J(a) since there
are 2k products of bra and ket ¢ states, each weighed by /p;
[see Eq. (49)]. In other words, only the diagonal part of the
photon pair state |®®)(®)| contributes to output probabili-
ties, where every k-cycle contributes a factor equal to the trace
of the kth power of the diagonal part of the photon pair state.

From the above discussion the distinguishability function
J(a) [Eq. (51)] becomes

n 00 Ci(a)
T =[] (Z pﬁ) : (54)

k=2 \j=1

where the omitted factor due to 1-cycles (fixed points) is equal
to 1. The expression in Eq. (54) reminds a similar expres-
sion for the distinguishability function of single photons, in
the case when each photon is in the same mixed internal
state [21,22,27]. In the latter case the cyclic permutations of
photons also contribute as independent factors to the distin-
guishability function. However, there are two new elements
here: the cycles rearrange the photon pairs, not single photons,
and, therefore, the permutation group S, is replaced by the set
of matchings Ma,,.

With the distinguishability function of Eq. (54) the output
probability becomes

» n [/ oo G 'B)
0
e T ¥ 1(2A)

T ae My, e My, k=2 \ j=1
n
*
2 l_[ A(Iz,',l,az,'Aﬂﬂ—]v/gZi’ (55)
i=1

where Cy(a~'B) is the number of k-cycles in the disjoint
cycle decomposition of the matching M(e~!B) € M,,. Since
Ci(a™'B) = Ck(ﬂ_la), only the real part of the product of
matrix elements contributes to the probability in Eq. (55).

A similar expression for the output probability can be
derived in the nondegenerate case, when the internal modes
for the two polarizations are the same. In this case, |<I>,(€2) )y =
|®®) with |®@) of Eq. (49) (recall that the polarizations are
excluded from the internal states). Then, by similar arguments
as in Sec. III A one can show that only the symmetric part of
the matrix given by Eq. (45) contributes to the probability and
the result is equivalent to that of the degenerate case with the
matrix of Eq. (48). Taking this into account, we obtain

el y S ISs)

" aeMy, BeMy, k=2 \ j=1
n
*
X 1_[ AaziflaazisAﬁZi—lvﬂZi’ (56)
i=1

where A;; = A{? of Eqgs. (47) and (48).

3. Example: Probability to detect four photons

Consider the probability to detect just four photons at
interferometer output, i.e., n = 2. For n = 2 there are only
1-cycles (i.e., fixed points) and 2-cycles, thus Eq. (55) de-
pends only on the number of 2-cycles C>(a~'B). The three

permutations in the set My are given in Eq. (31). Let us denote
U2 = (2,3)and u3 = (2, 3, 4) (respectively, the transposition
of 2 and 3 and the cycle 2 — 3 — 4 — 2). Observing that
(2,3)7' =(2,3) and (2,3)(2,3,4) = (2,4), we have their
action on {1, 2, 3, 4}:

1 1 1 1
2| (3 2| (a4
2 31 =121 M3 31 12
4 4 4 3
1 1 1
2 L2 4
Moy K3 3 = M3 K2 3 = 3]
4 4 2
1 1
1] 2 3
uy! =110 (57)
4 2

Now, let us find the number of 2-cycles of the relative per-
mutations acting on the double set {1, 1, 2, 2}. In this case,
the index 1 < i < 4 in Eq. (§7) points to the ith element in
the double set. One can represent the number of 2-cycles for
the nine relative permutations e~ '8, &, B € {I, s, 13} by a
matrix Cy g = Cy(a~'B), where

0 1 1
c=[1 o 1 (58)
1 1 0

with the rows and columns corresponding to & and B in the
order (I, o, p3). For instance, Co(u3'1) = C3; = 1, which
can be read from the action of u3 !in Eq. (57), projected on
the double set as above indicated, and using the definition of
a 2-cycle in Eq. (52).

Using Eq. (58) into Eq. (55) we can now write the proba-
bility to detect four photons in an output configuration m =
(my, ..., my), |m| = 4, where at most four different output
ports 1 <[y <L <3 <Ily <M are occupied by photons.
Recalling that for four photons we have a four-dimensional
matrix A, = Ajj = Zszl Uky,7cUsi; and using the definition
of purity P = 37 | p’ [Eq. (3)], we obtain

Po
pm = H(|A1112A13l4|2 + |A1113Alzl4|2 + |AI]I4A1213 |2

+2P Re{[A} AL, + A} L AL JALLALL
+ AL L ALLANLALL D). (59)

In Eq. (59) the first three terms correspond to C;; fori = 1,2, 3
and, in the real part, the next two terms to Cy; and C;;, with
i = 2, 3, while the last term to C,3 and Cs.

Let us apply Eq. (59) to the interference on a beam splitter
of two degenerate squeezed states with the squeezing param-
eters 71 and r,. We have (without loss of generality)

U:(“ ”), Wt =1, (60)

—v u

A= rn O U= riu® + rpv?
0 n (ry — rp)uv
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For the five possible output configurations m €
{(4,0),(0,4),(2,2),(3,1),(1,3)} we have the following
multisets of output port indices:

4,0)—=>h=h=hL=04L=1,
(O,4)-)l]:lz:l3:l4:2’

(2,2)—)[121221, l3=l4=2,
(3,1)—)[1212213:1, l4:2,
(1,3)—)[121, lz=l3=l4=2.

Then, Eq. (59) gives
Po 1 Do 1
Pa.o) = ZAAltl (5 + P>, Pwo,4) = ZA32(§ + ]P’),

At At
A? A2 A A }
114322 114322

Pasy = 22A2 A2, [1 +2(14P)

4

Po Po
ZATAL(L+2P), pasy ==

pan =
(62)

Equation (62) applies also to the interference of a sin-
gle nondegenerate squeezed state, where now r; = r,, hence,
A} = Ay and A, = 0. This is due to the equivalence of the
probability formula between the degenerate and nondegener-
ate cases, established in Sec. III A, when the internal modes
are the same for the two polarizations in the nondegenerate
case. Equation (62) also reproduces the four-photon inter-
ference probabilities on the balanced beam splitter u = v =
1/ /2 in the scheme of Ref. [39]. To show this, let us perform
postselecting on the detection of four photons at the output,
by dividing the results in Eq. (62) by the probability to detect
exactly four photons

%A‘l‘l(l +P)  (63)

(in this case p(; 3y = p3,1) = 0). For the nonzero conditional
probabilities Py, = pm/p(4) we get [39]

1+2P P 1 64
v oS ©
The above four-photon interference on a beam splitter of
two degenerate squeezed states, or of a single nondegener-
ate squeezed state in the scheme of Ref. [39], can be used
to estimate the purity of the squeezed states. In Sec. IV
it will be shown that the effect of distinguishability in the
quantum interference with an arbitrary number of squeezed
states, each having only two common internal modes, can also
be expressed only through the purity.

P(4) = pao)+ po4 + P2 =

Py = Po4) =

C. Orthogonal internal states

We will use that the output probability (40) can be also cast
in an equivalent form of a quantum average

2m)!
pm=Tr{ mnlrk)(rkl}—po< >(n’:,)

2n
x <‘I’(2)|®n/\%£n [1_[ |ll'(0m)><ll-(0m)| ® ﬂ} M2n|\1’(2)>®n

i=1

(65)

where we have introduced an unnormalized two-particle state

N

|\I’(2) = ZEk

k=1

k) ® | @) (66)

and observed that [2"(2n — D!!]? = 2n )'(2")

Consider now the case of mutually orthogonal internal
states, i.e., (<I>,(3)|<I>]((2)) = 8y, Or, equivalently, (d);{‘/)lqb;k)) =0
for k' # k [see Eq. (28)]. Let us introduce the projectors
Ei, ..., Ey onto the internal Hilbert spaces of the squeezed
states:

Elg) = dunlp™), j=1.2..... (67)

Then, without changing the result, the following substitution
can be made in Eq. (65):

N
|li(0ut))<li(out)| Q1 — |li(0ut)><li(out)’ ® ZEk (68)
k=1

Moreover, since each squeezed state contributes pairs of
photons, only the terms involving pairs of projectors £, con-
tribute to the output probability. Thus, we can replace the
operator in the square brackets in Eq. (65) with the one ac-
counting only for all possible occurrences of pairs of Ej:

2n N N N 1
out out a —_
H[Ilf i )|®§:Ek} *kzl“‘kzl(zn)!
1= n=

i=1 k=1

2n n
x Z |:1—[ |li(out)>(llfoul)|:| ® |:1_[ Eku(i) ® Eku(n+i)i| , (69)
i=1

MESz,, i=1

where the pairs k; = k,4; from {1, 2, ..., N} with the occur-
rences n = (ny, ..., ny) are distributed over the output ports
by permutation p and (2n)! = (2n;)!...(2ny)! accounts for
multiple counting of the same terms. Observe that each term
in Eq. (69) describes the detection of photons and the in-
formation on the squeezed state each photon came from.
For instance, each such term is a collection of configura-
tions m® = (m(k) Lom@), k=1,...,N,such that m® +
4 m®) =m, where the output ports in the configuration
m(k) correspond to the tensor product with the same projector
Ey in the internal subspace. Since the normalization factor
is a product as well, py = Z = ]_[sz1 7 = ]_[kN:l Doy [see
Eq. (29)], it is now obvious that, due to the mere possibility
of complete resolution of the orthogonal internal states of
photons at the detection stage, the output probability (65) is
a convex mixture of products of the probabilities from the
individual squeezed states from different input ports:

Pm =) Pl -+ Do (70)

where the sum is constrained by m(l) +-4+m™ =m. In
Eq. (70) we have denoted by p (k) the probability to detect

2n; = lm®| photons from the squeezed state at input port
k in the output configuration m®), i.e., given by the same
formula as in Eq. (55) with the substitutions py — po, and
Aij = A = Uandh;.
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D. General case of internal states

Consider now the most general case of arbitrary (different)
internal modes of photon pairs at different input ports of inter-
ferometer. The average of the relative matching operator f’; ﬁﬂ
on the product of the two-photon internal states in Eq. (40)
depends on the sets ki, ..., k, and k{,...,k;,, preventing
summation over these indices solely in the product of the
matrix elements of U. The matching permutations o, 8 €
M, [Eq. (30)] do not form a group (see Appendix A), and the
relative permutation e~ 8 may differ from a matching in the
standard form of Eq. (30), i.e., ' B ¢ M. Since the tensor
product of the internal states to which such a 2.?ermutatlon is
applied involves generally different states |<I> one cannot
simply project the relative permutation on Mzn, as was done
in Sec. III B. In this case one can reverse the substitution
of the symmetrization projectors by the matching operators,
performed in Sec. 111, i.e., replace back

MZVL - §2n (71)

in Eq. (40). The matchings are then replaced by permutations
and the normalization factor is adjusted accordingly. In this
way one can get the output probability in the form

i DI 3 00 35 35 >

ki=1 kn=1kj=1 kl=10€S, T€SH,

n
X |:1_[ ”kfulf,,a(zi—1)ulz,a(zi)rk;uk;,r(%—l)uk,f,r(Zi):|
i=1

2)

(@] .

In this most general case, the distinguishability function is
defined by a complicated expression involving the sets of

input indices ki, ..., k, and k{, ..., k, as well as permutation
o € Sznl

Jk,k/(a) = ((I)](j)} N

(@2|Porc|@7). .. [@). (72)

([P | @) @) (73)
There is no other symmetry in Eq. (73) apart from the fact that
permutations of the photons within each pair do not change
the internal states (in the degenerate case). Thus, one can
reduce the permutation group S,, in Eq. (73) to the factor
group Sy, /S5".

IV. MEASURE OF INDISTINGUISHABILITY

Let us further analyze the effect of distinguishability in the
case of identical internal states |<I>( )y = |®@) considered in
Sec. III B. Our goal is to quantify the indistinguishability of
photons in interference with such squeezed states. We focus
on the case of the degenerate squeezed states at interferometer
input. The output probability of Eq. (55) can be written also
in a similar form as in Eq. (65) of Sec. I1 C:

2n)!
pm=Tr{ mnlrk)(rkl}—po< >(n:l,)

2n
X <\I,(2)|®11M;1 |:1_[ |li(out)><l[(0ut)| ® ]1:|M2n|‘1,(2))®n

i=1

(74)

where
N
Wy — Tk o
| @) [Z 5| ® |9?)
k=1
(T M
_ _|:ZZ l(out) (0ul)>:| ® |(I)(2)) (75)
5 ,
=1 s=1
with A, = Y1, UniriUss.

A. A measure of indistinguishability

Let us decompose the internal state |®®)®" of 2n
photons into the symmetric part and an orthogonal com-
plement |[®@®)®" = 8, |27 1 (1 — §,,)|®P)®". We will
use the following factorization identity:

Mo, (1@ 85M) = M @ §5m), (76)

where the operator M;‘;P) acts on the operational modes only.
Equation (76) can be easily established using the operator
composition rule

(pa®pu)(]l®pa)=ﬁa®pmr

and observing that the permutation T = «o enumerates all
elements of S,. The symmetric part of the internal state
85,|®@)®" corresponds to the completely indistinguishable
case since such an internal state factors out, due to the identity
in Eq. (76), and does not contribute to the output probability
in Eq. (74).

Let g,, be the probability that the internal state of 2n
photons is symmetric, i.e.,

Gon = (®PD[®"8,,|@P)e"

1
= o Tn Z J(@). (77)

aeMy,

- <¢(2)|®11M2n|¢(2))®n

Although below we discuss the probability g, only in the case
of identical internal states of photon pairs, this probability can
be defined in the general case of different internal states

qon = ((I);i) | (

Sl @) - [@F). (78)

with the explicit dependence on the input ports of the consid-
ered photon pairs (reflected by the indices k; and k).

The introduced probability ¢, is the probability that 2n
photons are indistinguishable, quite similarly as in the case of
single photons at interferometer input [23]. When ¢, = 1 the
identity (76) implies that the photons interfere as completely
indistinguishable, i.e., a completely symmetric internal state
of n photon pairs has no influence on the output probability
distribution. Such a symmetry corresponds to single-mode
squeezed states with the same internal mode for all photons.

For identical internal states of photon pairs the probability
g2, in Eq. (77) satisfies go, > m thanks to the symmetry
of the tensor product of internal states under the permutations
of photon pairs and transpositions of two photons in each
photon pair. The lower bound is the lowest possible indis-
tinguishability due to the coinciding internal states. It can be
shown (see Appendix D for details) that the probability ¢, in
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Eq. (77) can be cast as

_ n\ (S s\ T12i@2s; — DY
o= HZ (s) (1_[ P ) T an-nh
2
( ) Zl_[(s’> Py, (79)

Is|=n j=1

where s = (s1, 52, ...), with s; being the number of occur-
rences of the internal mode |¢;) in the tensor product of the
internal states |®®)®", when the latter is expanded over the
tensor products of the internal modes.

The first expression in Eq. (79) confirms our interpretation
of ¢y, as the probability of photons behaving as indistin-
guishable: the multinomial distribution (*) [] i p’ gives the
probability of a particular subset of the internal modes |¢;)
of 2n interfering photons, whereas the last factor is the prob-
ability that in each matching pair the photons have the same
internal states (only the indistinguishable photons interfere).

For instance, if there are only two detected photons, they
come from the same (degenerate) squeezed state, hence, they
are indistinguishable. We have ¢, = 1. For four detected
photons, there are two combinations of nonzero occupations
S = (81, $2, .. .) of photons in the internal modes: s; = 2 and
s;, = s;, = 1. Hence, we obtain from Eq. (79)

() [0+ (o]

Ji<J]2
1+42P

=— (80)
where we have used the identity Zjl<j2 PiDj, = %(l -
> j p?) and the definition of the purity, Eq. (3). For n > 3,
Eqgs. (54) and (77) indicate that the probability g, depends
also on the higher-order moments of the singular values
> Py s<n.

The lowest possible indistinguishability ¢, = W is
attained in Eq. (79) for divergent Schmidt number in Eq. (3)
K — oo (or, equivalently, for vanishing purity P — 0), i.e.,
when p; — 0 whereas ) ; pj = 1. In this limit all higher mo-
ments of the singular values, starting from the purity, vanish,
Zj p}; — 0. By using the relation between summations (19)
of Sec. II, we obtain in this case from Eq. (79)

q4

o0

1)HZ anh_ 1)”

Ji=1 jn=1i=1

lim =
P—0 don =

(81)

where we have taken into account that the coincidences j; =
Ji give a vanishing contribution.

B. Bound on the total variation distance

From Egs. (74)—(77) we obtain the decomposition of the
output probability pp, as follows:

Pm = Qupm + (1 — 2P, (82)

where pp, is given by Eq. (42), whereas the complementary
probability pi is obtained by replacing the internal state of

2n photons by the complementary part, orthogonal to the
symmetric subspace,

1-3,
%—
\/I_CIZn

ie., the input state of Eq. (75) is replaced with the
following one:

|¢I>(2))®n |<I>(2)>®n

) =10 L5 e (83)
+ B - q2n

where |W?)) is the state in Eq. (75). Observe that by construc-
tion pil is a normalized probability distribution

Z o) =1 (84)

n=0 |m|=2n

Consider now the total variation distance between the out-
put probability distribution py, of Eq. (82) and that of the ideal
case pm [Eq. (42)]. From Eq. (82) we obtain

DE%Z Z [Pm — Pml

n=0 |m|=2n
= —Z(l—%n) > 1pm — 15|
|m|=2n
(o]
<Y U=qu) Y pm=1-4 (85)
n=0 lm|=2n

Here we have used that the variation distance is bounded by
the total probability

1 .
LS

Im|=2n

< Y pm=p2n)

|m|=2n

and introduced the averaged probability g, where the averag-
ing is over the ideal distribution pp:

g=>_ p2ngun. (86)

n=0

We have (see Appendix E)

sen=pn 11 (2”"> (2™ (87)

[n|=n k=1

with pp = Z = [])_, (1 — r2)i. Equations (77), (79), (82),
and (85) allow one to interpret § as the measure of average
indistinguishability, an analog of a similar measure in the
case of interference with single photons at interferometer
input [23].

C. Estimate of indistinguishability in the Gaussian boson
sampling experiment

We will use that for N equally squeezed single-mode states,
re =rfork=1,...,N, the probability to detect 2n photons
has a simple form, reminiscent of the negative binomial dis-
tribution (with a half-integer number of successes N/2, in
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general; see Appendix E)

o N N r2n
B2n) = (1 — 1)} (—) — (88)
2/nn!
where (m), = m(m + 1)...(m + n — 1). With simple algebra
one can get the average number of photon pairs and the rela-
tive dispersion

N 2 n? — i2 2

T2 a2 Nr?'
Observe that by Eq. (89) for N > 1/r? the distribution of the
number of detected photons, Eq. (88), becomes sharp about
the average, allowing to approximate the average probability
of indistinguishable photons g [Eq. (86)] by the most probable
value ¢ =~ ¢»;. The latter can be applied also for the case
of almost equal squeezing parameters r;, = r (recall that » =
tanh k&, where « is usually called the squeezing parameter).

In the case when the squeezed states are very close to being
the single-mode states, one can employ the two-mode approx-
imation consisting of the most probable mode and noise (such
a model was used in Ref. [11] to characterize purity of the
squeezed states). Let the two singular values be p; =1 —¢
and p, = €, for some € < 1. The noise amplitude € is related
to the purity

(89)

P=Y pi=(-el+e. (90)
j=12

The two-mode approximation allows to easily evaluate the
sum in Eq. (79) and estimate the value of ¢;. From the second
expression in Eq. (79) we obtain

2\ ' (25 (27 — 2s .
e () £ (oo
n s S n—s

1
:(1—6)'7(5,—- .

n, - ,
2 1—c¢

)%(P—d?
©On

where F is the Gauss hypergeometric function, thus,
F(1/2,—n,1/2 —n,x)~ 1 for 0 < x < 1 and arbitrary 7.
Equation (91) predicts that the probability of photons behav-
ing as indistinguishable in an interference with imperfectly
single-mode squeezed states falls exponentially fast in the
average number of detected photons.

The recent experimental Gaussian boson sampling [11]
corresponds to N = 50 degenerate squeezed vacuum states (in
an equivalent representation of N = 25 nondegenerate input
states in N = 50 input ports, see Sec. III) and the squeezing
parameters ry; ~ 1. Let us estimate the indistinguishability in
this experiment by employing the average case approximation
g =~ ¢y and the above two-mode model of noise. The aver-
age reported experimental purity in Ref. [11] is P = 0.938,
hence, € = 0.032 by Eq. (90). The average number of detected
photons 271 > 43, for the average number of clicks, is reported
to be 43. Therefore, by Eq. (91) the average probability of
photons behaving as completely indistinguishable satisfies
g2 < 0.5.

The above discussion leaves out one important question:
How can one estimate the indistinguishability parameter g,

from an experiment? Can one estimate the average indistin-
guishability g,; directly from the limited experimental data
obtained in experiments on the Gaussian boson sampling?
Since limited data allow only to estimate some low-order
correlations, is it possible to estimate this parameter from such
low-order correlations, e.g., by considering the correlations
in a few output ports? The following point should be taken
into account: if less than 27 photons are detected, no higher-
order cycles contributing to g,; [see Eqgs. (54) and (77) and
also Appendix D] can influence the experimental data. This
fact does not allow to directly estimate ¢p; from the low-
order correlations since the latter correspond to much smaller
photon numbers as compared to the average total number of
detected photons. A similar problem arises also in the case of
interference and the boson sampling with single photons (see
Refs. [25,64]). For instance, in Ref. [64] it was shown that
the low-order correlations would be insufficient to distinguish
such boson sampling from efficient classical approximations.
Similarly here, direct estimate of g,; from an experiment re-
quires going beyond the low-order correlations. One way out
would be to estimate the purity by the four-photon detection in
an interference on a beam splitter (by using pairs of the degen-
erate squeezed states or a single nondegenerate squeezed state
at a time). From Ref. [39] and also from Eq. (62) of Sec. III B
it is seen that the output probability depends on the purity.
After that, one can get an estimate on the indistinguishability
using the above two-mode model.

V. NON-GAUSSIAN SQUEEZED STATES

In the previous sections we have seen the power of the
first-order quantization representation for analysis of quantum
interference with the Gaussian squeezed states. The purpose
of this section is to investigate how the approach can be
extended to generalized (non-Gaussian) squeezed vacuum
states [40]. Such squeezed states are produced by p-photon
processes with p > 3, such as in the recent experimental
demonstration of the three-photon spontaneous parametric
down-conversion [41]. In the parametric approximation, the
multimode generalized squeezed state can be represented by
the following exponential operator:

[A)ocexp i DY A el 110). (92)

i 611 iMEIH

The exponent in Eq. (92) has divergent power-series ex-
pansion for p > 2 [65], as the parametric approximation
disregards power depletion in the optical pump [56,57]. How-
ever, for a finite total number of detected photons one needs
to retain only some finite number of terms of the divergent
Taylor series. Below, the focus will be on the degenerate case
corresponding to [ =1y =L =--- =1, and a symmetric
tensor A.

For the Gaussian squeezed states, u = 2, the existence
of the singular value decomposition of matrices allows one
to diagonalize the complex symmetric (generally, infinite-
dimensional) matrix A in Eq. (92) to the Schmidt modes
[49]. There is a unitary (also, in general, infinite-dimensional)
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matrix V;; that

Ay = Z)»jVilej, (93)

jel

with A; > 0 being the singular values and columns of V' the
Schmidt modes ¢;. Introducing new boson creation operators
by the same unitary transformation

at =y "elvy (94)
iel
we get the diagonal form of the multimode Gaussian squeezed
states, which was the starting point in Sec. II, where
)\j =r/pj-
For 1« > 3 the symmetric tensor A in Eq. (92) can also be
similarly diagonalized as a convex sum of the tensor products
of vectors [66] (the columns of the matrix V')

Airiy = D AVij oo Vi (95)

Jjel

However, in this case one has to use, in general, a nonunitary
matrix V;;. Nevertheless, we can introduce new boson creation
operators, similarly to Eq. (94), in order to diagonalize the
expression in the exponent in Eq. (92), even if they correspond
to some nonorthogonal states. Indeed, the new boson creation
operators can be used in the identity (11), relating the first-
and second-order quantization representations, as the latter
remains valid irrespective orthogonality of the single-particle
states.

Thus, the generalized squeezed states can be reduced in the
first-order quantization representation to a simpler diagonal
form, similarly as the Gaussian squeezed states. Consider
N multimode squeezed p-photon states with the overall
squeezing parameters 7y, ..., ry [introduced similarly as in
Sec. II, by rescaling A; = rpl/" of the singular values in
Eq. (95), where the posmve parameters pj sum to 1]. Similarly
as in Sec. III, the combined state of N generalized squeezed
states can be cast as follows:

N n
1‘[|r)o<Z V(“” {Zm@ |<1>,E’”>} ., (%)
k=1 ! k=1

Z( (k))u|¢(k)>

#) =
jel

Now, the state in Eq. (96), to which the projector S',m is
applied, is symmetric with respect to permutations of p-tuples
of photons and with respect to permutations of the photons
in each pu-tuple. Let Mf{ﬁl) be the set of all u-dimensional
matchings, i.e., partitions of un elements {1, ..., un} into
n disjoint p-tuples (41, ..., ®ut1)), i =1,...,n, where
permutations of the elements in each w-tuple do not produce
new partitions. The set Mffﬁl) can be enumerated by a vector
index ™ = (a, ..., 0yy), if we order the p-dimensional
matchings by the first element, where in each u-tuple we
choose as the first element the smallest one by permutation
of the elements. It is easy to establish that there are

(un)!
(u!y'n!

(un — 1)1 97)

u-dimensional matchings in M}jj,) We can project an ar-

bitrary permutation o € S, on Mfﬁf by expanding o as
follows:

oc=7n(11® - T, (98)

where 7 € S, permutes n u-tuples, and 1; € S, permutes the
elements of the ith u-tuple. The symmetrization projector S,
can be factored accordingly:

S

Sun S(luple) S®n Mil,”}:l)’
) = 1
pun (Mn — 1)‘(#)

Z p,. (99)

()
ae M,

Now, due to the symmetry by construction of the state in
Eq. (96), the p-dimensional matching operator M%) can

replace the projector S‘M, quite similarly as in the case of
the Gaussian squeezed states. One can then proceed from
this point.

Summarizing the above, the first-order quantization rep-
resentation is suitable also or the generalized squeezed
states, with, however, a new feature: the equivalent of the
Schmidt modes in the diagonal representation is not mutually
orthogonal, in general.

VI. CONCLUSION

In conclusion, the first-order quantization representation,
commonly underestimated, proves to be extremely useful ap-
proach to study the quantum interference of the squeezed
vacuum states on a unitary interferometer. It allows for
straightforward derivation of the output probability distri-
bution accounting for the fact that realistic squeezed states
possess continuous degrees of freedom, called the Schmidt
modes. The method also reproduces previously known results
in the limiting cases, e.g., it reproduces the probabilities for
the four-photon interference on a beam splitter and the well-
known probability formula for the case of the squeezed states
in a single common Schmidt mode.

It is found that the multimode structure (i.e., several
Schmidt modes) is one of the sources of distinguishability
of the squeezed states: each photon pair is effectively in a
mixed internal state, which leads to partial distinguishability.
A quantitative measure of indistinguishability ¢, is proposed.
It is the probability that n pairs of photons interfere as indis-
tinguishable. Moreover, it bounds the total variation distance
to the output distribution of the ideal indistinguishable case.
In this respect, the proposed measure of indistinguishability
is quite similar to that for single photons. It is shown that
¢», decreases exponentially fast in n. For example, the recent
Gaussian boson sampling experiment with the reported purity
P ~ 0.938 is, on average, close to the middle line between
distinguishable and indistinguishable cases with g,; < 0.5 for
2 > 43. This fact apparently means that partial distinguisha-
bility has also a strong effect on the computational complexity
of the output probability distribution from an experimental
Gaussian boson sampling. It is known that distinguishability
of single photons has a strong effect on the computational
complexity of the usual boson sampling.
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Finally, the approach of this work is not limited only to
the Gaussian states, as it allows for generalization to the
generalized (non-Gaussian) squeezed states. Such generalized
squeezed states were already observed in the recent three-
photon down-conversion experiment.
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APPENDIX A: MATCHINGS DO NOT FORM A GROUP

Counterexamples to the group properties are easily found
for n > 3. Consider the following matching permutation o =
(1,5,2,4,3,6) € Mg. We have = '(3) =5 > a~'(4) = 4,
hence, a~! ¢ M. Additionally, o> =(1,3,5,4,2,6) with
o’>(3) =5 > a?(4) = 4, hence also a> ¢ M. The action of
«a is further illustrated in Eq. (A1):

a(l)=a; =1, a*(1) = afay) =1,
a2)=a, =5, a?(2) = a(er) = 3,

a3)=a3 =2, o*(3) = a(a3) = 5, Al
oa(d) =a4 =4, a?(4) = a(oy) = 4, (AD
a(5) =as =3, a?(5) = a(as) = 2,

a(6) = ag = 6, o%(6) = a(ag) = 6.

APPENDIX B: DERIVATION OF THE OUTPUT

PROBABILITY
Substituting Egs. (29), (33), and (38) of the main text in the
Born rule and using the identity (2n)!(2n”)m =22" we

obtain

N
Pm = Tr{ﬁm]"[ |rk)(rk|}
k=1

22 l -
== [Z relk| (k] @ (<1>,§2>|} '@ P
" a.p Lik=1

2n
x [H [N @ ﬂ}f’ﬂ ® Pg

i=1

N ®n
x [Z relk) k) @ |<1>,§2>)} . (B1)

k=1

Now we apply the matching operators £, and Pﬂ to the
output states and expand the tensor products of the linear
combinations of two-photon input states. With the use of the
input-output relation (27) we get

CaB k=1 ky=lkj=1

n
* *
X |:l_[ Tk Ukilaz,-,l Ukzluz, rk; Ukl{lf‘Zi—l Uk;lﬂzi:|

i=1

AL A

(O] (02 [FIA00)...[80), B

which is Eq. (40), taking into account Eq. (39).

APPENDIX C: CYCLE INDEX OVER MATCHINGS

Recall that for a permutation group S, acting on the set
{1,2, ..., n}, the cycle index [67] is the sum

0, = Z ZICI(U)tZCz(G) B .l»’?n(”)

o€es,
= Z #s,(Cry .., G 16
Cy,...,G,
n!
X#S”(Cl, ...,C (Cl)

n) = —Hz=1 kaCk‘ )

where 1, ...,t, are free parameters, C; is the number of
k-cycles in the disjoint cycle decomposition of a permutation,
the sum over Cy, ..., C, is conditioned on ZZZI kC; = n, and
the factor #g (Ci, ..., C,) is equal to the total number of per-
mutations o € S, with a given cycle structure (Cy, ..., C,).

Let us now consider a similar cycle index but on the cycles
of matching permutations & € My, [Eq. (30)] acting on the
double set (1,1,2,2,...,n,n),i.e.,

_ Ci () Co(e) Cp(a)
L= Z @@ g
otEMz,,

= Y #a, (. GRS (C2)
Cy,....C,

1]

where the sum over Cy, ..., C, is conditioned on ZZ:] kC, =
n, and the cycle decomposition of a matching, when acting on
a double set, is defined in Sec. III B.

We need to count the number of matchings
#a1,,(C1, ..., ), from the total number (2n — 1)!!, which
have a given cycle structure (Ci,...,C,). Consider a
matching permutation of some given cycle structure, say
a=vv...v € (Cy,...,C,), where v; are the cycles as
defined by Eq. (52) of Sec. IIIB. To count the number
of matchings for a given cycle structure it is convenient
to convert the cycles over the double set of 2n elements
1 < x; < n (i.e., with the elements repeated twice) to similar
matching cycles over a set of 2n distinct elements. This can
be done by adding the number 7 to the second element in each
pair, e.g., we make the following transformation of a k-cycle
defined by Eq. (52):

v = {(x1, x2), (x2,%3), - . ., (X%, X1)}
—> V= {(x,n+x), (2, n+x3), ..., (xx,n+x1)}. (C3)

Now, for all k > 3, the transposition of x; with n + x; in a k-
cycle D results in a different possible matching «(Cy, ..., C,)
for all j =1, ..., k, moreover, such transpositions are inde-
pendent from each other. In the first special case of k =1
the only transposition is within a single pair and obviously
has no effect. In the second special case of k =2, e.g., ¥ =
{(x1,n 4+ x2), (x2, n 4 x1)}, only one such transposition (of the
two possible) is independent (as we can permute the order of
pairs). Summarizing, we get a factor

F, = 262X kG (C4)
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of how many different matchings in M,,, i.e., satisfying
Eq. (30), there are for a given cycle decomposition of a match-
ing {vi,...,v,} € (Cy,...,C,). Whatis left is to find out how
many cycle decompositions {vy, ..., v,} € (Cy, ..., C,) there
are. To this goal, let us drop in each cycle v, the second ele-
ment in each pair, obtaining on this way a cycle decomposition
of a permutation o € S,, (where the sequence of elements, one
from each pair, by their order defines a cycle in S,). We get
a map from the cycles over permutations belonging to Mo,
acting on the double set, to those of the symmetric group S,,.
Note that a k-cycle on the double set has a cyclic order of
the pairs: we can choose x; with which a cycle in Eq. (C3)
will start (recall that, by the definition of such a cycle, we are
allowed to permute the two elements inside each pair). On the
other hand, the respective k-cycle of the symmetric group S,
obtained by our map, e.g., from the cycle of Eq. (C3) we get
X] = X — -+ — Xx — X1, has a well-defined specific direc-
tion, not a cyclic order. We have that for k > 3, a k-cycle and
its inverse from S,,, while being different cycles, nevertheless
correspond to one and the same k-cycle on the double set.
Thus, we have to account for the double counting of cycles
from My, by those from S, by introducing the factor
1

Rl VA ©
to the number of cycles from S, of a given type (Cy, ..., C,),
ie., #s, (Cy,...,G,) of Eq. (Cl1). Combining the two factors
F, and F, given by Egs. (C4) and (C5), while using that
Y i—1 kC = n, and applying the result to #s,(Cy, ..., C,) of
Eq. (C1) we obtain the total number of matchings & € My,
corresponding to a given cycle structure (Cy, ..., C,):

#a,, (Cr, .., Cy) =#s,(Cy, ..., CHF
_ 2"n!
T, Gl K%

Comparing Eq. (C1) with Egs. (C2) and (C6), we see that the
cycle indices of M, and S, are intimately related:

1) =2"0,(t1/2,...,t,/2).

(Co)

Bty ..., (€7

APPENDIX D: PROBABILITY THAT r PAIRS OF
PHOTONS ARE INDISTINGUISHABLE

Using in Eq. (54) of Sec. III B the cycle index in Egs. (C1),
(C2), and (C7), by setting 7 = 5 Y ; p}; we obtain

1
2n) _
T = 2= 2 @

(!EMZ

2"n! G
(2n—1)” Z T Glens L H(zt")

~~~~~
n

2
= ————0,(t1, 00, ..., 1n). (D1
n 1"

To compute the cycle index in Eq. (D1) we can use the gener-
ating function approach [67], which reads as

a\" 2 xk
Onltt, ... 1) = (5) exp{Ztk?]
k=1

(D2)

x=0

From Egs. (D1) and (D2) we get
Z Z (P)x) }

@n(tl,...,tn)z( ) exp{
j=1 k=1

3\ ™ |
(5) Ha -

J=1

x=0

Is|=n

(n)l—[< i )nj(l— .x),%
s/ 0x Dj
]:l

n 1—[ 1/1 | 1 N
ls_”<s)1=12<2 )(2 ST )11'

= ||Z:: (:) [Tes - vy,

>
L

(D3)

where we have used the Leibniz rule for derivative, the
identity In(1 —z) = — Y3, &, denoted by s = (s, 52, . . .),
|s| = s1 + 82 + - - - = n, the distribution of n photons over the
internal modes j =1,2,... and by (’S’) the corresponding
multinomial. The probability of Eq. (D1) becomes

1 n 00 '
(2n) o o .
1 2n— 1N Z (s) | |(2Sj 1)!!pj

|s|=n j=1

() 26

|s|=n j=1

(D4)

where the second form is obtained with the help of the identity

2m— ! _pm 2m
m! o m)’

APPENDIX E: PROBABILITY TO DETECT 2r PHOTONS

(D5)

Let us derive the probability p(2n) that exactly 2n photons
are detected at a multiport output in the ideal case. Consider
first the single-mode squeezed state |r;) as in Eq. (25) (with
p1 = 1). The probability to detect 2n photons is given by
projection on the Fock state of 2n photons and reads as

206G e

with Z; = (1 — r,%)%. Since the probability to detect a given
number of photons in all possible output configurations is
independent of the interferometer, for a tensor product of N
single-mode squeezed states with the squeezing parameters

pr(2n) =

ri, ..., ry, the probability to detect 2n photons reads as
(2n) Z l—[ (Zn ) Z Z 1—[ an <}"k >2nk
Pk k) = e
In|=n k=1 In|=n k=1
(E2)

with Z = [}_,(1 — r2)s. The expression can be simplified
for the coinciding squeezing parameters ry = r. The following
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identity can be used:
ind al 2ny, N> 2y
S ST =TT (2)
n=0  |nj=nk=1 k=1 ng=0
= (1—4x)": (E3)

since 300, ()x" = (1 — 4x)~2. Taking the nth term from
the Taylor series of the expression in Eq. (E3) we get

N\ 4" /N
211 -—(3). (E4)
Inl=n k=1 1774 n: n
where (m), = m(m + 1)...(m + n — 1). Using Eq. (E4) into
Eq. (E2) for r;, = r we obtain
2n

pam=a-mE(3) = (ES)

nn!
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