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Quantum statistics engineering in a hybrid nanoparticle-emitter-cavity system
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Quantum engineering of photons is a key requirement for the development of quantum technology. Here, we
put forward a scheme to investigate extensively quantum statistical characteristics of the photons and their engi-
neering in a hybrid nanoparticle-emitter-cavity architecture through placing a nanoparticle (NP) and a quantum
emitter (QE), called NP-QE molecule, into an optical cavity, where the coherent tripartite coupling emerges in
the interactions among the NP, QE, and cavity. The photons are collected from the two different channels, i.e.,
the cavity emission and the NP-QE molecule scattering. Due to the composite nature of the tripartite dressed
excitations of our fully coupled system and the destructive interference between different transition pathways for
the two-photon excitation, the nontrivial quantum statistical properties, such as unconventional single-photon
blockade and strong photon superbunching, can be achieved even within the bad cavity limit (without the need
of the strong-coupling condition) when the NP-QE molecule is driven by an external laser not interacting the
cavity mode. It is also revealed that the photon autocorrelation and cross-correlation properties are well modified
by regulating the size-dependent system parameters, such as the NP-to-QE distance and the NP radius. The
small-coupling strength required, the ease of parameter tuning, the relaxation of high-cavity quality factor, and
the robustness to the dephasing rate in realistic scenarios all benefit the generation of single-photon sources,
which has potential applications in quantum information and quantum communication.
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I. INTRODUCTION

As a cornerstone of quantum optics, the study of light-
matter interaction has seen tremendous development in the
past few decades, which possesses a wide array of applications
in various fields such as optical sensing, quantum technolo-
gies, and quantum information processing [1]. In general, the
interaction between single quantum emitters (QEs), such as
single atoms, ions, color centers, molecules, or quantum dots
(QDs), and their electromagnetic environment only modifies
the spontaneous emission [2]. But, when the coupling is strong
enough, the energy levels of the hybrid system are altered,
being very different from that of each component, which is
crucial for many applications including single-photon source
that is an essential ingredient of quantum physics and can
satisfy the demands of quantum information and quantum
communication [3].

Perfect single-photon source emits only one photon at a
time so that the emitted photons exhibit strong antibunch-
ing effect, also called photon blockade [4]. Photon blockade
effect is considered to be a significant mechanism for generat-
ing single-photon source, which is manifested as the strong
interaction, leading to the optical response of the subse-
quent photons obviously modulated by the first one [5–7].
The photon blockade effect under the condition of strong
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nonlinear interaction is usually called conventional photon
blockade effect, and the physical mechanism behind it is due
to the unevenly spaced energy levels of the strongly coupled
system comprising an optical or plasmonic cavity and another
nonlinear degree of freedom. There have been several pro-
posals for achieving conventional photon blockade effect in
cavity quantum electrodynamics (CQED) systems [4,8–11],
in circuit CQED systems [12,13], in quantum optomechani-
cal systems [14–16], in second-order nonlinear microcavities
[17,18], and in localized surface plasmonic systems [19], etc.,
just to mention a few.

For conventional photon blockade effect, the strong non-
linear interaction is one of the necessary prerequisites, which
makes it the most significant constraint for the implementation
of strong antibunching effect for the reason that either the Kerr
nonlinearity of the cavity or the coupling rate of the QE cavity
must far exceed the system dissipation [5,20]. However, it is
well known that it is not easy to realize strong nonlinearity.

In order to eliminate the barrier to strong nonlinearity, Liew
and Savona proposed a new mechanism to generate photon
blockade in weak nonlinearity [21]. To distinguish the mech-
anism from the former, it is called unconventional photon
blockade effect, whose feature can be understood in terms of
destructive quantum interference between different excitation
pathways [22]. Based on this mechanism, a variety of systems
are proposed to realize the unconventional photon blockade
effect, such as CQED systems [20,23–26], coupled super-
conducting circuit resonators [27], coupled optomechanical
systems [28–30], coupled cavities with second- or third-order
optical nonlinearity [31–37], and so on.

Due to the large-scale mismatch between light and sin-
gle emitters, the interaction between them is inherently
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weak [38]. To create a light-matter interface customizing the
coupling between QEs and photons, two strategies have been
developed. One common strategy to remedy this mismatch is
to take advantage of CQED [39,40]. When a single QE is
placed in a high-finesse cavity, such as Fabry-Perot cavity,
micropillar cavity, microring cavity, photonic crystal (PhC)
cavity, or superconducting microwave cavity, the photons
bounce back and forth many times in the cavity, increasing
the opportunity of interaction with QE [41].

Another alternative strategy is to make use of nanoparticles
(NPs), a new platform exploring the interaction of light with
matter at the nanoscale. Among them, metal NPs have the
attractive optical property of enhancing and focusing the light
field at the nanoscale, which makes it possible to confine
the light field to the subwavelength scale by electromagnetic
mode [42]. This capability stems from the fact that metal NPs
can support localized surface plasmons (LSPs) (i.e., collective
electron oscillations on the mental NP surface) [43,44], which
are tightly confined spatially and not limited by diffraction. In
addition, in dielectric NPs with high refractive index, optically
induced Mie resonances can also supply near-field resonance
enhancement [45]. We notice that, based on the LSP ad-
vantages, the statistical properties of emitted light from one
semiconductor QD interacting with one metal NP, rather than
a single-mode dielectric cavity, has been pursued by, for ex-
ample, considering free-space scattering [46], coupled waveg-
uides [47], and introducing gain media [48] in order to realize
nonclassical antibunching effect (sub-Poissonian statistics).

In short, both microcavities and NPs can be used to tai-
lor the light-matter interaction effectively through the Purcell
effect, where the cavities usually provide long lifetime of pho-
tons (corresponding to high-quality factor Q), while the NPs
supply enhanced field [49]. Unfortunately, both of them have
inevitable disadvantages, that is, the mode volume of the cav-
ity is limited by the diffraction limit, while the metal NPs suf-
fer strong dissipation loss, which limits the occurrence of the
better regulation of the interaction between light and matter.

In recent years, some interesting works propose an at-
tractive hybrid NP-QE-cavity configuration by combining the
merits of low-loss microcavities with highly localized plas-
mons, which yields functionalities that exceed those of the
individual subunit [50–52]. As illustrated in Refs. [46,53–56],
the interplay between the system components is inextricably
related to both the size of the components and the distance
between them (for example, on the one hand, the NP-QE cou-
pling strength gme and the NP-cavity interaction coefficient
gcm are closely bound up with the NP radius rm; on the other
hand, the NP-QE coupling strength gme and the QE-cavity
interaction coefficient gce are closely related to the NP-QE
center-to-center distance d), resulting in the mutual restric-
tion between the coupling parameters. To our knowledge,
the influences of these size-dependent system parameters on
the photon-bunching and antibunching properties within the
related tripartite system (“NP + QE + cavity”) have not been
fully discussed before. Inspired by such a hybrid quantum
model and the above progress, in this work we propose a
theoretical model of inserting a NP and a QE (also called
NP-QE molecule [46]) in an optical cavity, as outlined in
Fig. 1, to explore how the size-dependent parameters affect
and engineer the statistical properties of both emitted and

FIG. 1. (a) Schematic picture of the hybrid system composed of
a spherical NP and a spherical QE embedded in an optical cavity
(not to scale). The NP and QE are separated by a center-to-center
distance d , and both of them are subject to a free-space transverse
laser Edri propagating along the y direction. Inset: the QE is mod-
eled as a two-level quantum system with the excited state |e〉 and
the ground state |g〉 by considering optical process that interplays
with the dipole-allowed transition, where ωe represents the dipole
transition frequency of the QE. Here, the QE can be exciton states of
single colloidal QD (see Sec. III later for a detailed description), also
including PhC cavity and silver NP. In the hybrid NP-QE molecule,
there is no direct tunneling interaction between the NP and QE.
And the coupling between the NP and QE is due to the long-range
Coulomb interaction, promoting energy transfer [57,58]. Shown in
the gray dotted box is the schematic diagram of the cavity, QE, and
NP polarizations, �ec represents the unit polarization direction of the
cavity field, where �ee denotes the unit vector of the dipole moment
of the QE, and �em expresses the unit polarization direction of electric
field induced by the NP, respectively. The quantum natures of both
the photons emitted by the cavity to guided waveguide (in plane)
and the photons scattered by the NP-QE molecule to free space
(out of plane) can be measured by the Hanbury Brown–Twiss setup
consisting of a beam splitter and two detectors, not shown here. (b) A
sketch describing the tripartite interaction among the NP, QE, and
cavity where gmc represents the coupling strength between the NP
and cavity, gce describes the coupling strength between the QE and
cavity, and gme denotes the coupling strength between the NP and
QE. The other symbols are defined and explained in the main text.

scattered photons from this hybrid NP-QE-cavity coupling
architecture.

Under the excitation of an external driving field, the occur-
rences of the NP-QE interaction, the cavity-QE interaction,
and the NP-cavity interaction can enrich quantum statistical
line shapes of the tripartite hybrid system, as expected. To this
end, we analytically and numerically calculate the autocorre-
lation function of (i) the emitted photons from the cavity, (ii)
the scattered photons from the driven NP-QE molecule, and
(iii) the cross-correlation function between the cavity emis-
sion and the NP-QE scattering, respectively. As a figure of
merit, in this work our attention is focused on the depen-
dence of the photon statistics on the size-dependent system
parameters, specializing the general framework to realistic
experimental scenarios.

Compared with the traditional CQED system containing
a single QE, the introduction of the NP can make the sys-
tem break through the limitation of strong coupling, and
make the system obtain the enhanced antibunching or re-
ciprocal transformation from strong antibunching to strong
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(super)bunching as well as nonclassical to classical behavior
in the weak-coupling scenarios thanks to the composite nature
of tripartite excitations. Specifically, the statistical properties
of the cavity emission and NP-QE scattering photons have
a controllable flexibility by tuning the NP-to-QE distance
d and the NP radius rm properly, where the photon statis-
tics can be transformed between antibunched, bunched, or
Poissonian. Both the emitted photons from cavity and the
scattered photons from NP-QE all characterized by high in-
tensity and strong antibunching can be prepared under the
weak-coupling condition in our tripartite hybrid system. For
many applications, optical cavities with lower quality factors
are preferred owing to the increased spectral width of the
cavity mode. In our proposed scheme, photon blockade can
be implemented even at very low-quality factor because of the
maintenance of antibunching characteristics in a wide range
of cavity quality factor, to a certain extent which eliminates
the difficulty of experimental implementation. Our model also
supports a scheme to achieve single-photon sources with the
robustness against the dephasing rate of the QE. Besides, the
cross correlation between the cavity emission photons and the
NP-QE scattering photons can be shown as anticorrelated or
correlated by manipulating the NP-to-QE distance d or the NP
radius rm.

The organization of this paper is as follows. In Sec. II,
the theoretical model of the tripartite hybrid system under
consideration is yielded at the beginning (Sec. II A). The
quantum master equation governing the dynamics of the sys-
tem and the second-order correlation function providing the
information of photon statistics are subsequently introduced
(Sec. II B). In Sec. III, we elucidate the feasibility of the
experiment and introduce the choice of system parameters in
detail. In Sec. IV, an analytical discussion for the second-
order correlation function of the system is carried out via
the Schrödinger equation approach under weak driving-field
circumstances. In Sec. V, to begin with, we present the nu-
merical results and compare them with analytical results.
After this, the dependence of the statistical properties of
the cavity emission photons on various system parameters
is investigated via the second-order autocorrelation function
numerically in Sec. V A. Second, the photon statistics of the
NP-QE scattering photons varying with the size-related pa-
rameters are displayed in Sec. V B. Finally, the second-order
cross-correlation function g(2)

cp (0) between the cavity emis-
sion light and the NP-QE scattering light is investigated in
Sec. V C, and the corresponding results show that both anti-
correlated and correlated cavity emission photons and NP-QE
scattering photons can be generated in our tripartite hybrid
system. Conclusions are finally presented in Sec. VI.

II. BASIC FRAMEWORK OF SYSTEM

A. Theoretical model and Hamiltonian

As depicted schematically in Fig. 1(a), the hybrid system
under consideration is composed of an optical cavity con-
taining a two-level QE and a spherical nonmagnetic NP. The
spherical QE with radius re is assembled near the surface
of the spherical NP with radius rm and frequency-dependent
permeability εm(ω), and the whole is placed in an optical

cavity. The separation distance between the NP and QE is d
(d − rm − re > 2 nm) [46], which ensures there is no direct
tunneling between them. The NP and QE are excited by an
external applied driving field Edri = E0e−iωd t + c.c., E0 being
the amplitude, ωd being the angular frequency, and c.c. de-
noting the complex conjugation. The propagation direction of
the driving field Edri is along the y axis, and its polarization
direction is set to be parallel or perpendicular to the axis
joining the NP and QE structures.

When light is applied to a NP whose size is smaller than or
comparable to the skin depth (for noble metal gold or silver,
the skin depth is about 25 nm), the external light field can
penetrate the entire dielectric sphere and drive the collective
wavelike motion of free electrons on the NP surface [59].
Further, if the frequency of excitation light is close to the
resonance frequency of plasmonic mode, the nonpropagating
localized surface plasmons resonance (LSPR) occurs, which
enables the NP to maintain the electromagnetic field energy
in the form of electromechanical energy, giving rise to light
field enhancement and concentration at the nanoscale.

At the same time, the precondition that the size of the
NPs is much smaller than the wavelength of incident light
allows that the external light field which is applied to the NPs
can be regarded as uniform and in phase. Furthermore, when
considering the NP-QE molecule, the size of components and
the distance between them are considered small enough such
that the retardation effects can be ignored conveniently, which
further demonstrates the validity and rationality of using qua-
sistatic approximation to describe the scattering of the NPs
[60,61]. Besides, it is natural to use the dipole approximation
to describe the properties of individual subwavelength NPs,
and the dipole approximation is still valid when the NP-QE
distance is large relative to the size of components [62,63].

When the electric field is applied to the hybrid NP-QE, the
oscillating electric field not only excites the NP mode, but also
couples the QE transition [64]. The superposition field sensed
by the NP is composed of the external driving field and the
additional field generated by the oscillating dipole moment
caused by the dipole transition of the QE. At the same time,
the dipole transition of the QE also feels the influence of the
NP mode correspondingly, thus forming self-feedback. The
excitation field polarizes the NP-QE molecule, thus leading to
a dipole-dipole coupling between them.

Under the dipole and rotating-wave approximations, the
Hamiltonian of the whole quantum system describing the NP-
QE-cavity coupling process can be written as

Ĥtot = Ĥ0 + Ĥint + Ĥdri, (1)

where each term will be explained in detail below.
The first term Ĥ0 on the right-hand side (RHS) of Eq. (1),

associated with the free-energy Hamiltonian of the isolated
cavity, NP, and QE, can be represented as

Ĥ0 = h̄ωcĉ†ĉ + h̄ωmm̂†m̂ + h̄ωeσ̂
†σ̂ , (2)

where h̄ is the reduced Planck’s constant. ωc is the resonance
frequency of the cavity field, ĉ† and ĉ denote the photon
creation and annihilation operators for the cavity mode, re-
spectively, fulfilling the usual bosonic commutation relation
[ĉ, ĉ†] = 1. The dielectric function of the NP can be char-
acterized by a frequency-dependent Drude model εm(ω) =
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ε∞ − ω2
p/(ω2 + iκmω) [44,46]. Here, ε∞ is the ultraviolet

permittivity of metal, ωp is the plasma frequency, and κm is
the damping rate of metal, respectively. In light of the Drude
model and making use of the Fröhlich condition Re[εm(ω)] =
−2εb [44] with Re[·] referring to the real part of the magni-
tude enclosed in square brackets, it can be deduced that the
resonant frequency ωm of the NP plasmonic field mode is
ωm = ωp/

√
2εb + ε∞, with εb being the relative permittivity

of the environment where the NP-QE molecule is embedded.
m̂† and m̂ are the bosonic creation and annihilation operators
describing the NP plasmonic field mode. For convenience, we
have taken the zero-point energies for the NP and cavity fields
to be the zeros of energies since they only yield a relative shift
and do not affect the system dynamics. As shown in Fig. 1(a),
the QE can be modeled as a two-level system with a ground
state |g〉, an excited state |e〉, and a dipole-allowed transition
frequency ωe, respectively. The energy of the ground state |g〉
is set as zero for the sake of simplicity. σ̂ = |g〉〈e| and its
conjugate operator σ̂ † = |e〉〈g| represent the ladder operators
of the QE, satisfying the fermionic anticommutation relations
{σ̂ †, σ̂ } = 1.

The second term Ĥint on the RHS of Eq. (1), associated
with the dipole-dipole interaction Hamiltonian between the
NP and QE, the QE-cavity interaction Hamiltonian between
the QE and cavity, and the NP-cavity interaction Hamiltonian
between the NP and cavity [see Fig. 1(b)], can be expressed
as

Ĥint = ih̄gme(m̂†σ̂ − m̂σ̂ †) + ih̄gce(ĉ†σ̂ − ĉσ̂ †)

+ h̄gmc(m̂†ĉ + m̂ĉ†), (3)

where gme characterizes the degree of dipole-dipole coupling
between the NP mode and the QE, with the form of gme = �μ ·
�em(Sα/d3)

√
3ηr3

m/(4π h̄ε0). Details of the derivation are given
in Refs. [56,65]. Here, �μ = μ�ee is the dipole moment of the
QE, with μ representing the magnitude of the dipole moment
of the QE (assuming that μ is real without loss of generality,
i.e., μ∗ = μ) and �ee being the unit vector of the dipole moment
of the QE, and �em is the unit polarization direction of the
dipole response field created by the NP. Since we consider that
the dipole moment of the QE is aligned with that of the electric
field caused by the NP, the coupling strength gme can be
written as the form of gme = μ(Sα/d3)

√
3ηr3

m/(4π h̄ε0) [46].
Here, Sα is the orientation parameter, with Sα = 2 (Sα = −1)
for the polarization of the external driving field being parallel
(orthogonal) to the axis joining the NP and QE structures.
η is defined as η = {d Re[εm(ω)]/dω|ω=ωm}−1 = [κ2

m(2εb +
ε∞) + ω2

p]2/[2(2εb + ε∞)3/2ω3
p] [65], and ε0 is the vacuum

permittivity.
Before continuing, we would like to add a few remarks.

The metal NP has the attractive optical property that can
support the LSPs, enabling it to enhance optical fields both
inside and in the near-field zone outside the NP [44]. In
this work, we only focus on the electric field outside the
NP (i.e., d > rm + re). Under the excitation of the external
driving field Edri, the NP will react to the superposition field
composed of the external driving field and the dipole re-
sponse field of the QE, thus generating an electric field in the
form of Em = SαPnp/(4πε0εbd3) outside the NP [46,55,56].

Here, Pnp = 4πε0εbβr3
m[E0 + SαPQE/(4πε0εbd3)] denotes the

dipole moment of the NP, β = [εm(ω) − εb]/[εm(ω) + 2εb] is
the Clausius-Mossotti factor of the NP, and PQE represents the
dipole moment of the QE, respectively. The above expres-
sions convey an obvious message: the NP dipole response
field is positively correlated with the size of the NP. With
the aid of CQED methods, the optical field of the NP can
be quantized, and then the dipole-dipole coupling strength
gme = μ(Sα/d3)

√
3ηr3

m/(4π h̄ε0) between the NP and the QE
can be derived accordingly [46,54–56]. The coupling strength
between the NP and the QE placed near the surface of the NP
is proportional to the effective mode volume of the NP, which
is different with the usual Jaynes-Cummings coupling form
of the QE embedded into optical cavity [53] or placed on the
surface of NP [66], also reminiscent of the result described in
[67] (i.e., the cavity-QE coupling is proportional to 1/

√
V , V

is the effective volume of the cavity). Physically, the oscillat-
ing electric field created by the external driving field Edri can
generate plasmon oscillations in the NP and electric dipoles in
the QE, which interact with each other via the dipole-dipole
interaction (Coulomb interaction) and, in turn, renormalize
the oscillating electric field. This is the fundamental reason
why increasing the NP size rm can lead to an increase in the
NP-QE coupling strength gme.

It is demonstrated in Ref. [68] that the metal NP responds
basically as an induced dipole for diameters below ∼150 nm
and the higher-multipole modes should be considered at larger
sizes. In the following discussion, we consider the case where
the size of the NP is much less than 150 nm and the QE is
placed at a distance about or above 2rm from the NP, which is
sufficient to ignore the high-order multipole effect as well as
the direct tunneling effect.

And then, gce indicates the position-dependent coupling
coefficient between the QE and cavity mode, taking the form
of gce = �μ · �ec

√
ωc/(2h̄ε0εbVc) f (re) with �ec representing the

unit polarization direction of the cavity field and Vc being the
mode volume of the cavity [50,69]. The relative orientation
between the dipole moment of the QE and the polariza-
tion vector of the cavity field is denoted by an angle θ (as
shown in set of Fig. 1), thus, the coupling coefficient between
the QE and cavity mode can be further expressed as gce =
μ cos θ

√
ωc/(2h̄ε0εbVc) f (re). Here, f (r) = f (x, y) f (z) is the

normalized mode distribution function describing the distri-
bution of cavity field, where f (x, y) denotes the transverse
spatial mode profile and maximizes when the coordinates
(x, y) take (0,0), i.e., f (x, y)|x=0,y=0 = 1, whereas f (z) =
cos(2πz/λc) represents the longitudinal spatial mode func-
tion with λc being the resonance wavelength of the cavity
mode. As shown in Fig. 1(a), we assume that NP is placed
at the origin of the coordinate axis, and the relative posi-
tion between the NP and QE changes on the z-coordinate
axis, i.e., the position vector rm of the NP is (0,0,0), and
the position vector re of the QE is (0, 0, d ) taken with re-
spect to the center of the NP. This makes the normalized
mode distribution function f (r) at the location of QE in
the form of f (re) = f (x, y)|x=0,y=0 f (z)|z=d = cos(2πd/λc).
gmc represents the interaction coupling strength between the
NP and cavity modes, which can be further expressed as
gmc = 2πεbr3

m cos θ
√

ωmωc/(εgεbVmVc) f (rm) [50], with se-
lecting f (rm) = f (x, y)|x=0,y=0 f (z)|z=0 = 1.
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The third term Ĥdri on the RHS of Eq. (1) referring to the
Hamiltonian of the driving of the NP and QE by the external
driving field Edri, can be written as

Ĥdri = −h̄(�mm̂†e−iωd t + �∗
mm̂eiωd t )

−h̄�e(σ̂ †e−iωd t + σ̂eiωd t ), (4)

where �m = E0χ/h̄ and �e = E0μ/h̄ are, respectively, the
Rabi frequencies for the coupling of the external driving laser
to the NP mode and the QE, resulting from the dipole interac-
tion of the NP and QE with Edri [55,56]. E0 = √

2Ip/(
√

εbε0c)
is the amplitude of the external driving laser with Ip =√

εbε0cE2
0 /2 being the intensity of the driving laser and c

denoting the vacuum light speed. χ = −iεb

√
12πε0ηh̄r3

m is
the dipole moment of the NP [65]. Thus, �m and �e can be
further represented as �m = −iεb

√
24π Ipηr3

m/(
√

εbh̄c) and
�e = (μ/h̄)

√
2Ip/(

√
εbε0c), respectively.

For convenience, the system dynamics can be rotated with
respect to the driving laser frequency ωd by applying the
operator Û (t ) = exp[iωdt (ĉ†ĉ + m̂†m̂ + σ̂ †σ̂ )], which leads
to an effective Hamiltonian Ĥeff = Û ĤtotÛ † − ih̄Û (dÛ †/dt ),
being of the form

Ĥeff = h̄�cĉ†ĉ + h̄�mm̂†m̂ + h̄�eσ̂
†σ̂

+ ih̄gme(m̂†σ̂ − m̂σ̂ †) + ih̄gce(ĉ†σ̂ − ĉσ̂ †)

+ h̄gmc(m̂†ĉ + m̂ĉ†) − h̄(�mm̂† + �∗
mm̂)

− h̄�e(σ̂ † + σ̂ ), (5)

in which �c = ωc − ωd , �m = ωm − ωd , and �e = ωe − ωd

define the detunings of the cavity mode (ωc), the NP mode
(ωm), and the QE (ωe) from the driving field (ωd ), respectively.
In particular, if considering the situation of gme = gmc =
�m = 0 (NP decoupled), in other words, the role of the NP is
ignored and we only care about the coupled QE-cavity system,
Eq. (5) is simplified to the well-known Jaynes-Cummings
model [53]. Alternatively, if thinking over another case where
gce = gmc = 0 (cavity decoupled), the above Hamiltonian
characterizes a hybrid NP-QE molecule system which has
been studied in detail in Ref. [46]. We refer the reader to
Refs. [50,65] for technical details of the derivation about the
whole system Hamiltonian.

B. Master equation and second-order correlation function

In general, there are losses in the cavity and NP-QE
molecule, which makes it an open system. To this end, tak-
ing the dissipation into account, the dynamics of the hybrid
NP-QE-cavity system can be depicted by the Born-Markov
quantum master equation:

d ρ̂

dt
= − i

h̄
[Ĥeff , ρ̂] + κcD(ĉ)ρ̂ + κmD(m̂)ρ̂

+ γsD(σ̂ )ρ̂ + γdD(σ̂ †σ̂ )ρ̂, (6)

where ρ̂ is the density operator of the fully coupled tripartite
system and D(Ô)ρ̂ = Ôρ̂Ô† − 1/2Ô†Ôρ̂ − 1/2ρ̂Ô†Ô is a
general Lindbald operator form for the collapse operator Ô,
answering for the incoherent loss of the system. For the dissi-
pation, κc denotes the decay rate of the cavity mode and κm =
κr + κnr accounts for the damping rate of the NP plasmonic

field mode, covering both the radiation loss κr caused by
radiation to the far field and the nonradiation loss κnr caused
by Ohmic loss. γs and γd represent the spontaneous emission
rate and the dephasing rate of the two-level QE, respectively.

The figure of merit quantifying the single-photon degree
for this coupled quantum system is the equal-time second-
order autocorrelation function, defined as

g(2)
A (0) = Tr(ρssÂ†Â†ÂÂ)

[Tr(ρssÂ†Â)]2
, (7)

where ρss is the steady-state solution by setting dρ̂/dt = 0
in Eq. (6). The notation Â can be referred to the photon
annihilation operator ĉ for the cavity mode, i.e., Â = ĉ which
corresponds to the photons emitted by the cavity mirror, or the
total polarization operator p̂ for the hybrid NP-QE molecule,
i.e., Â = p̂ = χ∗m̂ + μσ̂ [46,55,56] which corresponds to the
photons scattered by the NP-QE molecule in free space.
The autocorrelation function g(2)

A (0) describes the conditional
probability for detecting a second photon simultaneously,
given that a photon is detected in the same channel. On the
other hand, mutual correlations between the cavity emission
photons and the NP-QE scattering photons can also be inves-
tigated through an equal-time second-order cross-correlation
function

g(2)
cp (0) = Tr(ρssĉ† p̂†ĉ p̂)

[Tr(ρssĉ†ĉ)Tr(ρss p̂† p̂)]
, (8)

where the cross-correlation function g(2)
cp (0) can be interpreted

as the modified photon output of one channel conditioned on
the presence of a photon in the other channel.

As a significant index, the equal-time second-order in-
tensity correlation function g(2)(0) can well evaluate the
statistical properties of photons. Specifically, g(2)(0) < 1
amounts to sub-Poisson statistics (photon antibunching). Ide-
ally, it indicates the complete photon blockade when g(2)(0)
approaches zero, which can be used to prepare a perfect
single-photon source. g(2)(0) = 1 corresponds to Poisson
statistics, i.e., a coherent field. g(2)(0) > 1 corresponds to
super-Poisson statistics. More detailed division can be dis-
tinguished: 1 < g(2)(0) < 2 corresponds to photon bunching,
g(2)(0) = 2 stands for thermal or chaotic photon, and g(2)(0) >

2 refers to photon superbunching or extra bunching [70].

III. EXPERIMENTAL FEASIBILITY AND SYSTEM
PARAMETER CHOICE

In this section, an assessment of the experimental feasi-
bility of the present scheme is in order. Below we consider,
for concreteness, single colloidal QD, metal NP, and PhC
cavity as a possible implementation of our proposed tripartite
coupling system. Fabrication can be performed via mainly
employing chemical synthesis, electron beam lithography, and
inductively coupled plasma-etching techniques.

First, colloidally synthesized QD with emission wave-
length tunability and chemical flexibility [71] has a variety
of potential applications in optoelectronics including optical
amplifiers, lasers, and so on. Inexpensive and scalable wet
chemical synthesis procedures can be utilized to chemically
synthesize colloidal QDs with sufficiently small sizes (aver-
age 1 to 6 nm in radius) [72–74], which has the capability
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to furnish routine preparation of semiconductor nanocrys-
tals. Advanced semiconductor synthetic methodology can
accurately adjust both the size and shape of colloidal QD
with near-atomic-layer precision [73,74]. Current experiments
have allowed for preparing and manipulating one, two, and
multiple CdSe colloidal QDs [75,76]. In addition, single col-
loidal CdSe QD with a size of 1 nm and an energy gap of
about 2.9 eV has also been reported in experiment [71].

Inspired by these state-of-the-art experiments, the size re

of colloidal QD can be designed to be much smaller than the
center-to-center distance d between the QD and NP (re 	
d), while again d is much smaller than the wavelength of
the incident light λ (d 	 λ). As a result, within the QD, the
electric field induced by the incident light is uniform, and the
QD can be modeled as a pointlike dipole emitter. However,
for the metal NP coupled to the QD, the dependencies of the
electric field on NP’s size need to be considered. Alternatively,
when colloidal QD is treated quantum mechanically in the
form of discrete energy levels, a few degenerate excited levels
exist. Here, we approximate the QD as a simplified two-level
model. In more realistic calculations beyond the two-level
approximation, one has to consider complicating effects, such
as the degenerate excited states with different dipole moments,
which is left for further study owing to the need to compute
large matrices with complex entries.

Second, semiconductor metal NP sample can be prepared
by means of advanced electron-beam lithography, seed-
mediated growth method, and template-stripping technology
[77–79], also which is commercially available. Experimen-
tally, in order to overcome the difficulty of accurately spatial
positioning of a single QD within the nanometer range of a
metal NP, Hartsfield et al. demonstrated the strong QD-NP
coupling by controlling a CdSe/ZnS QD (3 nm in radius) near
a spherical Au NP (15 nm in radius) through atomic force
microscopy (AFM) operation that enables one to carefully
tailor the dimensions of an individual structure with a precise
positioning of QD with below 5 nm accuracy [80]. Ratchford
et al. positioned a single Au NP near a CdSe/ZnS QD to
construct a hybrid nanostructure with variable geometry using
AFM nanomanipulation [81], which promotes the feasibility
of our proposed model. More high accuracy for the spatial
positioning of QD in experiment in contrast with [80] may
be challenging under current technologies, which requires the
further development of microfabrication and nanotechnology.

Finally, PhC nanocavity can be fabricated using electron
beam lithography, reactive ion etching, and chemical wet
etching. The details of the fabrication procedure for realizing
such PhC cavities can be found in [82,83]. The resonant fre-
quency of PhC cavity mode can be varied either by xenon gas
deposition technique (coarse tuning) [84] or by temperature-
tuning technique (fine tuning) [85]. It has been shown that
chemically synthesized nanocrystals, such as CdSe, PbS, and
PbSe colloidal QDs, can be site selectively inserted on PhC
cavity by the means of AFM lithography and surface chem-
istry techniques, which has checked to be robust that colloidal
QDs can be bounded to the target region [86–88]. On the
other hand, semiconductor metal NP can be embedded in a
PhC cavity using a nanoassembly method that combines a
modified dip pen technique with AFM manipulation, which
allows the assembly and rearrangement of enough small

plasmonic structures [89–93]. For example, in Ref. [93],
Fröch et al. demonstrated a feasible solution using PhC slab
design and fabrication method for hybrid integration of NP
and PhC cavity, which can achieve efficient coupling between
components. Although no single experimental QD-NP-cavity
setup currently satisfies all the requirements needed for re-
alizing the antibunched statistics under study, this may be
remedied in the near future due to increasing advances in
nanotechnology.

The quantum nature of the output light can be confirmed
by performing a Hanbury Brown–Twiss type experiment [94],
which comprises a 50:50 beam splitter with transmittivity
1
2 and two single-photon avalanche diodes (SPADs) for the
second-order correlation g(2) measurement, and two beam
splitters (the first one with transmittivity 2

3 and the other
with 1

2 ) and three SPADs for the third-order correlation g(3)

measurement. The photons emitted by the PhC cavity can
be detected by introducing a PhC waveguide [95,96] in the
vicinity of the cavity in the x-z plane, whereas the out-of-plane
photons scattered by the NP-QD molecule can be probed
perpendicular to the PhC membrane of the x-z plane where
a pinhole in the detection path is used for spatial filtering of
the cavity emission [92].

In order to evaluate our proposed scheme, in the following
we consider the specific case of Ag NP as an example, whose
frequency-dependent dielectric permittivity can be expressed
as εm(ω) = ε∞ − ω2

p/(ω2 + iκmω) [44]. Here, the related
material parameters are selected as follows: the ultraviolet
permittivity of Ag ε∞ = 5 [55], the NP bulk plasma frequency
of Ag ωp = 7640.21 meV (corresponding to the resonant fre-
quency of the Ag NP ωm = ωp/

√
2εb + ε∞ = 2887.73 meV

in vacuum, εb = 1), and the damping of Ag κm = 53.28 meV
[46], respectively. The PhC cavity quality factor is calculated
to be Q = ωc/κc = 104 when taking the cavity resonance
frequency ωc ∼ ωm and the cavity loss κc = 0.2887 meV. The
cavity mode volume is set to Vc = 1μm3. These are typical
values for the metal NP and PhC cavity systems realized
experimentally, with similar behavior expected for a range of
parameters. Apart from that, the dipole moment and sponta-
neous emission rate of the QD are set to μ = 0.7 nm and
γs = 50 μeV [46], unless otherwise stated. Lastly, a weak
driving field Edri with intensity Ip = √

εbε0cE2
0 /2 = 1W/cm2

in free space is applied to drive the hybrid NP-QD molecule.
The polarization direction of the driving field is set to be
parallel to the orientation of the QD dipole moment, where
the polarization of the driving field can be controlled via a
λ/2 wave plate. Note that the NP dipole moment is induced
by the driving field and its orientation is consistent with the
polarization direction of the driving field. There is an angle
θ between the direction of the QD dipole moment and the
polarization direction of the cavity field.

IV. ANALYTICAL SOLUTIONS OF SECOND-ORDER
CORRELATION FUNCTION UNDER WEAK-DRIVING

CONDITION

In this section, we present here approximately analyti-
cal expressions for the system observables as an alternative
method to characterize the photon statistical properties of the
NP-QE-cavity coupling system. The quantum state can be
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indicated as an expansion based on a Fock state basis. Under
a weak driving limit, the population of the high-photon exci-
tation states is so low that the total excitation number of the
Hilbert space can be truncated to a lower value. Therefore, the
wave function of the system can be reasonably approximated
in the two-excitation manifold as

|�(t )〉 = C0,0,g|0, 0, g〉 + C1,0,g|1, 0, g〉 + C0,1,g|0, 1, g〉
+C0,0,e|0, 0, e〉 + C2,0,g|2, 0, g〉 + C0,2,g|0, 2, g〉
+C1,1,g|1, 1, g〉 + C1,0,e|1, 0, e〉 + C0,1,e|0, 1, e〉,

(9)

where |n, m, j〉 = |n〉 ⊗ |m〉 ⊗ | j〉 denotes a state with n pho-
tons in the cavity mode, m excitations in the NP mode, and
the QE in the state of | j〉 ( j = e, g). The coefficients Cn,m, j

represent the probability amplitude of the corresponding state
|n, m, j〉, for which the corresponding occupation probabil-
ity is given by |Cn,m, j |2. The equations of coefficients Cn,m, j

varying with time can be obtained via the Schrödinger equa-
tion ih̄∂|�(t )〉/∂t = Ĥ ′

eff |�(t )〉 written for the non-Hermitian
Hamiltonian

Ĥ ′
eff = h̄

(
�c − iκc

2

)
ĉ†ĉ + h̄

(
�m − iκm

2

)
m̂†m̂

+ h̄
(
�e − iγs

2

)
σ̂ †σ̂ + ih̄gme(m̂†σ̂ − m̂σ̂ †)

+ ih̄gce(ĉ†σ̂ − ĉσ̂ †) + h̄gmc(m̂†ĉ + m̂ĉ†)

− h̄(�mm̂† + �∗
mm̂) − h̄�e(σ̂ † + σ̂ ). (10)

Substituting the wave function of the system |�(t )〉 [Eq. (9)]
and the effective non-Hermitian Hamiltonian Ĥ ′

eff [Eq. (10)]
into the Schrödinger equation, a set of equations for the prob-
ability amplitude coefficients Cn,m, j can be given as

ih̄
∂C1,0,g

∂t
= h̄

(
�c − iκc

2

)
C1,0,g + ih̄gceC0,0,e + h̄gmcC0,1,g

− h̄�∗
mC1,1,g − h̄�eC1,0,e, (11)

ih̄
∂C0,1,g

∂t
= h̄

(
�m − iκm

2

)
C0,1,g + ih̄gmeC0,0,e + h̄gmcC1,0,g

− h̄�mC0,0,g −
√

2h̄�∗
mC0,2,g − h̄�eC0,1,e, (12)

ih̄
∂C0,0,e

∂t
= h̄

(
�e − iγs

2

)
C0,0,e − ih̄gmeC0,1,g − ih̄gceC1,0,g

− h̄�∗
mC0,1,e − h̄�eC0,0,g, (13)

ih̄
∂C2,0,g

∂t
= 2h̄

(
�c − iκc

2

)
C2,0,g +

√
2ih̄gceC1,0,e

+
√

2h̄gmcC1,1,g, (14)

ih̄
∂C0,2,g

∂t
= 2h̄

(
�m − iκm

2

)
C0,2,g +

√
2ih̄gmeC0,1,e

+
√

2h̄gmcC1,1,g −
√

2h̄�mC0,1,g, (15)

ih̄
∂C1,1,g

∂t
= h̄

(
�c − iκc

2

)
C1,1,g + h̄

(
�m − iκm

2

)
C1,1,g

+ ih̄gmeC1,0,e + ih̄gceC0,1,e +
√

2h̄gmcC2,0,g

+
√

2h̄gmcC0,2,g − h̄�mC1,0,g, (16)

ih̄
∂C1,0,e

∂t
= h̄

(
�c − iκc

2

)
C1,0,e + h̄

(
�e − iγs

2

)
C1,0,e

− ih̄gmeC1,1,g −
√

2ih̄gceC2,0,g + h̄gmcC0,1,e

− h̄�eC1,0,g, (17)

ih̄
∂C0,1,e

∂t
= h̄

(
�m − iκm

2

)
C0,1,e + h̄

(
�e − iγs

2

)
C0,1,e

−
√

2ih̄gmeC0,2,g − ih̄gceC1,1,g + h̄gmcC1,0,e

− h̄�mC0,0,e − h̄�eC0,1,g. (18)

In the weak-driving scenario of interest, for the
probability amplitude coefficients Cn,m, j we have the
following relationship: C0,0,g � {C1,0,g,C0,1,g,C0,0,e} �
{C2,0,g,C0,2,g,C1,1,g,C1,0,e,C0,1,e}. The equations are solved
for the steady state ∂Cn,m, j/∂t = 0, then the equations for the
coefficients Cn,m, j can be provided as

0 =
(
�c − iκc

2

)
C1,0,g + igceC0,0,e + gmcC0,1,g

−�∗
mC1,1,g − �eC1,0,e, (19)

0 =
(
�m − iκm

2

)
C0,1,g + igmeC0,0,e + gmcC1,0,g

−�mC0,0,g −
√

2�∗
mC0,2,g − �eC0,1,e, (20)

0 =
(
�e − iγ

2

)
C0,0,e − igmeC0,1,g − igceC1,0,g

−�∗
mC0,1,e − �eC0,0,g, (21)

0 = 2
(
�c − iκc

2

)
C2,0,g +

√
2igceC1,0,e

+
√

2gmcC1,1,g, (22)

0 = 2
(
�m − iκm

2

)
C0,2,g +

√
2igmeC0,1,e

+
√

2gmcC1,1,g −
√

2�mC0,1,g, (23)

0 =
(
�c − iκc

2

)
C1,1,g +

(
�m − iκm

2

)
C1,1,g

+ igmeC1,0,e + igceC0,1,e +
√

2gmcC2,0,g

+
√

2gmcC0,2,g − �mC1,0,g, (24)

0 =
(
�c − iκc

2

)
C1,0,e +

(
�e − iγ

2

)
C1,0,e

− igmeC1,1,g −
√

2igceC2,0,g + gmcC0,1,e

−�eC1,0,g, (25)

0 =
(
�m − iκm

2

)
C0,1,e +

(
�e − iγ

2

)
C0,1,e

−
√

2igmeC0,2,g − igceC1,1,g + gmcC1,0,e

−�mC0,0,e − �eC0,1,g. (26)

The coefficients Cn,m, j can be iteratively calculated by solv-
ing Eqs. (19)–(26) above. Under the weak-driving condition,
the contributions from the higher states (i.e., C2,0,g, C0,2,g,
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C1,1,g, C1,0,e, and C0,1,e) to the steady-state values of C1,0,g,
C0,1,g, and C0,0,e are negligible. So, the coefficients C1,0,g,
C0,1,g, and C0,0,e of the single-excitation states can be found
as

C1,0,g = gmc(i�egme − �m�′
e) − igce(i�mgme + �e�

′
m)

M1
,

C0,1,g = �′
c(�m�′

e − i�egme) + igce(�egmc + i�mgce)

M1
,

C0,0,e = �′
c(�e�

′
m + i�mgme) − gmc(�egmc + i�mgce)

M1
, (27)

with �′
c = �c − iκc/2, �′

m = �m − iκm/2, �′
e = �e −

iγs/2, and

M1 =
∣∣∣∣∣∣

�′
c gmc igce

gmc �′
m igme

−igce −igme �′
e

∣∣∣∣∣∣
. (28)

In the same manner, the coefficient C2,0,g of the two-
excitation state can be expressed as

C2,0,g = α[gmc(i�egme − �m�′
e) − igce(i�mgme + �e�

′
m)] + λ[�′

c(�m�′
e − i�egme) + igce(�egmc + i�mgce)]

M1M2

+ ζ [�′
c(�e�

′
m + i�mgme) − gmc(�egmc + i�mgce)]

M1M2
, (29)

where

M2 =

∣∣∣∣∣∣∣∣∣∣

2�′
c 0

√
2gmc

√
2igce 0

0 2�′
m

√
2gmc 0

√
2igme√

2gmc

√
2gmc �′

c + �′
m igme igce

−√
2igce 0 −igme �′

c + �′
e gmc

0 −√
2igme −igce gmc �′

m + �′
e

∣∣∣∣∣∣∣∣∣∣
, (30)

α = −igce�e
[
�′

m(�′
c + �′

m)(�′
m + �′

e) + 2gmcgmegce − g2
me(�′

c + �′
m) − g2

ce�
′
m − g2

mc(�′
m + �′

e)
]

− gcegme
[
g2

me�m − �′
m�m(�′

m + �′
e)

] + gcegmc(gmegmc�m − gce�
′
m�m)

− gmc�
′
m

[
�m(�′

c + �′
e)(�′

m + �′
e) + igcegmc�e − g2

mc�m − igme�e(�′
m + �′

e)
]

− igmcgme
[
g2

me�e + i�mgme(�′
c + �′

e) − g2
me�e

]
, (31)

λ = gmc�m
[
gmc(�′

c + �′
e)(�′

m + �′
e) + gmcg2

me − gcegme(�′
c + �′

e) − g3
mc

]

− gmc�
′
m[igmegmc�e − igce�e(�′

c + �′
e)] − ig2

mcgme�e(�′
c + �′

e)

− gcegme[�mgmc(�′
m + �′

e) + i�′
mgce�e − igmegmc�e − gmegce�m]

+ igcegmc
[
�′

m(�′
c + �′

m)�e − igmcgce�m − g2
mc�e + igme�m(�′

c + �′
m)

]
, (32)

and

ζ = −gmc�
′
m[igmegmc�m − igce�m(�′

c + �′
e)] − ig2

mcgme�m(�′
c + �′

e)

− gcegme[i�′
mgce�m − igmegmc�m] + igcegmc

[
�′

m(�′
c + �′

m)�m − g2
mc�m

]
. (33)

The other coefficients can also be solved using the same
method, which are not shown for avoiding verbosity. Evi-
dently, the analytical expressions of the physical quantities
of concern can be approximately expressed in terms of these
coefficients. In this regard, the average intracavity photon
number and the second-order autocorrelation of the emitted
photons from the cavity can be approximated to

nc = 〈ĉ†ĉ〉
= |C1,0,g|2 + 2|C2,0,g|2 + |C1,1,g|2 + |C1,0,e|2
 |C1,0,g|2, (34)

g(2)
c (0) = 〈ĉ†ĉ†ĉĉ〉

n2
c

 2|C2,0,g|2
|C1,0,g|4 . (35)

It is not difficult to find that, from the analytical expressions
(27)–(33) together with Eqs. (34) and (35), the items linking
to the statistical properties of photons are closely related to
the size-dependent parameters such as the coupling strength
gce between the QE and cavity mode, the coupling strength
gme between the NP and QE, and the coupling strength gmc

between the NP and cavity mode. The detail about the depen-
dence of the tripartite coupling on the size-dependent system
parameters is shown in Fig. 4 below. In the following, we will
concentrate on the influence of these size-dependent structural
parameters on the statistical properties of the NP-QE-cavity
system.

It is important to mention that the intensity of the emit-
ted light from the cavity is proportional to Ic = κcnc. For
brevity, in the discussion below we denote the intensity of
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FIG. 2. Schematic diagram of the energy levels and excitation
pathways of the coupled tripartite system corresponding to Fock
states up to two photons. Energy diagram exhibiting the zero-, one-
, and two-photon states (horizontal gray lines) and the transition
pathways leading to the quantum interference in charge of the strong
photon antibunching. States are marked as |n, m, j〉, where the first
and second indices n and m in the ket correspond to the photon
number in the cavity and NP modes, respectively, and the index
j responsible for the excited state (ground state) of the two-level
QE. The lilac double arrows represent the different energy-level
transitions induced by the NP-QE coupling gme. The blue double
arrows indicate the different energy-level transitions caused by the
QE-cavity coupling gce. The red double arrows mean the different
energy-level transitions resulting from the NP-cavity coupling gmc.
The green double arrows denote the different energy-level transitions
as a result of the coupling of the external driving laser with the
two-level QE �e, while the yellow double arrows show the different
energy-level transitions as a result of the coupling of the external
driving laser with the NP �m.

the cavity emission light by nc since they differ only by a
constant coefficient κc which does not have any material im-
pact on the results of concern. According to Eqs. (19)–(26),
we display the schematic diagram of the energy levels and
excitation pathways of the coupled system corresponding to
the two-photon manifold, as shown in Fig. 2. From this figure,
it is worth emphasizing that quantum interference can occur
between different two-photon excitation pathways thanks to
the introduction of the NP.

In the above approach, the system has been truncated, un-
der the condition of weak driving, from infinite-dimensional
Hilbert space to a two-photon excitation subspace spanned by
nine basis states given in Eq. (9). If the higher-energy levels
are excited, this approximation is no longer tenable. In order
to prove the validity of the state expansion in the few photon
subspace, we introduce a state-truncation fidelity defined as
the sum of the occupying probabilities of the nine basis states
in Eq. (9), i.e.,

F = |C0,0,g|2 + |C1,0,g|2 + |C0,1,g|2 + |C0,0,e|2 + |C2,0,g|2
+|C0,2,g|2 + |C1,1,g|2 + |C1,0,e|2 + |C0,1,e|2. (36)

FIG. 3. State-truncation fidelity F defined by Eq. (36) as a func-
tion of the driving strength �e/κc. The inset shows a zoom-in view of
the region marked by red star. Parameters used here are Sα = 2, �c =
0, ωc = ωe = ωm = 2887.73 meV, rm = 5 nm, d = 30 nm, θ = 0,
Q = 104, and κm = 53.28 meV, respectively.

As described in Refs. [97,98], the introduction of fidelity
F provides a powerful grasp to judge the effectiveness of the
state truncation. More specifically, on the one hand, the fi-
delity F ≈ 1 not only illustrates that it is sufficient to describe
the system using the few-photon excitation subspace spanned
by the considered basis states, but also further ensures that the
analytical results based on this approximation are valid. On
the other hand, the fidelity F is much less than 1 (F 	 1),
revealing that higher-photon excitation states are activated in
this case, and thus it is insufficient to describe the system
employing only these nine basis states in Eq. (9). To do so, in
Fig. 3 we plot the fidelity F as a function of the driving-field
strength �e/κc based directly on the full master equation (6).
As clearly shown in Fig. 3, the fidelity F almost approaches 1
for a relatively weak driving-field strength �e/κc < 0.2. How-
ever, with the further increase of the driving-field strength,
the fidelity F first drops slowly below unity, but still stays
above 0.99 in the range of �e/κc ∈ [0.2, 0.58], and then it
decreases dramatically for a relatively strong driving-field
strength �e/κc > 0.58. The excitation of multiphoton states
under the condition of relatively strong driving-field strengths
will deteriorate the fidelity F of the state truncation, which
should be avoided to ensure the validity of the approximation
for the state expansion described in Eq. (9). A red star in
Fig. 3 is used to mark the position of the driving-field strength
used in this work, thereby showing that it is located in the
low-intensity regime and corresponds to the fidelity F = 1,
which warrants the rationality of our state truncation used in
the approximately analytical calculation.

The relationship between the tripartite coupling (i.e., the
NP-QE coupling strength gme, the NP-cavity coupling strength
gmc, and the QE-cavity coupling strength gce) and the system
parameters are presented in Fig. 4. It can be clearly seen that
these coupling parameters are size or position dependent. For
the purpose of more intuitively depicting them, the NP-QE
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FIG. 4. Dependence of the tripartite coupling on the size-
dependent system parameters. (a) The coupling strength gme between
the NP and QE (black solid line, left longitudinal axis) and the
coupling strength gce between the QE and cavity (red dashed line,
right longitudinal axis) as a function of the NP-to-QE distance d
when rm = 5 nm. (b) The coupling strength gme between the NP and
QE (black solid line, left longitudinal axis) and the coupling strength
gmc between the NP and cavity (blue dashed line, right longitudinal
axis) as a function of the NP radius rm when d = 30 nm. The open
circles in (a) and (b) mark the values employed in the following cal-
culations. In both cases, parameters used for calculations are Sα = 2,
ωc = ωe = ωm = 2887.73 meV, θ = 0, Q = 104, κm = 53.28 meV,
and Ip = 1 W/cm2, respectively.

coupling strength gme and the QE-cavity coupling strength gce

as a function of the NP-QE center-to-center distance d are
plotted in Fig. 4(a). As shown in Fig. 4(a), both the coupling
strength gme and the coupling strength gce decrease monotoni-
cally with the increase of d . More specifically, gme diminishes
to a small value from 15 meV, gce decreases slightly, and the
overall value of gce can ensure that the QE-cavity interaction
is in the weak coupling region. As can be easily seen from
Fig. 4(b), both the NP-QE coupling strength gme and the NP-
cavity coupling strength gmc show a monotonically increasing
trend with the increase of the NP radius rm, which is apparent
because gme is proportional to the third-half power of rm, i.e.,
r3/2

m , and gmc is proportional to the third power of rm, i.e.,
r3

m. It should be noted that the values of gme, gce, and gmc are
determined accordingly when a certain d or rm is selected, and
there are mutual constraints among three coupling parameters.
By manipulating the NP-to-QE distance d and the NP radius
rm, the relative strengths of the local field can be modified,
resulting in the adjustment of the tripartite coupling between
the system components [99]. Therefore, engineering the NP-
to-QE distance d and the NP radius rm can be developed to
tailor the coupling between the NP and QE, the interaction
between the QE and cavity, and the coupling between the NP
and cavity. Further contributions to the regulation of quantum
statistical properties of the emitted (scattered) photons from
the cavity (NP-QE molecule) will be discussed in great detail
in Sec. V.

FIG. 5. Second-order autocorrelation function g(2)
c (0) (left lon-

gitudinal axis) and intensity Ic (right longitudinal axis) of the
cavity emission light as a function of the cavity-laser detuning
�c. The blue solid line corresponds to the precise numerical solu-
tion, while the magenta triangle line corresponds to the analytical
solution. Parameters used for calculations are Sα = 2, ωc = ωe =
ωm = 2887.73 meV, rm = 5 nm, d = 30 nm, θ = 0, Q = 104, κm =
53.28 meV, and Ip = 1W/cm2, respectively. Other fixed parameters
(not displayed) are given in the main text (cf. Sec. III).

V. RESULTS AND DISCUSSIONS

In this section, we will focus on three correlation wit-
nesses, namely, (i) the second-order autocorrelation of emitted
photons from cavity, (ii) the second-order autocorrelation of
scattered photons from NP-QE molecule, and (iii) the second-
order cross correlation between both emitted and scattered
photons. We show how the system parameters including ge-
ometric or material modification can be used to engineer the
statistical properties of the radiation. First of all, we present
both analytical and numerical results of the second-order au-
tocorrelation function g(2)

c (0) of the cavity emission photons
for comparison and then we discuss the dependence of the
photon statistics of the cavity emission photons on the system
parameters in Sec. V A. Subsequently, how the size-related
parameters (i.e., the NP-to-QE distance d and the NP radius
rm) affect the second-order autocorrelation function g(2)

p (0)
of the NP-QE scattering photons is displayed in Sec. V B.
Finally, the second-order cross-correlation function g(2)

cp (0) be-
tween the cavity emission light and the NP-QE scattering light
as a function of system parameters is considered in Sec. V C.

A. Second-order autocorrelation of emitted photons from cavity

In order to compare the analytical solution (35) of the
second-order autocorrelation function g(2)

c (0) derived by the
Schrödinger equation in the steady state with the numeri-
cal solution given by the master equation (6), we plot the
second-order autocorrelation function g(2)

c (0) versus the de-
tuning �c between the resonance frequency ωc of the cavity
mode and the frequency ωd of the driving laser field in Fig. 5
in which the blue solid line and the magenta triangle line de-
note the precise numerical solution and the analytical solution,
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FIG. 6. (a) Logarithmic plot (of base 10) of the second-order autocorrelation function g(2)
c (0) of the cavity emission photons versus

the cavity-QE detuning δe and the cavity-NP detuning δm, where the color bar is on a logarithmic scale (of base 10). (b) Second-order
autocorrelation function g(2)

c (0) of the cavity emission photons as a function of the cavity-QE detuning δe when δm = 0. (c) Second-order
autocorrelation function g(2)

c (0) of the cavity emission photons as a function of the cavity-NP detuning δm when δe = 0. Parameters used for
calculations are Sα = 2, �c = 0, rm = 5 nm, d = 30 nm, θ = 0, Q = 104, κm = 53.28 meV, and Ip = 1 W/cm2, respectively.

respectively. It is revealed that the analytical solution obtained
by the Schrödinger equation in the steady state can be faith-
fully reproduced by the full numerical solution obtained by
the master equation.

Besides, we also display the intensity Ic of the cavity
emission light varying with the cavity-laser detuning �c in
Fig. 5. By looking at Fig. 5, we can see that the intensity
of the emitted light from cavity follows the Lorentzian-type
profile, and concurrently the strong antibunching signal can be
detected near the maximum intensity. In this case, the system
can be regarded as an effective single-photon blockade device,
which not only plays a certain role in related measurement,
but also has a guiding significance for practical experimental
design to a certain extent.

In the analysis above, we consider the resonant cases for
any two frequencies among the NP (ωm), QE (ωe), and cavity
(ωc), namely, ωm = ωe = ωc. We now turn to the situations
where the NP, QE, and cavity are detuned from resonances.
To do this, we define the detunings δm = ωm − ωc and δe =
ωe − ωc, which lead to δm − δe = ωm − ωe among the NP,
QE, and cavity. With these definitions at hand, from Eq. (5)
we have the relations �m = �c + δm and �e = �c + δe. It is
obvious that, when δm = 0 and δe = 0, all three of the NP, QE,
and cavity are resonant with each other. We then study how
the statistical properties of the cavity emission photons are
affected by both the cavity-QE detuning δe and the cavity-NP
detuning δm by plotting a color two-dimensional (2D) map
of the second-order autocorrelation function g(2)

c (0) for the
cavity emission photons in Fig. 6(a). It is found from this
figure that the statistical properties of the cavity emission pho-
tons are sensitive to the cavity-QE detuning δe and are robust
to the cavity-NP detuning δm, allowing one to optimize the
antibunched photon generation by regulating the cavity-QE
detuning δe and the cavity-NP detuning δm. Just to be more
intuitive, Fig. 6(b) shows the second-order autocorrelation
function g(2)

c (0) as a function of the cavity-QE detuning δe

through choosing the cavity-NP detuning δm = 0 in Fig. 6(a).
It can be seen from Fig. 6(b) that the antibunching effect of
the cavity emission photons becomes more obvious when the

cavity is near resonance with the QE, and the minimum g(2)
c (0)

with the value of 2.1 × 10−2 occurs at δe = 0. It conveys a
message that the statistical properties of the cavity emission
photons are sensitive to the cavity-QE detuning δe, which can
be optimized by tuning the detuning between the cavity and
the QE using the method described in Sec. III. Figure 6(c)
shows the cut of the second-order autocorrelation function
g(2)

c (0) along the cavity-QE detuning δe = 0 in Fig. 6(a),
where the cavity-NP detuning δm is varied. It is shown in
Fig. 6(c) that the cavity emission photons can exhibit typical
antibunching, i.e., g(2)

c (0) 	 1, even if the NP-cavity detuning
δm changes on a large scale. This signifies an information
that the statistical properties of the cavity emission photons
are immune to the change of the NP-cavity detuning δm,
which makes the experimental realization of the scheme more
friendly.

Now we explore how the NP can be exploited to control the
statistical properties of the cavity emission photons. Recalling
Sec. II, it is pointed out that the NP-QE coupling strength
gme and the QE-cavity coupling strength gce are position
dependent, i.e., gme ∝ 1/d3 and gce ∝ cos(2πd/λc). In view
of this, in Fig. 7 we plot the second-order autocorrelation
function g(2)

c (0) varying with the NP-to-QE distance d for
the two different cases, i.e., with the NP (blue solid line) and
without the NP (magenta dashed line). In the absence of the
NP, the considered system is a typical single-QE-cavity QED
system via driving the QE. Here, we consider the system under
weak driving and weak QE-cavity coupling conditions. As
demonstrated in Ref. [100], in the case of weak driving, the
value of the second-order autocorrelation function is less than
unity for small coupling strength because the high-order states
cannot be excited by these weak-driving fields. As one can see
in Fig. 7, with the introduction of the NP, the statistical proper-
ties of photons are well engineered under the weak-coupling
condition, accompanied by either enhanced antibunching or
a transition from strong antibunching to large bunching of
the light and vice versa. In the vicinity of d = 18.83 nm, the
antibunching effect obtained in the two cases (i.e., with the NP
and without the NP) is equivalent. Most notably, the influence
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FIG. 7. Second-order autocorrelation function g(2)
c (0) of the cav-

ity emission light as functions of the NP-to-QE distance d with NP
(blue solid line) and without NP (magenta dashed line). Parameters
used for calculations are Sα = 2, �c = δe = δm = 0, rm = 5 nm,
θ = 0, Q = 104, κm = 53.28 meV, and Ip = 1 W/cm2, respectively.

of the NP-to-QE distance d on the photon statistical properties
shown in Fig. 7 reminds us how to manipulate the statistical
properties of photons by changing d , that is, the NP and QE
are set close to each other to obtain strong bunching or far
away from each other to obtain strong antibunching. There-
fore, selective photon statistics can be controlled at nanoscale.

The well-behaved sub-Poissonian character of the photons
emitted by the cavity is due to the fact that the introduc-
tion of the NP adds a few additional transition pathways
to the system. When the NP is absent, there exists only
one transition pathway for the two-photon excitation and
no quantum interference occurs for the atom-driven scheme
[100]. However, as shown in Fig. 2, there exist several tran-
sition pathways to the two-photon excitation state |2, 0, g〉
with the introduction of the NP, for example, |0, 0, g〉 �m←→
|0, 1, g〉 gmc←→ |1, 0, g〉 �m←→ |1, 1, g〉 gmc←→ |2, 0, g〉 owing to
the NP driven �m and the interaction gmc between the

NP and the cavity, |0, 0, g〉 �e←→ |0, 0, e〉 �m←→ |0, 1, e〉 gmc←→
|1, 0, e〉 gce←→ |2, 0, g〉, caused by the NP driven �m, the QE
driven �e, the interaction gmc between the NP and the cavity,
and the coupling gce between the QE and the cavity, etc. The
destructive interference between different transition pathways
makes the probability of two-photon excitation considerably
decreasing, so that the probability of detecting state |2, 0, g〉
approaches to zero. As a consequence, the photon blockade
phenomenon induced by quantum interference can be real-
ized, giving rise to the output of strongly antibunched photons.

In order to clearly show how the QE-cavity coupling
strength gce affects the photon antibunching, the second-order
autocorrelation function g(2)

c (0) versus the coupling strength
gce is plotted in Fig. 8 when the driving laser is tuned to
resonance with the cavity mode frequency, i.e., �c = 0. As
shown in this figure, it is counterintuitive that the photon anti-
bunching effect of the cavity does not increase monotonically

FIG. 8. Second-order autocorrelation function g(2)
c (0) of the cav-

ity emission light as a function of the coupling strength gce between
the cavity mode and QE. Also shown in the plot is the compar-
ison of the analytical prediction through Eq. (35) (the red open
circles) with the numerical simulation obtained from Eqs. (6) and
(7) (the blue solid line). Parameters used for calculations are Sα = 2,
�c = δe = δm = 0, rm = 5 nm, θ = 0, Q = 104, κm = 53.28 meV,
and Ip = 1 W/cm2, respectively.

with increasing gce, instead it is destroyed with the increase of
gce. More specifically, under the condition of weak coupling,
that is, the coupling strength gce is much smaller than the
decay rate of the cavity (gce 	 κc), the emitted photons from
the cavity exhibit strong photon antibunching effect. When
the coupling strength gce is comparable to the decay rate
of the cavity, the cavity emission photons tend to be coherent.
However, when further increasing gce to the strong-coupling
region, g(2)

c (0) increases and shows strong photon bunching
effect. Thus, it conveys the information that the better photon
antibunching corresponds to a smaller gce. In other words,
strong photon antibunching effect can be realized under weak-
coupling scenarios, which eliminate the requirement of strong
nonlinearity that might not be easy to be achieved experimen-
tally, and may have potential applications in the preparation of
single-photon sources. Figure 8 also reveals that the results of
both the numerical solution (blue solid line) and the analytical
solution (red open circles) are in good agreement.

For illustrating how can we utilize the NP radius rm to
modify the photon statistical properties, we give the graph of
the second-order autocorrelation function g(2)

c (0) varying with
rm in Fig. 9. The result shows that the quantum statistics of the
cavity emission photons can be manipulated on the nanoscale.
Specifically, with the increase of rm, the second-order auto-
correlation function g(2)

c (0) decreases initially until it reaches
an antibunching minimum and then increases, corresponding
to the photon statistics transforming from antibunching to
bunching. Since the NP radius is closely related to the cou-
pling between the NP and the cavity or the QE, featured in
Fig. 4, the regulation of the cavity photon statistical properties
by the NP radius rm can be made.

To proceed further, a contour plot of the second-
order autocorrelation function g(2)

c (0) of the cavity emission
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FIG. 9. Second-order autocorrelation function g(2)
c (0) of the cav-

ity emission light as functions of the NP radius rm. Parameters used
for calculations are Sα = 2, �c = δe = δm = 0, d = 30 nm, θ = 0,
κm = 53.28 meV, Q = 104, and Ip = 1 W/cm2, respectively.

photons as a function of the NP-to-QE distance d and the NP
radius rm is displayed in Fig. 10 in order to clarify the size
dependence of the statistical properties of the cavity emission
photons. The color bar is on a logarithmic scale. Figure 10
clearly conveys a meaningful message: one can prepare the
system for a sub-Poissonian statistics (see dark blue areas) or
a super-Poissonian statistics (see dark red areas) by adjusting
the NP-to-QE distance d or the NP radius rm, which provides

FIG. 10. Logarithmic plot (of base 10) of the second-order au-
tocorrelation function g(2)

c (0) of the cavity emission photons versus
the NP-to-QE distance d and the NP radius rm. The red dotted line
represents the optimal antibunching condition derived by Eq. (29)
analytically. Parameters used for calculations are Sα = 2, �c =
δe = δm = 0, θ = 0, Q = 104, κm = 53.28 meV, and Ip = 1 W/cm2,
respectively.

FIG. 11. Second-order autocorrelation function g(2)
c (0) of the

cavity emission light as a function of the cavity quality factor Q. Pa-
rameters used for calculations are Sα = 2, �c = δe = δm = 0, rm =
5 nm, d = 30 nm, θ = 0, κm = 53.28 meV, and Ip = 1 W/cm2,
respectively.

us a way to control the single-photon blockade or alter it from
strong antibunching to superbunching.

The optimal antibunching condition obtained by setting
the analytical solution C2,0,g = 0 in Eq. (29) is highlighted
in the figure (see the red dotted line), which coincides well
with the full numerical solution. This further confirms that
the underlying physical mechanism behind it is due to the
quantum interference between distinct transition pathways as
shown in Fig. 2. By adjusting the NP-to-QE distance d or the
NP radius rm, the NP-QE coupling strength gme, the NP-cavity
coupling strength gmc, and the QE-cavity coupling strength gce

alter accordingly (see Fig. 4). Under appropriate parameters,
the occurence of destructive quantum interference forbids the
occupation of the two-excitation state |2, 0, g〉, thereby result-
ing in the generation of strong photon antibunching.

When the QE is placed in a cavity of resonance frequency
ωc and decay rate κc, the corresponding quality factor Q is
defined as the ratio of the cavity resonance frequency ωc

to the corresponding decay rate κc (i.e., Q = ωc/κc), which
reflects the degree of loss and measures the efficiency of
energy storage [101]. In order to illustrate the influence of
the cavity quality factor Q on the photon antibunching ef-
fect, we display in Fig. 11 the variation of the second-order
autocorrelation function g(2)

c (0) as a function of Q. As we
all know, a low-quality factor is detrimental to achieving the
strong-coupling regime. However, as depicted in Fig. 11, it
is counterintuitive that the antibunching effect of the cav-
ity emission photons does not decrease monotonically with
increasing Q, instead it has a minimum at Qopt. More specifi-
cally, the variation of g(2)

c (0) with the quality factor Q exhibits
a nonmonotonic behavior: g(2)

c (0) decreases with increasing
Q and arrives at the minimum (dip) around the optimal value
of Qopt = 1.56 × 104 where it corresponds to the minimum
value of g(2)

c (0) = 2.9 × 10−3. However, with further increas-
ing of Q, the value of g(2)

c (0) increases counterintuitively. It
should be noted that using optical cavities with quality factors
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FIG. 12. Second-order autocorrelation function g(2)
c (0) of the

cavity emission light as a function of the relative orientation θ be-
tween the dipole moment of the QE and the polarization vector of
the cavity field. Parameters used for calculations are Sα = 2, �c =
δe = δm = 0, rm = 5 nm, d = 30 nm, Q = 104, κm = 53.28 meV,
and Ip = 1 W/cm2, respectively.

even if on the order of 100 (which means in the bad cavity
limit), the photon antibunching effect can also be observed in
our system. Most strikingly, the statistical properties of the
photons emitted from the cavity maintain antibunched in a
wide range of parameters considered, which relaxes the dif-
ficulty of producing single-photon source in the experimental
realization to a certain extent.

Again, in order to illustrate the influence of the polarization
orientation on the statistical properties of the cavity emission
photons, the second-order autocorrelation function g(2)

c (0) ver-
sus the relative orientation θ between the dipole moment of
the QE and the polarization direction of the cavity field is
plotted in Fig. 12. By looking at Fig. 12, we can observe
that the second-order autocorrelation function g(2)

c (0) shows
π -periodic changes in the interval of θ ∈ [0, 2π ]. In addition,
pronounced photon antibunching can be generated over the
entire period of π . As we see, g(2)

c (0) reaches a maximum
value of 2.2 × 10−2 when the polarization direction of the
cavity field is nearly perpendicular to that of the QE dipole
moment (i.e., θ = Nπ , N is an integer), while a minimum
value of g(2)

c (0) = 3.4 × 10−4 appears when the polarization
direction of the cavity field is nearly parallel to that of the QE
dipole moment (i.e., θ = Nπ + π/2), which implies that the
degree of the nonclassical antibunching can be optimized by
designing the proper polarization direction.

The dissipation channels of the NP dipolar mode include
two decay processes: (1) radiative decay process which is
due to a direct radiative decay route of the coherent electron
oscillation into photons for lager particles and (2) nonradiative
decay process which is caused by the creation of electron-hole
pairs via either intraband excitations or interband transitions
[44,50]. The silver NP used in our work is a much better
plasmonic metal than some others, such as gold, character-
ized by its quality factor that reflects the period of surface

FIG. 13. Second-order autocorrelation function g(2)
c (0) of the

cavity emission light as a function of the damping κm of the NP. Pa-
rameters used for calculations are Sα = 2, �c = δe = δm = 0, rm =
5 nm, d = 30 nm, θ = 0, Q = 104, and Ip = 1 W/cm2, respectively.

plasmon oscillation before field decays [59]. Typically, the
quality factor of silver is several times that of gold, and thus
the damping of silver chosen is quite optimistic. Considering
a more general NP, the damping of the NP which is inversely
proportional to the quality factor can even reach 10%–20% of
the excitation energy [102–105]. Therefore, it is indisputable
to discuss the influence of the NP loss on the statistical char-
acteristics of the cavity emission photons. To this purpose, the
second-order autocorrelation function g(2)

c (0) as a function of
the damping of the NP is depicted in Fig. 13. As can be seen,
when increasing the damping of the NP gradually, g(2)

c (0)
decreases sharply at first, then increases rapidly after reach-
ing the minimum value of 5.8 × 10−4 at κm = 68.17 meV,
and finally tends to arrive at a saturation value of 0.132. In
particular, the entire damping region considered here displays
strong nonclassical antibunching, i.e., g(2)

c (0) < 0.132, which
manifests the robustness of the statistical properties of the
cavity emission photons against the loss of the NP.

Since the measurements of the higher-order coherences
provide a method to gain more in-depth understanding of
the details of multiphoton emission, which can more clearly
exhibit the nonclassical characteristics of the light source, we
calculate the third-order autocorrelation function g(3)

c (0) with
the formula of g(3)

c (0) = 〈(a†)3a3〉/〈a†a〉3 for further studying
the antibunching character of the cavity emission photons
[106]. For comparison, g(2)

c (0) and g(3)
c (0) as a function of

the cavity-laser detuning �c are plotted together in Fig. 14.
g(2)

c (0) is expected to contain information about the relative
probability of two-photon emission and g(3)

c (0) sustains infor-
mation about the three-photon emission probability [107]. We
can see that the values of g(3)

c (0) are lower than those of g(2)
c (0)

[i.e., g(3)
c (0) < g(2)

c (0) < 1] in the photon antibunching regime
of interest [97], which manifests that g(2)

c (0) is mainly limited
by two-photon events and not by higher-photon events [108].
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FIG. 14. Second- (n = 2) and third-order (n = 3) autocorrelation
function g(2)

c (0) (red dashed-dotted line) and g(3)
c (0) (blue solid line)

of the cavity emission light as a function of the cavity-laser detun-
ing �c. Parameters used for calculations are Sα = 2, δe = δm = 0,
rm = 5 nm, d = 30 nm, θ = 0, Q = 104, κm = 53.28 meV, and Ip =
1 W/cm2, respectively.

B. Second-order autocorrelation of scattered photons from
NP-QE molecule

Under the excitation of an external driving laser, both
the NP and QE scatter the incident light, and the total
polarization operator can be constructed as p̂ = χ∗m̂ + μσ̂

according to [46,55,56]. The intensity of the scattered light
from the NP-QE molecule is proportional to Ip = 〈p̂† p̂〉 and
the second-order autocorrelation function g(2)

p (0) of the scat-
tered light from the NP-QE molecule can be written as
g(2)

p (0) = 〈p̂†2 p̂2〉/I2
p [46,109]. The formulations of Ip and

g(2)
p (0), which are formally different but substantially equiv-

alent to the above expressions, are presented in Refs. [50,54].
Figure 15 shows how the second-order autocorrelation func-
tion g(2)

p (0) of the scattered light and the scattering intensity
Ip vary with the cavity-laser detuning �c. As displayed in
Fig. 15, the scattered light enters the region with antibunching
by tuning the detuning in the range of (−2.37, 2.37) meV
(pink shaded region). In this region, the statistical properties
of the scattered photons from the NP-QE molecule show a
high sensitivity to the detuning �c, which is reflected in the
sharp change of the photon correlation shape line. The values
of the second-order autocorrelation g(2)

p (0) are altered by more
than two orders of magnitude. This means that the photon
statistics of the scattered light can be switched from bunching
to antibunching by just tuning the cavity-laser detuning �c. At
the same time, the peak of the scattering intensity is located
in this region, bringing about the acquisition of the scattered
photons from the NP-QE with strong antibunching and high
scattering intensity.

Further below, a logarithmic plot (of base 10) of the
second-order autocorrelation function g(2)

p (0) of the NP-QE
scattering photons as a function of the NP-to-QE distance d
and the radius rm of the NP is shown in Fig. 16. When the
NP-to-QE distance d < 30 nm, the statistical properties of

FIG. 15. Second-order autocorrelation function g(2)
p (0) (blue

solid line) and intensity (red dashed-dotted line) of the NP-QE scat-
tering light as a function of the cavity-laser detuning �c. The red
dashed-dotted line is normalized to the peak. The pink shaded region
marks a high degree of antibunching and photon scattering. Pa-
rameters used for calculations are Sα = 2, δe = δm = 0, rm = 2 nm,
d = 30 nm, θ = 0, Q = 104, κm = 53.28 meV, and Ip = 1 W/cm2,
respectively.

the NP-QE scattering photons gradually change from strong
antibunching to bunching or even superbunching with the
increase of the radius rm of the NP. As the NP-to-QE dis-
tance in the area of d ∈ (30, 34) nm, a smooth transition of
the statistics of the NP-QE scattering photons occurs from
sub-Poissonian to Poissonian with the increase of the radius
rm of the NP. It is worth noting that the single-photon regime
is usually characterized by g(2)(0) < 0.5 [37], which can be
guaranteed in all selected radius ranges when the NP-to-QE

FIG. 16. Logarithmic plot (of base 10) of the second-order au-
tocorrelation function g(2)

p (0) of the NP-QE scattering photons as
a function of the NP-to-QE distance d and the NP radius rm. Pa-
rameters used for calculations are Sα = 2, �c = δe = δm = 0, θ = 0,
Q = 104, κm = 53.28 meV, and Ip = 1 W/cm2, respectively.
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FIG. 17. (a) Second-order autocorrelation function g(2)
c (0) of the

cavity emission light and (b) second-order autocorrelation function
g(2)

p (0) of the NP-QE scattering light versus the cavity-laser detuning
�c for the three different dephasing rates γd = 0 (red solid line),
γd = γs (blue dashed line), and γd = 5γs (black dotted line). Pa-
rameters used for calculations are Sα = 2, δe = δm = 0, rm = 5 nm
in (a) and rm = 2 nm in (b), d = 30 nm, θ = 0, Q = 104, κm =
53.28 meV, and Ip = 1 W/cm2, respectively.

distance d > 34 nm. It can also be acquired from Fig. 16 that
the farther the distance d is, the smaller the function g(2)

p (0) is
for a given NP radius rm.

The influence of the pure dephasing effect was not con-
sidered in the previous discussion, in order to examine how
the pure dephasing rate γd affects the statistical properties
of photons emitted by the cavity and scattered by the NP-
QE molecule in the system, the second-order autocorrelation
function g(2)

c (0) and g(2)
p (0) varying with the cavity-laser de-

tuning �c for various values of the dephasing rate γd are
plotted in Fig. 17. Clearly, the dephasing effect has a detri-
mental effect on the realization of the photon blockade of
the cavity field in Fig. 17(a), which reminds us that the
dephasing rate should be minimized in practice. However,
if the dephasing rate is close to the spontaneous emission
rate, the quality of photon blockade can be guaranteed to
a certain extent. The minimum values of the second-order
autocorrelation function g(2)

p (0) for the scattered photons from
the NP-QE molecule vary slightly with the increase of γd from
0 to 5γs in Fig. 17(b). What is more, the scattered photons
with antibunching properties can be obtained in a wider range
of detuning �c with the increase of γd , which illustrates the
robustness of the statistical properties of the scattered photons
to the dephasing rate.

C. Second-order cross correlation between emitted and
scattered photons

Figure 18 shows the second-order cross-correlation func-
tion g(2)

cp (0) between the emitted photons from cavity and the
scattered photons from NP-QE molecule varying with the
cavity-laser detuning �c. It hints a strongly anticorrelated
signal that the probability for the simultaneous presence of
single photons in both modes is suppressed [17]. In other
words, strong anticorrelation between the emitted photons and
the scattered photons implies that single-photon emission can

FIG. 18. Second-order cross-correlation function g(2)
cp (0) between

the cavity emission light and the NP-QE scattering light varying
with the cavity-laser detuning �c. Parameters used for calculations
are Sα = 2, δe = δm = 0, rm = 2 nm, d = 30 , nm, θ = 0, Q = 104,
κm = 53.28 meV, and Ip = 1 W/cm2, respectively.

occur alternatively at the emitted photons from the cavity or
the scattered photons from the NP-QE molecule in our system.
The detection of a photon from one channel means that it is
less likely that one will be found in the other.

Finally, a 2D map of the second-order cross-correlation
function g(2)

cp (0) (logarithmic scale) between the cavity emis-
sion photons and the NP-QE scattering photons as a function
of the NP-to-QE distance d and the NP radius rm is shown
in Fig. 19. Looking closer, we find that strong correlation
(see dark red areas) or anticorrelation (see dark blue areas)

FIG. 19. Logarithmic plot (of base 10) of the second-order cross-
correlation function g(2)

cp (0) between the cavity emission and NP-QE
scattering light as a function of the NP-to-QE distance d and the
NP radius rm. Parameters used for calculations are Sα = 2, �c =
δe = δm = 0, θ = 0, Q = 104, κm = 53.28 meV, and Ip = 1W/cm2,
respectively.
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between the cavity emission photons and the NP-QE scatter-
ing photons can be realized by manipulating the NP-to-QE
distance d or the NP radius rm. Rich photon statistical prop-
erties can be reflected in different parameter ranges. The
common occurrence of photon blockade of the cavity emis-
sion photons (see Fig. 10) and photon blockade of the NP-QE
scattering photons (see Fig. 16) in the same anticorrelated
regime enables us to produce single-photon emission in the
forms of cavity emission photons or NP-QE scattering pho-
tons alternatively. In addition, the cavity emission photon
pairs and NP-QE scattering photon pairs can be generated
in the same correlated regime (the generated cavity emission
photons and the NP-QE scattering photons are correlated with
each other), which can be applied to the two-photon gateway
[110,111].

VI. CONCLUSIONS

Summarizing, we have in detail explored the quantum
statistical responses of photons in a fully coupled hybrid NP-
QE-cavity system where a NP-QE molecule is placed into
an optical cavity and all mutual couplings among them are
considered. In such a configuration, using a combination of
numerical and analytical methods, we assess the quantum
correlation degree of the cavity emission photons and the
NP-QE scattering photons by fixing our attention on, for ex-
ample, (i) the second-order autocorrelation function g(2)

c (0) of
photons emitted by the cavity, (ii) the second-order autocor-
relation function g(2)

p (0) of photons scattered by the NP-QE
molecule, and (iii) the second-order cross-correlation function
g(2)

cp (0) between the emitted photons by the cavity and the
scattered photons by the NP-QE molecule in realistic param-
eter scenarios, respectively. With the introduction of the NP
for tripartite interactions, the photon statistical properties of
the fully coupled tripartite system can be well engineered
in the weak-coupling regime, featuring the enhanced photon
antibunching and the switching between strong antibunching
and large bunching. The variation of the second-order autocor-
relation function of the cavity emission light with the system
parameters, e.g., the detuning between the cavity mode and
driving laser, the distance between the NP and QE, and so on,
shows the flexible tunability of photon statistics. Both strong
antibunched photons with high intensity emitted from cavity
and strong antibunched photons with high intensity scattered
by hybrid NP-QE molecular can be captured in our tripartite
system. We also find that the second-order cross-correlation
function g(2)

cp (0) clearly displays that not only the expected
anticorrelated cavity emission and NP-QE scattering photons,

but also the cavity emission photon pairs, the NP-QE scat-
tering photon pairs, as well as the correlated cavity emission
and NP-QE scattering photons can be generated in different
parameter regimes. On the other hand, it is revealed that the
photon statistics of the cavity emission light shows a strong
robustness for the quality factor of the cavity, manifesting with
the maintenance of strong photon antibunching effect even at
lower-quality factor. In addition, the photon statistics of the
NP-QE scattering light is robust against the QE dephasing
rate.

The tight link between the size-dependent parameters and
the dipole response field of the NP enables it to modify the in-
terplay between the system components. The combination of
the external excitation and the coherent tripartite coupling is
contributory to the destructive interference between different
transition pathways for the two-photon excitation, promoting
the occurrence of photon blockade. In this paper, we discuss
the influence of various parameters on the photon statistical
properties of the system. Among them, the size-dependent
photon statistics are the ones we want to emphasize. Al-
though the resonant case (�c = δe = δm = 0), the smaller NP
size [rm ∈ (2, 6) nm], and the larger NP-to-QE distance [d ∈
(30, 40) nm] are the optimal conditions for obtaining photons
with strong antibunching (the experimental feasibility of these
conditions has been discussed in Sec. III), the more relaxed
parameter requirements [e.g., the immunity to detuning (see
Fig. 6 and the description about it) and the preservation
of strong antibunching or bunching properties under a wide
range of size-dependence parameters (see Figs. 10, 16, 19 and
the descriptions about them)] also relieve the requirements
of experimental conditions to a certain extent. In a nutshell,
the small coupling strength required, the ease of parameter
tuning, the relaxation of high-cavity quality factor, and the
robustness to the QE dephasing rate promote the generation
of single-photon sources, which is a crucial ingredient for var-
ious photonic quantum technologies ranging from quantum
key distribution to optical quantum computing.
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[5] A. Imamoǧlu, H. Schmidt, G. Woods, and M. Deutsch,
Strongly Interacting Photons in a Nonlinear Cavity, Phys. Rev.
Lett. 79, 1467 (1997).

[6] R. Huang, A. Miranowicz, J. Q. Liao, F. Nori, and H. Jing,
Nonreciprocal Photon Blockade, Phys. Rev. Lett. 121, 153601
(2018).

[7] E. Zubizarreta Casalengua, J. C. López Carreño, F. P. Laussy,
and E. D. Valle, Conventional and unconventional photon
statistics, Laser Photonics Rev. 14, 1900279 (2020).

063702-17

https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1088/0034-4885/68/5/R04
https://doi.org/10.1126/science.1152261
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1103/PhysRevLett.121.153601
https://doi.org/10.1002/lpor.201900279


SHUTING SHEN, JIAHUA LI, AND YING WU PHYSICAL REVIEW A 105, 063702 (2022)

[8] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E.
Northup, and H. J. Kimble, Photon blockade in an opti-
cal cavity with one trapped atom, Nature (London) 436, 87
(2005).

[9] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J.
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