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Collective bosonic effects in an array of transmon devices

Tuure Orell ,1 Maximilian Zanner ,2,3 Mathieu L. Juan ,4 Aleksei Sharafiev,2,3 Romain Albert ,2,3

Stefan Oleschko,2,3 Gerhard Kirchmair ,2,3 and Matti Silveri 1

1Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland
2Institute for Experimental Physics, University of Innsbruck, A-6020 Innsbruck, Austria

3Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, A-6020 Innsbruck, Austria
4Institut Quantique and Département de Physique, Université de Sherbrooke, Sherbrooke J1K2R1 Québec, Canada

(Received 22 December 2021; accepted 16 May 2022; published 1 June 2022)

Multiple emitters coherently interacting with an electromagnetic mode give rise to collective effects such as
correlated decay and coherent exchange interaction, depending on the separation of the emitters. By diagonal-
izing the effective non-Hermitian many-body Hamiltonian we reveal the complex-valued eigenvalue spectrum
encoding the decay and interaction characteristics. We show that there are significant differences in the emerging
collective effects for an array of interacting anharmonic oscillators compared to those of two-level systems
and harmonic oscillators. The bosonic decay rate of the most superradiant state increases linearly as a function
of the filling factor and exceeds that of two-level systems in magnitude. Furthermore, with bosonic systems,
dark states are formed at each filling factor. These are in strong contrast with two-level systems, where the
maximal superradiance is observed at half-filling and with larger filling factors superradiance diminishes and no
dark states are formed. As an experimentally relevant setup of bosonic waveguide QED, we focus on arrays of
transmon devices embedded inside a rectangular waveguide. Specifically, we study the setup of two transmon
pairs realized experimentally in Zanner et al. [Nat. Phys. 18, 538 (2022)] and show that it is necessary to consider
transmons as bosonic multilevel emitters to accurately recover correct collective effects for the higher excitation
manifolds.
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I. INTRODUCTION

Electromagnetic field inside a waveguide acts as a col-
lective environment for quantum emitters embedded therein
[1,2]. Coupling to a continuum of radiation modes leads to
the emergence of collective states. Frequencies or position-
ing of individual emitters controls the relative phases, which
determines whether the collective states are rapidly decaying
superradiant states, or slowly decaying subradiant states [3,4].

Superconducting circuits offer multiple advantages over
atoms [5–7] as emitters. One has larger control over the
system parameters, which can be adjusted to desired values
during fabrication, and even controlled in situ during ex-
periments. The frequencies of superconducting circuits are
flux tunable [8–10], which can be utilized very efficiently in
rectangular waveguides, which have a cutoff frequency deter-
mined by their dimensions. Radiation below the cutoff cannot
propagate, and emitters below the cutoff are effectively se-
cluded from the system. Thus, superconducting-circuit based
emitters can be easily decoupled from the waveguide by tun-
ing their frequencies below the cutoff.

This controllability combined with the unitary on-site
control [11] implies that waveguide QED based on super-
conducting circuits has a high potential in many applications,
ranging from the simulation of dynamics of interacting quan-
tum systems [12] to open quantum information processing
and computation [13], and even modeling light-harvesting

[14] and non-Markovian effects [15]. Further, the space inside
a rectangular waveguide makes it possible to realize three-
dimensional emitter constructions using the superconducting
circuits [16–18].

Research on the collective phenomena has widely focused
on two-level systems both theoretically and experimentally
[3,19–23]. Collectively decaying two-level systems are known
to exhibit the famous Dicke superradiance [24] and superradi-
ant radiation burst [25–27]. Superconducting circuits are often
referred to as qubits, but in reality they are more accurately
described as quantum multilevel systems. In this work we
consider an array of transmons in a rectangular waveguide,
as sketched in Fig. 1(a). A transmon is an anharmonic oscil-
lator [8], and the anharmonicity acts as an on-site interaction
between the excitations. It reduces the energies of multiply
excited states, so that they are detuned from the transition
between the ground state and the first excited state. Thus, a
transmon can be seen as an intermediate between a qubit,
which it resembles for large anharmonicity, and a harmonic
oscillator in the opposite limit. The excitations in a transmon
can be interpreted as bosons, and an array of transmons can
be described accurately with the Bose-Hubbard model with
attractive interactions [16,28–31].

Bosonic statistics has a large impact on the collective decay
of the system, and the difference becomes visible already
with two sites one wavelength apart from each other, as de-
picted in Fig. 1(b). This arises from the larger many-body
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FIG. 1. (a) Transmons with frequency ω and anharmonicity U
coupled to the waveguide field with rate γ . Waveguide is rectangular
with width a and height b. (b) Total occupation and decay rates of the
collective states in a two-site system, where the sites are either qubits
(green) or harmonic oscillators (red). Bosonic statistics enhance the
decay rates of the bright states, and enable dark states beyond half-
filling. Dashed black circles depict states without collective effects.

Hilbert space of bosonic systems, as opposed to qubits. In
qubit systems, the decay rates of the collective states start
to decrease after half-filling, and dark states do not exist
beyond that. In bosonic systems, on the other hand, the decay
rates increase linearly, and the dark states can exist with any
occupation.

This paper is organized in the following way. In Sec. II
we describe the transmon system and its interaction with the
electromagnetic field inside a rectangular waveguide. The dy-
namics of the transmons are described by a collective master
equation, and the two cases where the transmon frequencies
are tuned above and below the cutoff frequency of the waveg-
uide are discussed. In Sec. III we study the collective effects
of an array of bosonic sites and compare them to the better
known array of two-level systems by studying the eigenvalues
of non-Hermitian effective Hamiltonians. In particular, we
find that the bosonic statistics enhance the superradiance. In
Sec. IV we discuss the effect of direct coupling between the
emitters by considering a system where pairs of capacitively
coupled transmons are evenly distributed along the waveg-
uide. This leads to an intriguing internal structure: local dark
and bright states for each pair. The bright states further com-
bine to global dark and bright states, extending throughout
the entire system. Finally, we discuss more thoroughly the
special case of two pairs, which was studied experimentally
in Ref. [11]. In Sec. V we discuss possible ways to probe the
collective effects and states in transmon systems. We study
the superradiant burst in bosonic systems, and use the two-
pair setup as an example in which we probe the eigenstates
using the transmission of radiation, as well as the power
spectrum of emitted radiation. Finally, we simulate numeri-
cally the pulsed direct excitation spectroscopy measurement

of the two-excitation manifold performed in Ref. [11]. All
results for transmons are compared against the corresponding
results for systems of qubits and harmonic oscillators, and the
differences are discussed. The work is summarized in Sec. VI.

Details on the derivation of the collective master equa-
tion for a system of transmons inside a rectangular waveguide
are given in Appendix A. In Appendix B we discuss how
the linear algebra of quantum mechanics has to be modified
in order to describe non-Hermitian systems, which results in
biorthogonal quantum mechanics [32]. Finally, in Appendix C
we describe the methods used for numerically solving the
dynamics encountered in this work.

II. WAVEGUIDE QED FOR TRANSMONS

A. Transmon array

An array of L uncoupled transmons [8] is described accu-
rately by the Bose-Hubbard Hamiltonian [16,28,29,33],

ĤBH

h̄
=

L∑
j=1

ω j n̂ j −
L∑

j=1

Uj

2
n̂ j (n̂ j − 1), (1)

where n̂ j is the number operator of the site j. Parameter ω j

is the transition frequency between the ground state and the
first excited state of the jth transmon, and Uj is the corre-
sponding anharmonicity describing the on-site interactions. If
the separation between transmons is sufficiently small, they
couple capacitively to each other, which allows the hopping of
excitations. This behavior can be included in Eq. (1) by adding
a term

∑
j �=k Jjk â†

j âk , where Jjk is the hopping rate between

sites j and k, and â†
j and âk are the creation and annihilation

operators of the sites j and k, respectively.
For many-body dynamics the anharmonicity U serves as a

negative on-site interaction. Thus, the many-body interactions
are attractive, contrary to the repulsive model encountered in
many atomic systems [34–40]. As a single device, a trans-
mon can be considered an intermediate between a harmonic
oscillator and a qubit, and the strength of the anharmonicity
compared to the coupling strengths determines how close a
transmon is to either of the limiting cases. The weaker the
anharmonicity U , the more harmonic the system is, and in the
opposite limit the transmon is more qubit-like.

Because the excitations are bosons, occupations per site are
not limited, and the lowest energy of the transmon system is
obtained if all the excitations occupy the same site. However,
only roughly 10 lowest levels of a single transmon are bound
[41–43], and they can be modeled using Eq. (1). The Bose-
Hubbard model thus breaks down if the total number of quanta
in the system exceeds 10, but in this work we do not consider
such large fillings.

B. Coherent interaction with electromagnetic field

The array of transmons discussed in the previous sec-
tion can be embedded inside a waveguide, where it couples
coherently to the electromagnetic radiation field. The dynam-
ics of the transmons are governed by the master equation (see
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Appendix A for details) [1,3,19,44],

d ρ̂

dt
= −i

⎡⎣ ĤBH

h̄
+
∑
m j,nk

Jm j,nk σ̂
nk
+ σ̂

m j
− , ρ̂

⎤⎦
+
∑
m j,nk

γm j,nk

(
σ̂

m j
− ρ̂σ̂ nk

+ − 1

2
{σ̂ nk

+ σ̂
m j
− , ρ̂}

)
, (2)

where the operator σ̂
m j
− = |mj〉〈(m + 1) j | is the lowering op-

erator for the (m + 1)st state of the jth site, and we denote
the corresponding transition frequency with ωm j . Coefficients
Jm j,nk are the exchange interactions mediated by the waveg-
uide, and γm j,nk are the collective damping rates arising from
the interaction between the transmons and the radiation field.
Now, inside a rectangular waveguide, the frequency of the
radiation mode is given by the nonlinear dispersion relation

ω(kz ) =
√

c2k2
z + �2

⊥, (3)

where c is the speed of light and �⊥ is the cutoff frequency
arising from the perpendicular dimensions of the rectangular
waveguide, as discussed in Appendix A 1. The situation is
different whether the transition frequencies of the transmons
are above or below the cutoff frequency, since no propagating
electromagnetic modes exist with frequencies less than the
cutoff frequency �⊥.

Let us first consider the case with all the transition fre-
quencies above the cutoff frequency, ωm j > �⊥. The radiation
field of the rectangular waveguide can mediate long-range
collective dissipation and interaction, similarly as with one-
dimensional transmission lines [3]. The rates depend on the
site separation and system frequencies as

γm j,nk =
√

γ jγk

ω jωk

√
(m + 1)(n + 1) sin

(πx j

a

)
sin

(
πxk

a

)
× (χm jk + χ∗

nk j ), (4)

Jm j,nk = − i

2

√
γ jγk

ω jωk

√
(m + 1)(n + 1) sin

(
πx j

a

)
sin

(
πxk

a

)
× (χm jk − χ∗

nk j ), (5)

where for the jth emitter, we have the single-site decay rate
γ j , a representative frequency ω j , the coordinate x j in a per-
pendicular direction to the radiation propagation, and a is the
width of the waveguide (see Appendixes A 1, A 3, and A 5
for details). The collective dissipation and interaction rates are
defined through oscillatory coefficients

χm jk = ω2
m j√

ω2
m j − �2

⊥
eit jk

√
ω2

m j−�2
⊥ , (6)

where t jk = |z j − zk|/c is the propagation time between loca-
tions of the sites j and k, and ωm j is the transition frequency
between (m + 1)st and mth eigenlevels of site j, which for
the transmon depends on the anharmonicity U as ωm j =
ω j − mUj .

Assuming that the emitters are located at the center line,
x j = a/2, their transition frequencies are homogeneous and
weakly anharmonic ωm j = ωnk ≈ ω0, and they are far from

the cutoff frequency ωm j ≈
√

ω2
m j − �2

⊥ , we obtain the ex-
pressions [3,19]

γm j,nk = √
γ jγk

√
(m + 1)(n + 1) cos(ω0t jk ), (7)

Jm j,nk =
√

γ jγk

2

√
(m + 1)(n + 1) sin(ω0t jk ). (8)

The dissipation rate and interaction strength are oscillatory
functions in terms of the phase difference between the sites,
which can be controlled either via the frequency of the emit-
ters or their separation, best seen by writing ω0t jk = 2π |z j −
zk|/λ0 in terms of the wavelength λ0. Thus, if the site sep-
aration is an integer multiple of half of the wavelength λ0,
the correlated decay obtains its maximal value, whereas the
exchange interaction is at minimum. The situation is reversed
if the site separation is an odd multiple of quarter of the wave-
length, in which case the correlated decay is at minimum and
exchange interaction at maximum. Even though the correlated
decay vanishes in this case, each site still decays individually.
For evenly spaced spectrum the coefficients would vanish at
minimum, but for anharmonic transitions there can be weak
exchange interaction also with maximal correlated decay, and
vice versa. In this paper we focus on the situation with maxi-
mal correlated decay.

Additionally, when the waveguide is driven from left, the
array becomes also effectively driven, described by the Hamil-
tonian [3] (see Appendix A 4)

Ĥd(t ) = −
∑
m j

√
2h̄γm j,m j

ωm j

√
P sin [ωd(t + t j )]σ̂

m j
x , (9)

where P is the power of the radiation, ωd is the frequency of
the input, and t j = z j/c is the time it takes for a photon to
propagate to site j. For the first site one can set t1 = 0, since
the positions here determine only the phase at each site.

Below the cutoff frequency when ωm j < �⊥, we find the
dissipation and interaction rates similarly,

γ ⊥
m j,nk = −i

√
γ jγk

ω jωk

√
(m + 1)(n + 1) sin

(
πx j

a

)
sin

(
πxk

a

)
× (ζm jk − ζnk j ), (10)

J⊥
m j,nk = −1

2

√
γ jγk

ω jωk

√
(m + 1)(n + 1) sin

(
πx j

a

)
sin

(
πxk

a

)
× (ζm jk + ζnk j ), (11)

which decay exponentially with the site separation,

ζm jk = ω2
m j√

ω2
m j − �2

⊥
e−t jk

√
�2

⊥−ω2
m j . (12)

The dissipation and interaction rates reduce with the assump-
tions x j = a/2 and ωm j = ωnk ≈ ω0 to

γ ⊥
m j,nk = 0, (13)

J⊥
m j,nk = −

√
ω2

0γ jγk

�2
⊥ − ω2

0

√
(m + 1)(n + 1)

2
e−t jk

√
�2

⊥−ω2
0 . (14)
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Below the cutoff frequency, radiation does not propagate and
energy cannot leak out from the array via the waveguide, nor
can the array be driven through the waveguide. No dissipation
is therefore possible, seen by identically zero dissipation rates.
However, the exchange interaction is not identically zero, but
its strength decays exponentially as a function of the site
separation. In other words, nearby emitters can still exchange
excitations via the waveguide, in addition to the capacitive
coupling.

For the rest of this paper we assume that all the transmons
are sufficiently far above the cutoff, so that we can set �⊥ = 0
in Eq. (6), recovering the dispersionless propagation.

III. COLLECTIVE BOSONIC MANY-BODY EFFECTS

In this section we study how an array of weakly an-
harmonic oscillators, such as transmons, behaves under the
influence of the collective electromagnetic environment of
a waveguide, and compare the results to the widely studied
qubit case, especially the Dicke model [45–60] and to the case
of an array of harmonic oscillators.

We start by noting that the master equation (2) can be
reformulated as

d ρ̂

dt
= − i

h̄
(Ĥeff ρ̂ − ρ̂Ĥ†

eff ) +
∑
m j,nk

γm j,nk σ̂
m j
− ρ̂σ̂ nk

+ , (15)

where the non-Hermitian effective Hamiltonian [19] is

Ĥeff = Ĥ + h̄
∑
m j,nk

(
Jm j,nk − iγm j,nk

2

)
σ̂ nk

+ σ̂
m j
− . (16)

The dynamical behavior of the system can then be understood
with the quantum trajectory description [61,62]. The latter
part of the master equation (15) describes quantum jumps, i.e.,
the collective decay events in which the waveguide radiation
field transports energy from the array. The non-Hermitian
effective Hamiltonian describes the nonunitary time evolution
between the quantum jumps, and it has complex-valued eigen-
values Ĥeff |α〉 = λα|α〉 of the form

λα = Eα − ih̄
�α

2
, (17)

where Eα is interpreted as the energy and �α as the total decay
rate of the state |α〉. Non-Hermitian quantum mechanics is
discussed in Appendix B more thoroughly. Similarly as with
unitary quantum dynamics, the eigenvalues of the effective
Hamiltonian determine the behavior of the dissipative quan-
tum system [20,21,63,64]. Specifically, considering a short
time interval dt , the decay rate specifies the decay probability
Pα (dt ) = �αdt of the state |α〉, and the quantum jump terms
of the master equation determines the details of the decay
processes.

For better analytical understanding, we simplify the master
equation (15). First, we assume that all the sites are identical,
so that they have the same frequencies, and they all couple
to the waveguide with γ = γ j . We also assume that the co-
efficients γm j,nk and Jm j,nk are equal for all m and n, i.e., for
bosonic systems we assume that the eigenlevels of the sites are
evenly spaced. Then the effective Hamiltonian is expressed
for bosonic systems in terms of the annihilation operators

â j =∑∞
m=0

√
m + 1σ̂

m j
− and for the qubit systems with the

corresponding σ
j

− = σ̂
0 j
− = |0 j〉〈1 j |. Finally, we assume that

the sites are spaced by a distance which is an integer n multiple
of the wavelength, |z j − zk| = nλ0 (see Fig. 1), so that each
site has the same phase, implying Jj,k = 0 and γ j,k = γ for all
j and k, including the possibility that the sites are at the same
location. This assumption is lifted later in Sec. IV A.

To summarize, here we contrast the qubit and bosonic
models through the effective non-Hermitian Hamiltonians

ĤQ
eff = ĤQ − ih̄

γ

2

∑
j,k

σ̂ k
+σ̂

j
−, (18)

ĤB
eff = ĤH/T − ih̄

γ

2

∑
j,k

â†
k â j . (19)

In Fig. 2 we plot the complex eigenvalues of the non-
Hermitian Hamiltonians on the �α-Eα plane for three different
cases, where uncoupled emitters inside the waveguide are
either (a) qubits, (b) transmons, or (c) harmonic oscillators.
Without correlated decay (γ j,k = 0 if j �= k), the effective
Hamiltonian would be ĤB

eff = ĤB − ih̄ γ

2

∑
j â†

j â j for bosonic

systems, and ĤQ
eff = ĤQ − ih̄ γ

2

∑
j σ̂

j
+σ̂

j
− for qubits. In such

systems one observes a linear scaling as a function of total
occupation N in the decay rates �, so that all the eigenvalues
lie on the line � = Nγ , where N = 〈∑ j â†

j â j〉 for bosonic

systems and N = 〈∑ j (Î + σ̂
j

z )/2〉 for qubits; see the gray
dashed diagonal line in Fig. 2. Correlated decay causes some
of the states to decay faster (superradiance) or slower (subra-
diance) than γ N .

A. Collective decay in an array of qubits

The system of L identical qubits in a waveguide is repre-
sented by the Hamiltonian

ĤQ
eff

h̄
=

L∑
j=1

ω0

2

(
Î + σ̂ j

z

)− i
γ

2

L∑
j=1

L∑
k=1

σ̂
j

+σ̂ k
−, (20)

where σ̂
j

z is the Pauli z matrix of the jth qubit and σ̂
j

− is
the associated lowering operator. The eigenstates are |s, mz〉
where mz is an eigenvalue of the z component of the total spin
Ŝz =∑L

j=1 σ̂
j

z and s is related to the eigenvalue of the length
of the total spin Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z . The possible values are
s = L, L − 2, . . . , 0 and m = s, s − 2, . . . ,−s. We also define
Ŝ− =∑L

s=1 σ̂
j

− as the total lowering operator. With these total
spin operators, the Hamiltonian (20) can be written as

ĤQ
eff

h̄
= ω0

2
(Ŝz + ÎL) − i

γ

2
Ŝ+Ŝ−, (21)

from which we can see that the state |s, mz〉 has an energy
Esmz = h̄ω0(mz + L)/2 = h̄Nω0 and decay rate �smz = γ (s +
mz )(s − mz + 2)/4. The brightest state of the N-excitation
manifold has a decay rate N (L − N + 1)γ ; see the green
curve in Fig. 2(a). These states have the maximal total
spin |s = L, mz〉. The dark states with �α = 0 are the states
|s, mz = −s〉 with the lowest possible value for the total Ŝz,
and they can exist only up to half-filling N = L/2 [65].

The decay of the collective system is caused by the
operator Ŝ−, denoted by black arrows in Fig. 2(a). The
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FIG. 2. Complex eigenvalues of the effective non-Hermitian
Hamiltonian as a function of the energy Eα and the decay rate �α

for L = 8 uncoupled (a) qubits, (b) transmons with U = 8.72γ , and
(c) harmonic oscillators. For qubits the decay rates of the brightest
states depend quadratically on the occupation N (solid green curve),
for the harmonic oscillators we see linear scaling (dotted red line).
For transmons the decay rates scale similarly to qubits up to half-
filling, after which they continue to increase. For comparison also
the decay rates without correlated effects are shown as dashed gray
lines. Hilbert space dimensions for each excitation manifold are also
shown; the dimensions are the same in (b) and (c).

cascaded collective decay forms decay manifolds: |s, mz〉 →
|s, mz − 2〉 → · · · . For example, there is only one state with
N = L excitations, |s = L, mz = L〉. If the system is ini-
tially in this state, it decays with the rate Nγ to the state
|s = L, mz = L − 2〉 in N = L − 1 manifold which has a
larger decay rate. As we go down the decay ladder, the decay
rate first increases, reaches its maximum at half-filling, and
then starts to decrease again. This is observed in Fig. 2(a) as

the parabolic scaling of the decay rates as a function of the
number of excitations.

B. Collective decay in an array of harmonic oscillators

The effective Hamiltonian of an array of harmonic oscilla-
tors reads

ĤH
eff

h̄
=

L∑
j=1

ω0n̂ j − i
γ

2

L∑
j=1

L∑
k=1

â†
j âk . (22)

In solving and analyzing the eigenstates of the system we
utilize the fact that the non-Hermitian Hamiltonian of Eq. (22)
conserves the total boson number, that is, it commutes with the
total occupation operator N̂ ,

[
ĤH

eff , N̂
] = 0, N̂ =

L∑
j=1

n̂ j . (23)

Because of this, the effective Hamiltonian is block diagonal,
where each block is characterized by a total number of ex-
citations, 〈N̂〉 = N . The number of states in an N-excitation
manifold is

DN,L =
(

N + L − 1

N

)
= (N + L − 1)!

(L − 1)!N!
. (24)

We now diagonalize the effective Hamiltonian (22) with the
collective bosonic operators

ĉk = 1√
L

L∑
j=1

exp

(
2π i

L
jk

)
â j, (25)

where k = 1, 2, . . . , L and [ĉk, ĉ†
k′ ] = δk,k′ . The result is a set

of L uncoupled harmonic oscillators

ĤH
eff

h̄
=

L∑
k=1

ω0ĉ†
k ĉk − i

Lγ

2
ĉ†

LĉL. (26)

Only the mode corresponding to ĉL decays at rate Lγ , the
other modes are dark. The collective eigenstates of the non-
Hermitian effective Hamiltonian (26) are

|m1, m2, . . . , mL〉 = (ĉ†
1)m1 (ĉ†

2)m2 · · · (ĉ†
L )mL

√
m1!m2! · · · mL!

|G〉, (27)

where |G〉 is the ground state. Each quantum generated by the
operator ĉ†

L increases the decay rate of the corresponding state
by Lγ . The brightest superradiant state with N excitations is

|SRH
(N)〉 = |0, 0, . . . , N〉 = (ĉ†

L )N

√
N!

|G〉. (28)

There exists only one such a state for a given N ; see the
rightmost filled circles in Fig. 2(c). Considering these states as
a function of the total boson number N and the total number of
sites L, the decay rates of the brightest states scale linearly as
�H

max = NLγ ; see the red diagonal dotted line in Fig. 2(c). It
is L times larger than without the correlated effects [66] (gray
dashed line) and much larger than the collective decay rate of
the qubits �Q

max = N (L − N + 1)γ for N > 1; see the green
curve in Fig. 2(a). Thus, for bosonic systems the behavior of
the collective decay is fundamentally different compared to
the case of qubits.
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The difference between bosonic and qubit superradiance
can be understood through local bosonic multioccupancy,
which results in bosonic enhancement of decay rates. For
example, for L oscillators and N = 2 excitations, the most
superradiant bosonic state is

∣∣SRH
(2)

〉 = 1

L

(√
2

L∑
�=1

l−1∑
�′=1

|n� = 1, n�′ = 1〉 +
L∑

�=1

|n� = 2〉
)

,

(29)

where |n� = n〉 = (â†
� )n|G〉/√n!, whereas the corresponding

most superradiant qubit state is otherwise identical but misses
the doubly occupied states,

∣∣SRQ
(2)

〉 = √ 2

L(L − 1)

L∑
�=1

�−1∑
�′=1

|n� = 1, n�′ = 1〉Q, (30)

where |n� = 1〉Q = σ̂ �
+|G〉. The dark states are all the states

of Eq. (27) where mL = 0, meaning that no quanta are cre-
ated by ĉ†

L. They are multiply degenerate, and as opposed to
qubits, there exist dark states in all excitation manifolds. This
occurs because of the larger Hilbert space dimension of the
bosonic system, which allows multiple occupations per site.
For example, at N = L = 2, the bosonic dark state � = 0 is∣∣SUBH

(2)

〉 = 1

2
(|20〉 −

√
2|11〉 + |02〉). (31)

In the corresponding qubit case, the only state is |11〉 which
is decaying with the rate � = 2γ as an unentangled state that
cannot have any correlated effects; see Fig. 1(b).

In general, it is possible to have states with a decay rate
mLγ , where 0 � m � N . The number of such states is given
by the formula

dm,N,L = (N − m + L − 2)!

(N − m)!(L − 2)!
= DN−m,L−1, (32)

where Dm,L is the number of bosonic states, defined in
Eq. (24). From Eq. (26) we see that only one collective oper-
ator, ĉL, causes jumps between different excitation manifolds,

ĉL|m1, m2, . . . , mL〉 = √
mL|m1, m2, . . . , mL − 1〉, (33)

i.e., the decay happens such that ĉL removes one quantum
from the state. This causes the diagonal decay ladders, as
observed in Fig. 2(c).

C. Collective decay in an array of transmons

The effective Hamiltonian of an array of transmons is

ĤT
eff

h̄
=

L∑
j=1

[
ω0n̂ j − U

2
n̂ j (n̂ j − 1)

]
− i

γ

2

L∑
j=1

L∑
k=1

â†
j âk .

(34)
Transmons differ from harmonic oscillators through the
weak anharmonicity [8] giving rise to the interaction term
−(h̄U/2)

∑
j n̂ j (n̂ j − 1) in the many-body setting. Now, the

interaction term and the collective decay terms do not com-

mute, [
U

2

L∑
j=1

n̂ j (n̂ j − 1),
γ

2

L∑
j=1

L∑
k=1

â†
j âk

]
�= 0, (35)

which implies that the eigenstates of the non-Hermitian effec-
tive Hamiltonian are neither the eigenstates of the uncoupled
transmon array nor the eigenstates of the collective decay
term.

Typically the interaction strength U dominates over the
collective decay strength γ , U/γ � 10 [11], which would
suggest that the eigenstates could be solved by considering
the collective decay as a perturbation. However, the situation
is more complicated than that due to the high number of
many-body Fock states that are degenerate with respect to
the interaction term. For example, in the manifold of total N
excitations, states with all possible permutations for the state
occupations similar to |N − 2, 1, 1, 0, . . . , 0〉 are degenerate.
The situation is similar to the problem of solving the ground
states of the Bose-Hubbard model with attractive interactions
[31] where two phases emerge, the delocalized superfluid
or the localized W phase, depending on the strength of the
hopping rate (which here corresponds to the collective decay
strength) with respect to the interaction strength. Furthermore,
we are interested on the full complex spectrum instead of
just the ground states, rendering the problem even more
challenging. Hence, in this section, we resort only on the
numerical solution displayed in Fig. 2(b) of the array of L
transmons. In Sec. IV B we focus in more detail on the case
of four transmons.

The complex spectrum of a transmon array is somewhere in
between that of qubits and harmonic oscillators. Unlike with
qubits, we observe dark states also beyond half-filling, and
the decay rates of the brightest states grow as a function of
N , although not as strongly as with harmonic oscillators (red
dashed line). The high number of degeneracy observed with
the harmonic oscillators is reduced due to the anharmonicity
U of the transmons, which decreases the energies. The bright-
est states of a transmon array are in general at high energy
in each excitation manifold. This means that the attractive
many-body interaction affects them only slightly, meaning
that most of the contribution to the brightest states comes from
the Fock states where the excitations are spread out to the
sites as evenly as possible. For example, in the case of N = L,
the most superradiant states are the superpositions of mainly
the Fock states that are different permutations of |111 . . . 1〉
and |1021 . . . 1〉. The large bosonic many-body Hilbert space
of transmon arrays thus allows the construction of states that
are either much more subradiant or superradiant than in the
corresponding qubit array case.

On the other hand, the lowest energy states of each excita-
tion manifold lie approximately at the line �α = Nγ , which
gives the decay rate of the state without the correlated effects.
The many-body interactions thus decrease the collective be-
havior in bosonic systems.

IV. INTERPLAY BETWEEN LOCAL AND GLOBAL
COLLECTIVE STATES

Above we studied the case where the transmons are
spaced an integer multiple of the wavelength apart, |z j − zk| =
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FIG. 3. Schematic of an array of transmon pairs. In the one-
excitation manifold each pair hosts one local dark state and one local
bright state created by the operators d̂†

j and b̂†
j ; see Eq. (37). The

local bright states further interact via the waveguide, resulting in
three collective dark states created by the operators ĉ†

1,2,3, and one
collective bright state created by ĉ†

4; see Eq. (39).

nλ0, such that the waveguide-mediated exchange interactions
Jm j,nk vanish and the emitters are connected only through the
collective decay terms. Another natural limit would be the
case where the transmons are very close to each other such
that the separations between any two sites is approximately
zero, |z j − zk| ≈ 0. The form of the collective decay terms
is the same as with the integer wavelength case, but one
should additionally take into account also the direct capacitive
coupling J in Eq. (1) between the transmons, which is always
present if the sites are sufficiently close to each other [17].
For simplicity in analytical calculations, if such an additional
term is present, one would like to have it such that it commutes
with the collective decay term of the non-Hermitian effective
Hamiltonian. Such couplings include equally strong all-to-all
coupling (the collective decay is an all-to-all coupling) or
a ring of transmons with each site coupled to its nearest
neighbors. However, such systems can be difficult to realize
in practice for a large number of sites.

One further possibility is to consider an array made of
transmon pairs. The two closely located transmons form a
capacitively coupled pair, and several of these pairs are evenly
spaced along the waveguide to form an array; see Fig. 3.
The motivation to study such a construction is its intriguing
internal structure, where each transmon pair hosts local bright
and dark states, and only the local bright states contribute in
the formation of array-wide collective dark and bright states.
By having a side port control on the local transmons, as
demonstrated in Ref. [11], one can imagine a scenario where
quantum information stored on the local dark states is first
converted to the local bright states. The local bright and dark
states are separated in energy and state symmetry, providing
means for state specific addressing. Then the global dark
states, formed from the local bright states, form a quantum
bus to communicate between different transmon pairs. Fur-
ther, the separation of local and global states in energy opens
possibilities for the implementation of quantum simulations.

A. An array of transmon pairs

Without the interaction U , the effective Hamiltonian for L
transmon pairs reads

Ĥpairs
eff

h̄
=

L∑
j=1

[ω0(n̂1 j + n̂2 j ) + J (â†
1 j â2 j + H.c.)]

− i
γ

2

2∑
p,l=1

L∑
k, j=1

eiω0t jk â†
pkâl j, (36)

where L is now the number of pairs, and the indices j and
k refers to the pair. We assume that the sites forming a pair
are located at the same position in the waveguide, so that
t j j = 0, and we take the separation of the pairs to be of the
order of the wavelength corresponding to the frequency of the
transmons, so that the pairs do not couple capacitively to each
other, but interact only through the waveguide. Within a pair,
the diagonalized local operators are

b̂ j = 1√
2

(â1 j + â2 j ), d̂ j = 1√
2

(â1 j − â2 j ). (37)

In terms of these, the Hamiltonian of L pairs becomes

Ĥpairs
eff

h̄
=

L∑
j=1

[(ω0 + J )b̂†
j b̂ j + (ω0 − J )d̂†

j d̂ j]

− iγ
L∑

j=1

L∑
k=1

eiω0t jk b̂†
kb̂ j, (38)

where the operators b̂†
j and ĉ†

j create an excitation on the local
bright and dark modes of the jth pair, respectively. The local
modes are split by energy 2h̄J , so that the bright states are
higher in energy. Due to their nature, the dark states do not
interact via the waveguide. The local bright states, on the other
hand, combine to form system-wide collective states.

Assuming that ω0t jk = 2π | j − k|, so that the phase dif-
ference is the same for all pairs, we can write the collective
operators as a Fourier series,

ĉk = 1√
L

L∑
j=1

exp

(
2π i

L
jk

)
b̂ j, (39)

similarly as in Eq. (25), so that the Hamiltonian becomes

Ĥpairs
eff

h̄
= (ω0 + J − iLγ )ĉ†

LĉL +
L−1∑
j=1

(ω0 + J )ĉ†
j ĉ j

+
L∑

j=1

(ω0 − J )d̂†
j d̂ j . (40)

We thus find one global bright mode ĉL with decay rate 2Lγ ,
L − 1 global dark modes ĉ1,2,...,L−1, and L local dark modes
d̂ j . The complex spectrum of the Hamiltonian (40) is similar
to that of the harmonic oscillators in Fig. 2(c) with the excep-
tion that now the local and global modes are split in energy,
reducing the degeneracy.

The interaction term −(h̄U/2)
∑

p

∑
j n̂ j p(n̂ j p − 1) will

give similar effects as for the array of wavelength-spaced
transmons, discussed in Sec. III C. In particular, it couples the
local and global modes, which we will next elaborate in detail
in the case of two transmon pairs.

B. Two pairs of transmons

As shown in Fig. 2, at low filling factors N/L < 1/2,
the scaling of the collective decay rates is quite similar in
transmon and qubit systems. Differences start to emerge at
half-filling, after which the decay rates of the brightest states
and the Hilbert space dimensions in the qubit system start to
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TABLE I. Parameters of the transmon array and the waveguide,
their respective symbols, and values used in numerical calculations.
The values are chosen close to the ones measured in Ref. [11].

Parameter Symbol Value

Transmon frequency ω0/2π 7.28 GHz
Anharmonicity U/2π 218 MHz
Capacitive coupling strength J/2π 45 MHz
Waveguide coupling strength γ /2π 25 MHz
Waveguide cutoff frequency �⊥/2π 6.55 GHz
Bulk dissipation rate κ/2π 15 kHz

decrease. In the bosonic systems they instead keep increas-
ing. In small systems, containing two to four transmons, the
collective bosonic effects should emerge already with two
excitations. In this section we focus on a system consisting of
two pairs of transmons, which is the simplest case of the array
of pairs. Such a system is readily achievable also experimen-
tally [11], which showcases the applicability and relevance of
the presented theory. Here we use parameters that are close to
the experimental ones except that the waveguide coupling γ

has a larger value to highlight the collective bosonic effects;
see Table I.

The two-pair setup is also more versatile compared to the
multiple pair setup, since the correlated decay between differ-
ent pairs can be fully disabled here by tuning the transmon
frequencies so that the pairs are an odd multiple of λ/4 apart,
which provides a coherent exchange interaction between the
pairs instead. For multiple pairs this would remove the cor-
related decays between neighboring pairs, but to next-nearest
pairs the correlated decay would again be at maximum, since
the separation would be a multiple of λ/2 instead.

The array of two transmon pairs, L(eft) and R(ight), is
described by the effective Hamiltonian

Ĥ2+2
eff

h̄
=
∑

j=L,R

[ω j (n̂ j1 + n̂ j2) + J (â†
1 j â2 j + H.c.)]

−
∑

j=L,R

U

2
(â†

1 j â
†
1 j â1 j â1 j + â†

2 j â
†
2 j â2 j â2 j )

− iγ

2

2∑
p,l=1

∑
j,k=L,R

eiω j t jk â†
kpâ jl , (41)

where t jk is the separation between pairs j and k. If all the
transmons are in resonance, ω j = ω0, and we assume that
the pairs are now separated by half of the wavelength cor-
responding to the frequency, then based on Sec. IV A, the
one-excitation manifold is diagonalized by the operators

d̂L = 1√
2

(â1L − â2L), �dL = 0, (42)

d̂R = 1√
2

(â1R − â2R), �dR = 0, (43)

D̂ = 1

2
(â1L + â2L + â1R + â2R), �D = 0, (44)

B̂ = −1

2
(â1L + â2L − â1R − â2R), �B = 4γ , (45)

FIG. 4. The complex valued eigenlevels λα = Eα − ih̄�α/2 of
the two-pair setup described by the Hamiltonian (41) in zero, one,
and two excitation manifolds marked with points. States denoted
with red squares are antisymmetric with respect to the exchange of
the pair, and those denoted by blue circles are symmetric. On the
other hand, states shown with blue-gray stars do not possess pair-
exchange symmetry. Pairs are separated by half of the wavelength
corresponding to the transmon frequency ω0. Black arrows display
how the states connected to the global one-excitation states |D3〉
and |B4〉 decay through the waveguide, and their widths indicate
the relative magnitude. The decay process by the collective decay
operator B̂ of Eq. (45) is antisymmetric, so only the decay events
that change the symmetry are allowed. States |W5,6〉 and |F7,8〉 consist
mainly of the states where two excitations occupy a single transmons,
they do not exist in a qubit system. Additionally, the states |F7,8,10,11〉
decay to the local dark states |D1,2〉. States |F7,8〉 are degenerate, as
well as |F10,11〉.

where �α are the corresponding decay rates. States |D1〉 =
d̂†

L|G〉 and |D2〉 = d̂†
R|G〉 are the local dark states, and |D3〉 =

D̂†|G〉 and |B4〉 = B̂†|G〉 are the collective dark and bright
states, respectively. Numerically calculated eigenvalues of the
Hamiltonian (41) are shown in Fig. 4 in zero, one, and two
excitation manifolds, with parameters given in Table I.

As the number of excitations increases, the level structure
develops a more complicated structure due to the interplay of
the interaction and the collective decay. In the two-excitation
manifold of Fig. 4, there exists only one dark state |D9〉 =
|D1〉 ⊗ |D2〉, where both local dark states are excited. Lower
in energy we find four states, |W5,6〉 and |F7,8〉, where W stands
for weak and F for faint, referring to their moderate decay
rates. These states are mostly made from Fock states where the
two excitations occupy a single transmon, so they are affected
by the anharmonicity more strongly than the other states,
which decreases their energy. Despite their bosonic multi-
excitation nature, the states |W5,6〉 are almost dark. Moreover,
because of the double occupancies, these states would not
exist if the system was made from real qubits instead of
transmons. The remaining five states lie higher in energy. The
states |F10〉 and |F11〉 are related to the local dark states, and the
states |W13〉, |F12〉 and |B14〉 are mostly such that they contain
two excitations in the collective dark state, one excitation in
both collective states, and two excitations in the collective

063701-8



COLLECTIVE BOSONIC EFFECTS IN AN ARRAY OF … PHYSICAL REVIEW A 105, 063701 (2022)

FIG. 5. (a) Energies and (b) decay rates of the two-pair setup of
Eq. (41) in the two-excitation manifold as a function of anharmonic-
ity U ; other parameters are as in Table I. In the weak anharmonicity
limit, transmons resemble harmonic oscillators, but the collective
complex eigenenergies rapidly deviate from that. However, the qubit
eigenlevels (dashed horizontal lines) are achieved only at very large
anharmonicities U/γ � 30. Dashed vertical gray line describes the
value of U/γ used in Fig. 4, from which also the naming convention
of the states is adapted.

bright state, respectively, but due to the anharmonicity, they
receive contributions also from the other states.

Different symmetries can be assigned to the collective
eigenstates, but for us the most interesting one is the symmetry
with respect to the exchange of the pairs, defined by the
operator P̂ = |n3n4n1n2〉〈n1n2n3n4|, where n j is the number
of excitations at the jth site. The pair-exchange symmetry
defines which decay processes are possible and which kind
of collective drive is needed to couple states and to induce
transitions between them. If the pair-exchange operator leaves
a state intact, P̂|α〉 = 1|α〉, the state is symmetric, and if the
state becomes itself with a sign change, P̂|α〉 = −1|α〉, it is
antisymmetric. Not every state has this symmetry, for example
the local states |D1〉 and |D2〉 in the one-excitation manifold,
since they contain excitation in one pair only. On the other
hand, Eqs. (44) and (45) show that the global states |D3〉 and
|B4〉 are symmetric and antisymmetric, respectively. The de-
cay process through the waveguide is antisymmetric through
the decay operator B̂ = −(â1L + â2L − â1R − â2R)/2, which
means that it connects states with the opposite pair-exchange
symmetries. This is visible in Fig. 4, where the symmetric
states |W13〉 and |B14〉 decay to the antisymmetric state |B4〉,
which further decays to the symmetric ground state |G〉. Sim-

FIG. 6. (a) Energies and (b) decay rates of the two-pair setup
of Hamiltonian (41) in the two-excitation manifold as a function of
the capacitive coupling J . Other parameters are as in Table I. With
weak coupling the system eigenvalues (solid curves) are close to the
corresponding qubit system (dashed curves), but as J increases, they
rapidly deviate. Dashed vertical gray line describes the value of J/γ
used in Fig. 4. Here we have kept the ratio U/γ = 8.72 fixed, and,
because of such a large anharmonicity, there is no harmonic limit.

ilarly, the antisymmetric state |F12〉 decays to the symmetric
state |D3〉, which cannot decay further, because the ground
state has the same symmetry.

In Fig. 5 we plot the eigenvalues of the two excitation man-
ifold of the Hamiltonian (41) as a function of anharmonicity
U in order to observe the transition from a harmonic to a qubit
system. The qubit limit is identical to the hard-core boson
limit where at maximum a single bosonic excitation occu-
pies a site. Figure 5(a) shows the energies and Fig. 5(b) the
corresponding decay rates. Corresponding values for qubits
are shown as dashed horizontal lines, and dashed vertical
line denotes the parameters at which the results in Fig. 4 are
calculated. The states are labeled according to these values,
although their radiative properties change as a function of an-
harmonicity, as is evident from Fig. 5(b). The system rapidly
deviates from the harmonic description (red region) as the an-
harmonicity increases. Especially we note that the four states
|W5,6〉 and |F7,8〉 containing the double excited Fock states
rapidly decrease in energy as a function of anharmonicity,
and so they become detuned from the qubit space. The states
|F10,11〉, which lie higher in energy, form an exceptional point
[67] with the states |F7,8〉 at U = 2γ . For smaller U these
states are degenerate in energy, and they form dark and bright
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states. For larger U , their decay rates become degenerate, but
their energies deviate.

Finally, the three states |F12〉, |W13〉 and |B14〉, which have
the highest energies, begin as bosonic collective states with
the decay rates 0, 4γ , and 8γ and degenerate energies. As the
anharmonicity increases, they deviate in energy and slowly
converge towards the qubit energies and decay rates. The qubit
limit sketched in Fig. 5 corresponds to U/2π = 750 MHz,
which is much larger than the typical value for transmon
anharmonicity. Thus, in practice, with the parameters used in
Fig. 5, the transmon system cannot be approximated as a qubit
system.

There are actually three parameters U , γ , and J , whose
interplay affects the behavior of the system. In Fig. 5 the
ratio J/γ is kept fixed. Altering the value of J also affects
the system, as shown in Fig. 6. The transmon system is more
qubit-like for smaller J . However, especially the decay rates of
the high-energy states |F12〉, |W13〉, and |B14〉 require very low
J in order to be close to the qubit values. On the other hand,
the states |F10,11〉 are very close to qubit ones at the shown
range. In conclusion, there exist a wide range of experimen-
tally realizable parameters with which the transmon system
resembles neither a harmonic nor a qubit system. Especially,
with multiple transmons and excitations, the widely used two-
level approximation is actually in many cases not applicable,
but the anharmonic model should be used instead.

C. Detuning between the pairs

In the scenario above we assumed that the pairs are in res-
onance. This caused the collective decay and the emergence
of bright and dark states. Assuming that the first pair has
frequency ω1 and the other pair ω2, the complex eigenvalues
of the collective global states of the effective Hamiltonian in
the one-excitation manifold are

λ3,4/h̄ = ω1 + ω2

2
+ J − iγ ± 1

2

√
(ω1 − ω2)2 − 4γ 2. (46)

The states |D1〉 and |D2〉 are local, and thus their behavior is
not affected by the detuning, unlike the two collective states. If
the detuning between the transmons is larger than 2γ , the two
collective states have the same decay rate, but their energy is
different. At detuning 2γ the eigenvalues become degenerate
in energy and decay rate, since the square root vanishes. For a
detuning less than 2γ , the argument in the square root is neg-
ative, so the term gives an imaginary part to the eigenvalues,
which modifies their decay rates. The states are degenerate in
energy, but their decay rates start to deviate. At the resonance
the other state is completely dark, while the other obtains a
maximal decay rate 4γ . Thus, the system has an exceptional
point [67,68] at |ω1 − ω2| = 2γ between the states |D3〉 and
|B4〉. This behavior is shown in Fig. 7(a) for energies and in
Fig. 7(c) for decay rates as a function of pair detuning for the
states in the one-excitation manifold (only the positive x axis
is shown).

The behavior of the two-excitation states is shown in
Figs. 7(b) and 7(d) for the energy and decay rates, re-
spectively. With the chosen parameters the two-excitation
manifold contains multiple regions where certain states ex-
hibit exceptional pointlike behavior, most notably between

FIG. 7. Energies (top row) and the corresponding decay rates
(bottom row) as a function of detuning between the transmon pairs
of the states in one (left column) and two (right column) excitation
manifolds. The pair separation is such that they are always half of
the wavelength of their average frequency apart. Points at which
the decay rates separate and energies become degenerate are called
exceptional points. System parameters are given in Table I.

states |F8〉 and |F11〉. These occur anharmonicity away from
the resonance, so they are characteristic for anharmonic os-
cillators. However, unlike in the one-excitation manifold, here
the decay rates and energies do not become strictly degen-
erate, due to the effects of anharmonicity and capacitive
coupling, in addition to the frequency detuning. Similar be-
havior occurs also between states |B14〉 and |W13〉, and more
weakly between the states |B14〉 and |W6〉. However, in these
cases the decay rates do not coalesce due to the effect of
capacitive coupling and anharmonicity [67].

V. OBSERVABLES OF THE COLLECTIVE SPECTRUM

In this section we discuss four possible experimentally
realizable observables that could be used for studying the
collective phenomena of transmon arrays inside a waveguide.
We introduce superradiant radiation bursts, transmission spec-
tra, emission spectra, and direct spectroscopy of the second
excitation manifold. Especially we focus on the features that
distinguish the bosonic collective phenomena from those of
qubit arrays.

A. Superradiant burst

The superradiant burst is a fundamental characteristic of
Dicke superradiance of qubits [25–27]. The burst is observed
when a collectively decaying array of L qubits is prepared
in the highest excited state, that is, |11 . . . 11〉. Referring to
Fig. 2(a), this state decays by rate γ L to a state that further
decays with a larger rate. At half-filling the decay rates start
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FIG. 8. Intensity of the outcoming radiation as a function of time, defined as I (t ) = −h̄ω0d〈N̂ (t )〉/dt , for different anharmonicities, and
system sizes. The sites are one wavelength distance apart, and initially all sites contain a single excitation, |11 . . . 1〉. For harmonic oscillators
the decay of the population is exponential, which results also in an exponential decay of the intensity. When the sites are pure qubits, the
intensity initially increases, obtains a maximum, and starts to decrease. This is the superradiant burst of emission. The transmon behavior,
corresponding to U/γ > 0, is in between these two cases. The system initially behaves as harmonic with exponentially decreasing intensity, but
after a while the intensity increases temporarily. As the anharmonicity increases, the burst occurs earlier and with larger intensity, approaching
the qubit solution. The behavior in bosonic systems depends on the initial state. If the system were initially in the brightest state, also transmons
would decay exponentially, and no superradiant burst would occur. Note that for bosonic systems the initial state is not an eigenstate of the
effective non-Hermitian Hamiltonian, but instead some linear combination of them. The results are obtained by numerically solving the master
equation for L = 4 sites. For the rest with L = 6, 8, we instead solve the dynamics using the quantum trajectory approach. The height of the
intensity peak scales as N2, characteristic for the Dicke superradiance [24–27].

to decrease and the final state is the ground state; see the green
line in Fig. 2(a). This decay path generates a burst of radiation;
see Fig. 8 where we show the intensity of radiation, defined as
a time derivative of the total occupation of the system, I (t ) =
−h̄ω0d〈N̂ (t )〉/dt [69]. The situation changes drastically by
considering the same scenario with an array of collectively
decaying harmonic oscillators. The harmonic oscillator sys-
tem does not show signs of superradiant burst; see Fig. 8.
First, it is not possible to define uniquely the highest excited
state due to the bosonic excitation statistics; thus, the initial
state |11 . . . 11〉 is a superposition of the collective states
|m1, m2, . . . , mL〉 with the total excitation number 〈N̂〉 = L
and only the states with mL �= 0 are decaying. Furthermore,
from the superposition, the states with |m1, m2, . . . , mL = k〉
decay exponentially to a final state that is a dark state
|m1, m2, . . . , mL = 0〉 whose total occupation number is
〈N̂〉 = L − k; see the diagonal black arrays in Fig. 2(c).

A transmon array shows behavior that is in between the
pure qubits and harmonic oscillators. For weak anharmonicity
U/γ � 5, the transmon array is closer to that of harmonic
oscillators, but as the anharmonicity increases, a peak in the
intensity starts to emerge. For large anharmonicity U/γ � 10,
the intensity approaches the qubit solution with additional
oscillations [70]. Initially, a transmon array decays fast re-
sembling an array of harmonic oscillator and later shows a
burst of radiation that is delayed compared to pure qubit case.
Qualitatively we can understand this so that the initial state
|11 . . . 11〉 is a superposition of the collective eigenstates of
the transmon array. The collective states that most resemble
those of an array of harmonic oscillator have the largest decay
rate and thus decay the fastest. The remaining states, which
are rendered similar to those of a qubit array by the interaction
term, show a characteristic superradiant burst. This behavior
repeats as the system loses excitations, which results in the

oscillatory behavior visible with large anharmonicity U in
Fig. 8.

In Fig. 8 we have only considered the situation in which
the system initially starts from the state |11 . . . 1〉, since this is
the only state shared by all three models. Bosonic multioccu-
pancies permit also other initial states, which contain different
weights of bright and dark states and thus result into different
behavior.

B. Probing through the waveguide

The superradiant burst on itself does not give information
about the individual eigenstates of the system. These can
instead be studied by using suitable drives to excite them,
and then observing their decay. Let us first consider a situ-
ation where the system of two transmon pairs, discussed in
Sec. IV B, is driven through the waveguide. The Hamiltonian
is time dependent, but since there is only one frequency in-
volved, one can switch to a frame rotating with the driving
frequency and remove the time dependence by doing the ro-
tating wave approximation. This gives the Hamiltonian

Ĥprobed

h̄
= Ĥ2+2

h̄
− ωdN̂ +

∑
m j,nk

Jm j,nk σ̂
nk
+ σ̂

m j
−

+
∑
m j

(
d̃m j σ̂

m j
− + d̃∗

m j σ̂
m j
+
)
, (47)

where ωd is the frequency of the drive, and

d̃m j = i

√
Pγm j,m j

2h̄ωm j
eiωdz j/c (48)

is the amplitude of the coherent driving where z j is the coor-
dinate of the site j; see Appendix A 5 for details. The master
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FIG. 9. Waveguide transmission amplitude in a two-pair system as a function of detuning ω2 − ω1 between the pairs, and the probe
frequency ωd . In (a) the driving power is P/2π = 0.7 kHz, which excites only the one excitation eigenstates, and thus the results are the same
for all three models. In the remaining ones the driving power is P/2π = 22 MHz. Other system parameters are given in Table I. The system
consists of (b) transmons, (c) qubits, and (d) harmonic oscillators.

equation describing the system dynamics is then

d ρ̂

dt
= − i

h̄
[Ĥprobed, ρ̂] +

∑
j

κ

(
â j ρ̂â†

j − 1

2
{â†

j â j, ρ̂}
)

+
∑
m j,nk

γm j,nk

(
σ̂

m j
− ρ̂σ̂ nk

+ − 1

2
{σ̂ nk

+ σ̂
m j
− , ρ̂}

)
, (49)

where κ is the intrinsic dissipation rate of the transmons,
which we here denote as the bulk dissipation rate to distin-
guish it from the dissipation γ via the waveguide, κ  γ .
At weak power, the driving does not affect the energy levels
of the transmon system, but only induces transitions between
them. The interplay of the driving and dissipation eventually
leads to a steady state. Without bulk dissipation, the steady
state can depend on the initial state, which leads to a multiple
possible steady states. This happens because the system can
have multiple dark states, so any arbitrary initial population in
those also remains there. On the other hand, bulk dissipation
gives additional decay rates to all states, and thus also dark
states decay, and there exists only one steady state. In the
numerical simulation we solve the steady state of the master
equation in Eq. (49) and calculate the transmission of radia-
tion |t |2 in it, as discussed in Appendix A 6. If all the radiation
comes through, there was no state that could have been excited
by the drive. If some fraction of the radiation is lost, it was
absorbed by the system, resulting in an excitation of a state.
Notice that here we consider interactions between the system,
the input and the output fields on the level of the input-output
theory assuming weak system-field couplings. At the strong
coupling, the situation needs to be considered as a nontrivial
scattering problem [71].

In the limit of weak driving, the transmission can be solved
analytically. We denote � = ω1 − ω2 as the detuning between
the pairs and the driving frequency is detuned by δ = ω̄ − ωd

from the average pair frequency ω̄ = (ω1 + ω2)/2. When the
pairs are separated by a distance λ/2, we find the transmission

|t |2 =
[
(δ + J )2 − �2

4

]2[
(δ + J )2 − �2

4

]2 + 4γ 2(δ + J )2
, (50)

where we have neglected the bulk dissipation κ . Transmission
vanishes at � = ±2(δ + J ), i.e., when the probe frequency

is ωd = ω1,2 + J , which are the transition frequencies of the
bare qubit system, in the absence of the waveguide interac-
tions. This means that the transmission probes the eigenstates
of the Hermitian Hamiltonian, not those of the effective non-
Hermitian one. Because of this we do not see the emergence
of the exceptional points in the transmission spectrum; see
Fig. 7(a). For example, at the exceptional points at detuning
� ± 2γ the collective states have degenerate energy ω̄ + J .
Probing at this frequency gives δ = −J , which results in
perfect transmission |t |2 = 1, except at � = 0 at which the
transmission vanishes. However, at � = 0 the width of the
Lorentzian at half maximum, centered around δ + J , is 4γ ,
which is the bright state decay rate. The features described
by Eq. (50) are accurately captured in the full numerical
simulations shown in Fig. 9(a). Here the driving amplitude is
weak, so that only the states in the one-excitation manifold are
excited. The one-excitation manifold contains four states, but
we see only two spectral lines. Both local pairs have two states
at energies ωi ± J . The corresponding states are the same as
local bright and dark states. Because of this, only the states
at energies ω1,2 + J are visible in the transmission, since they
are the bright states and thus couple to the waveguide field.

All three models, transmon, qubit, and harmonic oscillator,
are identical in the one-excitation manifold. The differences
emerge in the two-excitation manifold, which can be studied,
e.g., by increasing the power of the probe. In Fig. 9(b) we
show the transmission with larger driving for a system of
transmons. We now observe four additional states correspond-
ing to two photon transitions between the ground state and the
two-excitation manifold, two of which are low in frequency
due to the anharmonicity arising from multiple occupations
in individual sites. For comparison, the results for qubit and
harmonic oscillator systems are shown in Figs. 9(c) and 9(d),
respectively. In the harmonic oscillator system all the transi-
tions occur at the same frequency, so no additional spectral
features become visible. In qubit system, on the other hand,
we observe similar features as with transmons, but the bosonic
states in low frequency do not exist.

C. Spectral density

The transmission measurement described in the previous
section probes the local eigenstates. The collective eigenstates
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FIG. 10. Magnitude of the spectral density |S(ω)| of the out-coming radiation in a two-pair system as a function of the detuning between
the pairs ω1 − ω2, and the frequency of the out-coming radiation ω. In (a) the driving power is P/2π = 0.7 kHz, which excites only the
one-excitation eigenstates. In the remaining ones the driving power is P/2π = 22 MHz. Other system parameters are given in Table I. The
system consists of (b) transmons, (c) qubits, and (d) harmonic oscillators. We have separately normalized each |S(ω)| at different detunings
� = ω1 − ω2 for better visibility. The main feature is the emergence of exceptional points around the resonance. The system of transmons
exhibits the most complicated spectrum of the three models, with additional features occurring at frequencies at which the system has
exceptional pointlike behavior in the two excitation manifold, as shown in Fig. 7.

of the effective non-Hermitian Hamiltonian can be studied by
using the power spectrum of the output field, defined as

SL/R(ω) =
∫ ∞

−∞
dteiωt

〈
â†out

L/R (t )âout
L/R(0)

〉
, (51)

where L and R refer to left and right moving excitations,
and ω is the frequency at which the system radiates, ω = 0
corresponding to the probe frequency. Here we calculate the
power spectrum by driving the system coherently with the
amplitude 〈âin〉 [see Eq. (A56)] until it reaches a steady state,
then turn off the drive and let the system decay and radiate.
The outcoming radiation at different frequencies is then given
by Eq. (51) where the left moving mode âout

L is defined in
Eq. (A57). We sweep over the pair detuning � = ω1 − ω2,
and drive the system coherently with the average frequency of
the two pairs, ωd = (ω1 + ω2)/2. For a weak probing power
and λ/2 separation of the pairs, we obtain the analytical
formula

|SL,R|2 = 4γ 2〈âin〉4[(
ω − J − �

2

)2 − �2

4

]2 + 4
(
ω − J − �

2

)2
γ 2

,

(52)

where we have assumed that the system is driven from the left
only, and again ignored the bulk dissipation κ .

Result in Eq. (52) agrees well with the numerical simula-
tions shown in Fig. 10(a), in which we observe two energy
levels that coalesce into one at the exceptional point. Cu-
riously, the spectral density shows the exceptional points
already at � = ±2

√
2γ , i.e., at a slightly larger detuning. This

is in agreement with Eq. (52). The linewidth of the bright state
is visible only on resonance, where we observe a Lorentzian
with width 4γ . For weak probe power, the results are the
same for all three models. As the power is increased, also the
two-photon manifold becomes excited and starts to radiate.
For harmonic oscillators in Fig. 10(d) this affects only the
features near resonance: the large linewidth of the bright state
is now visible also slightly off-resonance.

In qubit and transmon systems we instead observe cuts in
the spectral lines, which tells that one of the states radiates
more strongly than the other one. Most importantly, the addi-
tional exceptional points in the transmon system between the
states |F7(8)〉 and |F10(11)〉, centered around � = ±U ≈ 8.7γ

(see Sec. IV B), show up weakly. We also see some features
around � ≈ ±13γ , which can be attributed to the enhance-
ment and suppression of the decay rates of states |B14〉 and
|W6〉; see Fig. 7.

D. Pulsed excitation of the two-excitation manifold

When driving the array through the waveguide, the col-
lective drive has a symmetry set by the separation of the
sites, according to Eq. (48), which means that it has the same
symmetry as the global bright state |B4〉. To go beyond, in
Ref. [11], we experimentally demonstrated on-site driving
through waveguide side ports with tunable frequency, as well
as local amplitudes and phases. Such a drive can be modeled
with the Hamiltonian

Ĥd(t )

h̄
= 2 cos(ωpt )

∑
j

A j (e
iφ j â j + e−iφ j â†

j ), (53)

where ωp is the on-site driving frequency, Aj are the local am-
plitudes, and φ j are the local phases. Assuming that the phases
within pairs are the same, but there is a phase difference φ

between the pairs, and further that the amplitudes are the same
for all sites, we can write the driving Hamiltonian in terms
of the global collective operators, defined in Eqs. (42)–(45).
Performing also the rotating wave approximation results in

Ĥd

h̄
= A[(1 + eiφ )ĉ3 + (1 − eiφ )ĉ4 + H.c.]. (54)

With such a drive only the global states |D3〉 and |B4〉 can
be excited from the ground state. The phase difference φ

determines the symmetry of the drive. Symmetric and anti-
symmetric drives always couples states with the same and
opposite symmetries, respectively; see Fig. 4. Clearly for even
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FIG. 11. Ground-state population after a symmetric Rabi pulse and a subsequent spectroscopy pulse with altering phase difference between
the pairs φ and frequency ωp for a two-pair setup of (a) transmons, (b) qubits, and (c) harmonic oscillators. The transitions are denoted by
arrows and they refer to the eigenlevels of Fig. 4. The parameters are TRabi = 240 ns, μRabi = TRabi/2, and ARabi/2π = 4 MHz for the Rabi
pulse and Tspec = 1200 ns, μspec = TRabi + Tspec/2, and Aspec/2π = 1 MHz for the spectroscopy pulse. For both pulses σ = T/6. Other system
parameters are given in Table I.

multiples of π , the drive is symmetric, and for odd multiples
it is antisymmetric.

The symmetries of the global states in the one-excitation
manifold of the two-pair setup provide a scheme for probing
the two-excitation manifold. First, one can employ a suitable
Rabi pulse, which excites the long lived dark state |D3〉 from
the ground state. Then one can apply another pulse with a
different frequency and symmetry, which can excite one of
the two-excitation states. Some of these states decay to the
one-excitation bright state |B4〉, which further rapidly decays
to the ground state; see the decay channels illustrated in Fig. 4.

The system is driven with two consecutive drive fields, in
a pulsed fashion. Therefore one can reduce the time depen-
dence by switching to a frame rotating with the frequency
of the drive and solve the dynamics numerically. Once an-
other drive is applied, one has to change the Hamiltonian and
switch to another frame. The amplitudes of the pulses are time
dependent,

A(t ) = Ae−(t−μ)2/(2σ 2 ), (55)

where A is the amplitude, μ is the time instance at which the
pulse is at maximum, and σ is the width of the pulse. This
means that the rotating wave approximation does not remove
the time dependence completely. However, it makes solving
the system numerically more stable. In the simulation we then
have two Hamiltonians,

Ĥ1(t )

h̄
= Ĥ2+2

h̄
− ωRabiN̂ +

∑
m j,nk

Jm j,nk σ̂
nk
+ σ̂

m j
−

+ A1(t )(â1 + â2 + â3 + â4 + H.c.), (56)

Ĥ2(t )

h̄
= Ĥ2+2

h̄
− ωpN̂ +

∑
m j,nk

Jm j,nk σ̂
nk
+ σ̂

m j
−

+ A2(t )[eiφ (â1 + â2) + â3 + â4 + H.c.], (57)

where we have performed the rotating wave approximation in
each. The time evolution is governed by the master equation of
Eq. (49) with Ĥprobed replaced by Eqs. (56) and (57). In the
numerical simulation we initially set the system to the ground

state |G〉 and calculate the time evolution during the first
pulse by the Hamiltonian (56). We then sweep over a range
of secondary pulse frequencies and phases and calculate the
evolution using the Hamiltonian (57), after which one can
calculate the ground-state population.

The results for a system of transmons are shown in
Fig. 11(a), from which we can identify several transitions.
First of all, we observe decreased ground-state population at
the dark state frequency. This occurs because the first Rabi
pulse is imperfect and it leaves some of the population to the
ground state [11], which the second pulse can excite with a
suitable frequency and symmetry. The dark state transition
vanishes from the spectrum with the antisymmetric drive at
φ = π , since then the secondary pulse does not couple to the
dark state, but instead it excites the shortly lived bright state
|B4〉, so that the system ends up in a state it was in before the
secondary pulse. In a slightly lower frequency we observe a
transition with a large linewidth. This is actually caused by
the transitions from the dark state |D3〉 to the states |W13〉 and
|B14〉, which are almost resonant. In the low frequency we
observe the transition from the dark state to the state |W6〉.
Noteworthy is that all the visible transitions are symmetric.
We do not see the antisymmetric transitions to states |W5〉 and
|F12〉, because they decay back to the dark state |D3〉 and thus
do not alter the ground-state population, whereas states |W6〉,
|W13〉, and |B14〉 decay to the bright state |B14〉, which further
decays to the ground state; see Fig. 4. This measurement was
performed experimentally in Ref. [11].

In Fig. 11(b) we show the same results for a system
of qubits. There are two main differences compared to the
transmon system. First, the state |W6〉 does not exist in a
qubit system, and thus there are no states visible in low fre-
quency. Second difference is that the states |W13〉 and |B14〉
occur at different frequencies in the qubit system than in
the transmon one. In Fig. 11(c) we for completeness show
also the results for a harmonic system, for which only one
spectral line is visible. This occurs because in harmonic
systems the two-excitation bright state |B4〉 ⊗ |B4〉 cannot
be excited from the state |D3〉. One can, however, excite
the symmetric state |D3〉 ⊗ |D3〉, but since this is a dark
state, it does not decay. Moreover, also the antisymmetric
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state |D3〉 ⊗ |B4〉 can be excited, but since it decays back
to the dark state |D3〉, it does not affect the ground-state
population.

VI. CONCLUSIONS

In this work we studied analytically and numerically an
array of transmons interacting coherently with the electro-
magnetic field inside a rectangular waveguide. This interac-
tion results in a long-range coherent exchange interaction,
as well as correlated decay, depending on the relative posi-
tions of the transmons inside the waveguide. Transmons are
typically considered qubits, and properties of such two-level
systems have already been widely explored in a waveguide
setup [3,19,22,23]. Here we instead modeled transmons as an-
harmonic oscillators, which is a more accurate description of
the device. The anharmonicity acts as a many-body interaction
between bosonic excitations of transmons.

We found that in an array of harmonic oscillators, whose
excitations are noninteracting bosons, the decay rates of the
brightest states scale linearly with the number of excitations N
and the system size L as γ NL, as opposed to two-level system
where the maximal decay rate is achieved with half-filling.
The anharmonicity of the transmon decreases the decay rates
from the noninteracting system, but the behavior in large
filling is closer to that of harmonic oscillators than qubits.
However, unlike the system of harmonic oscillators, a trans-
mon system can display a superradiant burst of emission,
similarly as a qubit system.

We then focused on a smaller system of two pairs of trans-
mons. The transmons forming a pair are coupled capacitively,
but the pairs interact with each other only through the waveg-
uide. Such systems are readily realizable also experimentally,
and their effective separation inside the waveguide can be
adjusted by flux tuning their energies. The level structure and
symmetry properties of the system eigenstates were studied
in detail. We also provided numerical analysis on different
measurement schemes for probing the properties of the sys-
tem. The two-pair system can be used for realizing a logical
dark qubit [11], and in order to efficiently control the effective
qubit, it is important to understand also the characteristics
of the higher levels of the system, which are affected by
the bosonic nature of transmons. Extension of the system
to contain several tens of transmons provides a platform for
studying interacting many-body quantum systems in a col-
lective environment [12,22]. Especially, disorder in transmon
energies leads to Anderson localization or many-body lo-
calization [28,30], whose stability and impact on collective
effects could be explored further [63,64,72,73].

In this work the three-dimensional rectangular waveguide
effectively behaves as an effective one-dimensional object.
However, the two- or three-dimensionality can be restored by
positioning the transmons differently inside the waveguide.
Further, in rectangular waveguide the propagation of radiation
is restricted to frequencies above certain cutoff frequency.
Here we mainly considered the case where all the transmons
have been tuned far above the cutoff, so that its effect can
be ignored. However, the group velocity of radiation inside
the waveguide depends on the cutoff frequency, and as the
frequency approaches the cutoff, the corresponding group ve-

locity decreases. Thus, close to the cutoff, the dynamics of
the environment can no longer be assumed to occur at much
briefer time scales as those of the system, which leads to
non-Markovian behavior. These systems can therefore pro-
vide an intriguing platform for studying also non-Markovian
many-body physics.
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APPENDIX A: EFFECTIVE MASTER EQUATION FOR A
TRANSMON ARRAY IN A RECTANGULAR WAVEGUIDE

In this section we provide detailed derivation of the master
equation for a system of multilevel atoms (transmon array) in-
side a rectangular waveguide. We follow closely the derivation
provided in Refs. [3,75] for a 1D waveguide with the excep-
tion that the presence of the cutoff frequency for propagating
waves is explicitly taken into account. The total Hamiltonian
comprises the emitter system, which is here the transmon
array, the electromagnetic field of the waveguide and their
interaction:

ĤT = Ĥsys + ĤF + ĤI. (A1)

Assuming that the transmons are not coupled to each other we
write their Hamiltonian as

Ĥsys =
∑
m j

Em j σ̂
m j
+ σ̂

m j
− , (A2)

where σ̂
m j
− annihilates the (m + 1)st state of the site j, σ̂

m j
− =

|mj〉〈(m + 1) j |, and Em j is the corresponding energy.

1. Electromagnetic environment of the waveguide

We assume that the waveguide is a rectangular metallic
pipe whose width in the x direction is a and in the y direction
b. In these restricted dimensions only standing electromag-
netic modes are supported. In the z direction, we assume that
the waveguide is infinite. Along this dimension, two possible
types of electromagnetic waves can propagate: Transverse
electric modes (TE) are such that the electric field has no
z component, E = (Ex Ey 0). Transverse magnetic modes
(TM) on the other hand do not have parallel magnetic com-
ponent, B = (Bx By 0).

The electromagnetic field can be described in terms of the
vector potential A and the scalar potential V as

E = −∇V − ∂A
∂t

, B = ∇ × A, (A3)
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and the behavior of the electromagnetic field is determined
by Maxwell’s equations, which can be written as wave equa-
tions for the electromagnetic potentials,(

∇2 − 1

c2

∂2

∂t2

)
A = 0,

(
∇2 − 1

c2

∂2

∂t2

)
V = 0. (A4)

We recover the solutions

Ax(x, y, z, t ) = Ax0 cos (kxx) sin (kyy)ei(kzz j−ωt ), (A5)

Ay(x, y, z, t ) = Ay0 sin (kxx) cos (kyy)ei(kzz j−ωt ), (A6)

Az(x, y, z, t ) = Az0 sin (kxx) sin (kyy)ei(kzz j−ωt ), (A7)

V (x, y, z, t ) = c2kz

ω
Az(x, y, z, t ), (A8)

where we have defined the frequency as ω = ck with the
wave number k =

√
k2

x + k2
y + k2

z and the speed of light c. The
wave number is discretized in the x and y directions (standing
modes),

kx = απ

a
, ky = βπ

b
, (A9)

where α, β ∈ N. From this we recover a dispersion relation
for the propagating waves,

ωαβ (kz ) =
√

c2k2
z +

(
cαπ

a

)2

+
(

cβπ

b

)2

=
√

c2k2
z + �2

⊥,αβ, (A10)

where �⊥,αβ is the so-called cutoff frequency. Radiation
with frequency below this cannot propagate through the
waveguide. From the dispersion relation we obtain the phase
velocity

vαβ,p(kz ) = ωαβ (kz )

kz
= c√

1 − �2
⊥,αβ

ω2
αβ (kz )

, (A11)

and the group velocity

vαβ,g(kz ) = dωαβ (kz )

dkz
= c

√√√√1 − �2
⊥,αβ

ω2
αβ (kz )

. (A12)

From the group velocity we notice that as the frequency ωαβ

approaches the cutoff frequency, the group velocity decreases.
Non-Markovian effects start to emerge once the system length
scale d becomes d � vg/γ [15]. For the parameters used in
this work this happens only very close to the cutoff frequency.

Following the standard quantization, we obtain the vector
potential

Â(r, t ) =
∑
αβ

∫ ∞

−∞
dkz

√
h̄μ0c2

2ωαβ (kz )

× [âαβkz e
−iωαβ (kz )t R(r) + â†

αβkz
eiωαβ (kz )t R∗(r)

]
,

(A13)

where â†
αβkz

creates a quantum to the waveguide field with a

wave number k = √k2
z + (απ/a)2 + (βπ/b)2 and the spatial

dependence is given through the vector

R(r) =

⎛⎜⎜⎜⎜⎝
Ax0 cos

(
πα
a x
)

sin
(

πβ

b y
)
eikzz

Ay0 sin
(

πα
a x
)

cos
(

πβ

b y
)
eikzz

Ay0 sin
(

πα
a x
)

cos
(

πβ

b y
)
eikzz

Az0 sin
(

πα
a x
)

sin
(

πβ

b y
)
eikzz

⎞⎟⎟⎟⎟⎠. (A14)

For TE modes we can set Az = V = 0, and for TM modes
Ax = Ay = 0.

We assume that only the TE10 mode interacts with the
system, and thus we set α = 1, β = 0 and define �⊥,10 ≡ �⊥
in Eqs. (A10), (A13), and (A14), resulting in the dispersion
relation ω(kz ) =

√
c2k2

z + �2
⊥ . Now we recover the electric

field as Ê(r, t ) = −∂Â/∂t as

Ê(r, t ) = i
∫ ∞

−∞
dkz

√
h̄ω(kz )μ0c2

2
sin
(πx

a

)
× [âkz e

−i[ω(kz )t−kzz] − â†
kz

e+i[ω(kz )t−kzz]
]
Ay0 y. (A15)

The Hamiltonian is

ĤF = h̄
∫ ∞

−∞
dkzω(kz )â†

kz
âkz

(A16)

for the TE10 radiation field inside the rectangular waveguide.

2. Coherent interaction with the electromagnetic
environment of the waveguide

We assume bilinear coupling between the atoms and the
electric field, giving the coupling Hamiltonian

ĤI = h̄
∑
m j

g j

√
m + 1(ξ̂ j + ξ̂

†
j )σ̂ m j

x , (A17)

where the position operator is σ̂
m j
x = σ̂

m j
+ + σ̂

m j
− , the coupling

strength for the jth atom is denoted with g j , and the operator
related to the electric field is

ξ̂ j = −ic
∫ ∞

−∞
dkz

√
ω(kz ) sin

(
πx j

a

)
eikzz j âkz , (A18)

where z j and x j are the coordinates of the jth atom.

3. Dynamics of the electromagnetic fields

By utilizing the full Hamiltonian ĤT = Ĥsys + ĤF + ĤI,
the dynamics of the field operator âkz (t ) are determined by
the Heisenberg equation of motion

dâkz

dt
= i

h̄

[
ĤT, âkz

]
= −iω(kz )âkz +

∑
m j

cg j

√
m + 1

√
ω(kz ) sin

(
πx j

a

)
× e−ikzz j σ̂ m j

x , (A19)

which has the solution up to time t

âkz (t ) = âkz (0)e−iω(kz )t +
∑
m j

cg j

√
m + 1

√
ω(kz )

× sin

(
πx j

a

)
e−ikzz j

∫ t

0
dτe−iω(kz )(t−τ )σ̂ m j

x (τ ),

(A20)
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where the latter part describes the interaction with the transmons. With this we can write Eq. (A18) as

ξ̂ j (t ) = ξ̂ in
j (t ) − i

∑
nk

cgk

√
n + 1 sin

(
πx j

a

)
sin

(
πxk

a

)∫ ∞

−∞
dkzω(kz )eikz (z j−zk )

∫ t

0
dτeiω(kz )(τ−t )σ̂ nk

x (τ ), (A21)

where we have defined

ξ̂ in
j (t ) = c

i

∫ ∞

−∞
dkz

√
ω(kz ) sin

(πx j

a

)
ei(kzz j−ω(kz )t )âkz (0). (A22)

Our next objective is to calculate the integrals in Eq. (A21). We do the Markov approximation by assuming weak coupling
between the atoms and the environment, so that we can approximate σ̂ nk

− (τ ) ≈ e−iωnk (τ−t )σ̂ nk
− , where ωnk = (En+1,k − Enk )/h̄)

is the transition frequency between the (n + 1)st and nth eigenstates of the jth transmon. We also assume that the dynamics in
the environment occur at much faster rate than those in the system, so we can extend the integration limit to infinity in the time
integral. This gives

Înk j =
∫ ∞

−∞
dkzω(kz )eikzz jk

∫ ∞

0
dτe−iω(kz )(t−τ )σ̂ nk

x (τ )

≈
∫ ∞

−∞
dkze

ikzz jk
ω(kz )

ωnk

{
σ̂ nk

+

[
πδ

(
ω(kz ) + ωnk

ωnk

)
− iP ωnk

ω(kz ) + ωnk

]
+ σ̂ nk

−

[
πδ

(
ω(kz ) − ωnk

ωnk

)
− iP ωnk

ω(kz ) − ωnk

]}
,

(A23)

where P is the Cauchy principal value. Next, we convert the integration over the positive wave numbers only and change the
integration over wave number to integration over frequency using the dispersion relation kz =

√
ω2(kz ) − �2

⊥/c. We obtain

Înk j = 2σ̂
m j
−

ω2
nk

c
√

ω2
nk − �2

⊥
cos
(
t jk

√
ω2

nk − �2
⊥
)
�(ωnk − �⊥)

− 2iP
∫ ∞

�⊥
dω

⎡⎣σ̂
m j
+

ω cos(t jk

√
ω2 − �2

⊥)

c
√

ω2 − �2
⊥(ω + ωnk )

+ σ̂
m j
−

ω cos(t jk

√
ω2 − �2

⊥)

c
√

ω2 − �2
⊥(ω − ωnk )

⎤⎦, (A24)

where we have defined the propagation time t jk in empty space between sites j and k as t jk = |z j − zk|/c, and � is the Heaviside
step function. With this, Eq. (A21) becomes

ξ̂ j (t ) = ξ̂ in
j (t ) − 1

g j

∑
nk

[
W n+

k j σ̂ nk
+ +

(
W n−

k j + iγ n
k j

2

)
σ̂ nk

−

]
, (A25)

where we have defined

γ n
k j = 4πg jgk

√
n + 1 sin

(
πx j

a

)
sin

(
πxk

a

)
�(ωnk − �⊥)

ω2
nk√

ω2
nk − �2

⊥
cos
(
t jk

√
ω2

nk − �2
⊥
)
, (A26)

W n±
k j = 2g jgk

√
n + 1 sin

(
πx j

a

)
sin

(
πxk

a

)
P
∫ ∞

�⊥
dω

ω2 cos(t jk

√
ω2 − �2

⊥)√
ω2 − �2

⊥(ω ± ωnk )
. (A27)

4. Master equation for the transmon array

We can then obtain the master equation for the reduced density operator of the transmon array system by first considering the
time evolution of an arbitrary operator Ô acting on the transmon array system only. The Heisenberg equation of motion gives

dÔ

dt
= i

h̄

[
Ĥsys + h̄

∑
m j

g j

√
m + 1

(
ξ̂ in

j + ξ̂
in†
j

)
σ̂ m j

x , Ô

]
− i

∑
m j,nk

√
m + 1

[
W n+

k j (σ̂ m j
− Ôσ̂ nk

+ − Ôσ̂
m j
− σ̂ nk

+ − σ̂ nk
− Ôσ̂ mk

+ + σ̂ nk
− σ̂

m j
+ Ô)

+ W n−
k j (σ̂ m j

+ Ôσ̂ nk
− − Ôσ̂

m j
+ σ̂ nk

− − σ̂ nk
+ Ôσ̂ mk

− + σ̂ nk
+ σ̂

m j
− Ô) + γ n

k j

2
(σ̂ m j

+ Ôσ̂ nk
− − Ôσ̂

m j
+ σ̂ nk

− + σ̂ nk
+ Ôσ̂ mk

− − σ̂ nk
+ σ̂

m j
− Ô)

]
,

where we have performed the rotating wave approximation
in terms of the type σ̂

m j
x Ôσ̂ nk

+ ≈ σ̂
m j
− Ôσ̂ nk

+ . By using the fact
that Trtot ( dÔ

dt ρ̂tot ) = Tr(Ô d ρ̂

dt ), where Trtot and Tr are traces
over total systems and transmons, respectively. Rearranging
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the terms gives an equation of motion for the density matrix of
the transmons in terms of the familiar Lindbladian dissipators,

d ρ̂

dt
= − i

h̄

[
Ĥsys + h̄

∑
m j

Lm j |mj〉〈mj |, ρ̂
]

− i

⎡⎣∑
m j,nk

Jm j,nk σ̂
nk
+ σ̂

m j
− +

∑
m j

dm j (t )σ̂ m j
x , ρ̂

⎤⎦
+
∑
m j,nk

γm j,nk

(
σ̂

m j
− ρ̂σ̂ nk

+ − 1

2
{σ̂ nk

+ σ̂
m j
− , ρ̂}

)
+
∑
m j,nk

Wm j,nk (σ̂ m j
+ ρ̂σ̂ nk

− + σ̂ nk
− ρ̂σ̂

m j
+ − {σ̂ nk

− σ̂
m j
+ , ρ̂}),

(A28)

where we have defined the radiation-field-induced driving as

dm j (t ) = g j

√
m + 1

[〈
ξ̂ in

j (t )
〉+ 〈ξ̂ in

j (t )
〉∗]

, (A29)

and the waveguide-mediated exchange interaction Jm j,nk and
the correlated decay coefficients γm j,nk as

Jm j,nk = i

2

(√
m + 1

γ n
k j

2
− √

n + 1
γ m

jk

2

+ i
√

m + 1W̃ n
k j + i

√
n + 1W̃ m

jk

)
, (A30)

γm j,nk = √
m + 1

γ n
k j

2
+ √

n + 1
γ m

jk

2

+ i
√

m + 1W̃ n
k j − i

√
n + 1W̃ m

jk , (A31)

with the shorthand notations

Wm j,nk = i
(√

m + 1W n+
k j − √

n + 1W m+
jk

)
, (A32)

W̃ n
jk = W n+

jk + W n−
jk . (A33)

The Lamb shift is

Lm j = √
mW (m−1)+

j j − √
m + 1W m+

j j . (A34)

What then remains is to calculate expressions for the various
coefficients in the master equation (A28).

5. Above and below the cutoff frequency

Next we compute the remaining master equation co-
efficients by paying attention to the cutoff frequency in
the electromagnetic spectrum of the propagating modes in
the waveguide. Coefficient γ n

k j was already calculated in
Eq. (A26). For the principal value integral in Eq. (A27) we
obtain, after making a change of variables x =

√
ω2 − �2

⊥
and reordering,

I± = ω2
nkP

∫ ∞

0
dx

cos(t jkx)

x2 + �2
⊥ − ω2

nk

∓ ωnk

∫ ∞

0
dx

√
x2 + �2

⊥ cos(t jkx)

x2 + �2
⊥ − ω2

nk

, (A35)

where we have used the fact that
∫∞

0 dx cos(t jkx) = 0 [3]. We
have managed to divide the integral into two parts, one that

can readily be calculated analytically:

∫ ∞

0

dx cos(t jkx)

x2 + �2
⊥ − ω2

nk

= π

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e
−t jk

√
�2⊥−ω2

nk√
�2

⊥−ω2
nk

, ωnk < �⊥

− sin (t jk

√
ω2

nk−�2
⊥)√

ω2
nk−�2

⊥
, ωnk > �⊥

∞, ωnk = �⊥

(A36)

so that we have above the cutoff ωnk > �⊥

W̃ n
k j = −2πg jgk

√
n + 1 sin

(
πx j

a

)
sin

(
πxk

a

)
× ω2

nk√
ω2

nk − �2
⊥

sin
(
t jk

√
ω2

nk − �2
⊥
)
, (A37)

and below the cutoff ωnk < �⊥

W̃ n
k j = 2πg jgk

√
n + 1 sin

(
πx j

a

)
sin

(
πxk

a

)
× ω2

nk√
�2

⊥ − ω2
nk

e−t jk

√
�2

⊥−ω2
nk . (A38)

The second integral in Eq. (A35) is much more difficult.
However, they cancel in Eq. (A33), and thus do not affect the
correlated decay and exchange interaction terms, which above
the cutoff are written as

γm j,nk = 2πg jgk

√
(m + 1)(n + 1) sin

(
πx j

a

)
sin

(
πxk

a

)
× (χm jk + χ∗

nk j ), (A39)

Jm j,nk = −iπg jgk

√
(m + 1)(n + 1) sin

(
πx j

a

)
sin

(
πxk

a

)
× (χm jk − χ∗

nk j ), (A40)

where we have defined an oscillatory coefficient

χm jk = ω2
m j√

ω2
m j − �2

⊥
eit jk

√
ω2

m j−�2
⊥ . (A41)

Below the cutoff, we find similarly

γ ⊥
m j,nk = −2iπg jgk

√
(m + 1)(n + 1)

× sin

(
πx j

a

)
sin

(
πxk

a

)
(ζm jk − ζnk j ), (A42)

J⊥
m j,nk = −πg jgk

√
(m + 1)(n + 1)

× sin

(
πx j

a

)
sin

(
πxk

a

)
(ζm jk + ζnk j ), (A43)

with a coefficient that is exponentially decaying with the site
separation t jk ,

ζm jk = ω2
m j√

ω2
m j − �2

⊥
e−t jk

√
�2

⊥−ω2
m j . (A44)

Note that below the cutoff frequency the matrix γm j,nk is a
traceless Hermitian matrix. Thus, it is not semipositive, and
the master equation is no longer of the Lindbladian form.
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However, since the system frequencies are close to each other,
γm j,nk are small and can be neglected. Physical justification for
this is that the dissipation in this setup occurs if the emitted
photons propagate along the waveguide to infinity, which is
not possible if the transmons emit with a frequency below the
cutoff. However, the photons can still travel to nearby sites,
which is seen as the coherent exchange interaction.

Next we calculate the driving terms of Eq. (A29). The
operator ξ̂ in

j (t ) of Eq. (A22) is separated into left and right
moving parts,

ξ̂ in
j (t ) = −i sin

(
πx j

a

)∫ ∞

�⊥
dω

√
ω3√

ω2 − �2
⊥

e−iωt

× [eit j

√
ω2−�2

⊥ âR(ω) + e−it j

√
ω2−�2

⊥ âL(ω)]. (A45)

Assuming that the system is driven with a frequency ωd with
a coherent state |{α}〉, such that

âR/L(ω)|{α}〉 =
√

2πPR/L

h̄ωd
δ(ω − ωd )|{α}〉, (A46)

so that the amplitude driving the system (transmon array) is

dm j (t ) = −2g jωd
√

2π (m + 1)
√

h̄
√

ω2
d − �2

⊥
sin

(
πx j

a

)
�(ωd − �⊥)

× [√PR sin
(
ωdt − t j

√
ω2

d − �2
⊥
)

+ √
PL sin

(
ωdt + t j

√
ω2

d − �2
⊥
)]

, (A47)

which we can write in terms of γm j,m j as

dm j (t ) = −2
√

γm j,m j

2h̄ωm j

√√√√ω2
d

√
ω2

m j − �2
⊥(

ω2
d − �2

⊥
)
ωm j

�(ωd − �⊥)

× [√PR sin
(
ωdt − t j

√
ω2

d − �2
⊥
)

+ √
PL sin

(
ωdt + t j

√
ω2

d − �2
⊥
)]

. (A48)

The system thus cannot be driven with a frequency below
the cutoff, since such modes cannot propagate through the
waveguide.

In Eqs. (A32) and (A34) one is required to calculate the
coefficient W n+

k j . The Lamb shift can be absorbed to the defini-
tion of the system frequencies [3]. Further, the matrix Wm j,nk is
traceless and Hermitian, meaning it is not semipositive. Thus,
the master equation is not of the Lindblad form. However, as
shown in Ref. [3], and supported by numerical calculations,
the actual values for Wm j,nk are in general small and can be
neglected. Thus, we obtain the master equation [1,3]

d ρ̂

dt
= − i

[
Ĥsys

h̄
+
∑
m j,nk

Jm j,nk σ̂
nk
+ σ̂

m j
− , ρ̂

]

+
∑
m j,nk

γm j,nk

(
σ̂

m j
− ρ̂σ̂ nk

+ − 1

2
{σ̂ nk

+ σ̂
m j
− , ρ̂}

)

− i

[∑
m j

dm j (t )σ̂ m j
x , ρ̂

]
. (A49)

In Secs. III–VI we assume that the system frequencies ωm j are
all well above the cutoff frequency �⊥ so that we can effec-
tively set �⊥ = 0 for simplicity, and the coefficients reduce to
those obtained in Ref. [3].

6. Input-output theory

We finish this section by deriving the input-output theory
for the system of transmons inside the waveguide. This gives
us tools to study the transmission and emission of radiation,
as discussed in Sec. V. In Eq. (A20) we presented a formal
solution for the equation of motion of âkz (t ) before the radi-
ation has interacted with the transmons. Similar solution for
time evolution up to time t f after the interaction reads

âkz (t ) = âkz (t f )e−iω(kz )t

−
∑
m j

cg j

√
m + 1

√
ω(kz ) sin

(
πx j

a

)
e−ikzz j

×
∫ t f

t
dτe−iω(kz )(t−τ )σ̂ m j

x (τ ). (A50)

Adding Eqs. (A20) and (A50) together, separating left- and
right-moving modes and integrating over kz gives

âout
R/L(t ) − âin

R/L(t )

=
∑
m j

sin

(
πx j

a

)
ωm jg j

√
m + 1

√
2πωm j√

ω2
m j − �2

⊥

× e∓it j

√
ω2

m j−�2
⊥�(ωm j − �⊥)σ̂ m j

− (t ), (A51)

where we extended the integration limits in the time integral
from −∞ to +∞, and defined

âin
R/L(t ) = 1√

2π

∫ ∞

0
dkze

−iω(kz )t âR/L(ω(kz ), 0), (A52)

âout
R/L(t ) = 1√

2π

∫ ∞

0
dkze

−iω(kz )t âR/L(ω(kz ), t f ). (A53)

We can write Eq. (A51) in terms of γm j,m j as

âout
R/L(t ) − âin

R/L(t ) =
∑
m j

√
γm j,m j

2

√√√√ ωm j√
ω2

m j − �2
⊥

× e∓it j

√
ω2

m j−�2
⊥�(ωm j − �⊥)σ̂ m j

− (t ).
(A54)

The expectation value 〈âin
R/L〉 is obtained using Eq. (A46):

〈
âin

R/L(t )
〉 = 1

c

√
PR/L

h̄

√
ωd

ω2
d − �2

⊥
e−iωdt�(ωd − �⊥). (A55)

In Secs. III–VI we set �⊥ = 0 because all the system frequen-
cies are sufficiently far above the cutoff frequency. Assuming
that the system is driven from the left only, we recover the
input field

〈
âin

L (t )
〉 = √ PL

h̄ωd
e−iωdt , (A56)

063701-19



TUURE ORELL et al. PHYSICAL REVIEW A 105, 063701 (2022)

and the output field〈
âout

L (t )
〉 = 〈âin

L (t )
〉+∑

m j

eit jωm j

√
γm j,m j

2
〈σ̂ m j

− (t )〉. (A57)

The transmission is defined as their ratio

|t |2 =
∣∣∣∣
〈
âout

L (t )
〉〈

âin
L (t )

〉 ∣∣∣∣2. (A58)

APPENDIX B: NON-HERMITIAN QUANTUM MECHANICS

In standard quantum mechanics, observables are described
by Hermitian operators with orthonormal eigenstates and real
eigenvalues. Especially the Hermiticity of the Hamiltonian
is required for the conservation of energy. However, real-
istic systems are in general non-conservative due to loss
of particles, energy and information. These phenomena can
be described with non-Hermitian Hamiltonians [32,68]; see
Eqs. (15) and (16). Consider a non-Hermitian Hamiltonian of
the form

Ĥ = ĤR − i

2
ĤI, (B1)

with ĤR = Ĥ†
R and ĤI = Ĥ†

I . Clearly Ĥ �= Ĥ†. The Hamilto-
nian Ĥ has eigenvalues and eigenvectors

Ĥ |α〉 = λα|α〉, 〈α|Ĥ† = 〈α|λ∗
α, (B2)

where 〈α| = |α〉†, and the eigenvalues are of the form

λα = Eα − ih̄
�α

2
, (B3)

where we treat Eα as the energy and �α as the decay rate of
the state |α〉. One can also calculate the eigenvalues of the
Hermitian conjugate Ĥ†:

Ĥ† |̃α〉 = λ̃α |̃α〉, 〈̃α|Ĥ = 〈̃α|̃λ∗
α. (B4)

The eigenstates {|α〉} are called right eigenvectors, and {|̃α〉}
are called left eigenvectors. Now, in general, the eigenvectors
{|α〉} do not form an orthogonal set, i.e., it can occur that
〈β|α〉 �= 0 for β �= α. However, together with the conjugate
basis {|̃α〉} they form a biorthogonal basis [32],

〈β̃|α〉 = δβα 〈̃α|α〉, (B5)

and 〈̃α|α〉 �= 0. Note that even though the states are biorthog-
onal, they are not necessarily orthonormal. Thus, the identity
operator in this biorthogonal basis takes the form

Î =
∑

α

|α〉〈̃α|
〈̃α|α〉 , (B6)

where the denominator ensures that Î2 = Î .

1. Expectation values and decay channels

The biorthogonal basis changes the definitions of inner
products and expectation values. Assume we have a general
state |ψ〉, which we can write as a linear combination of either
right or left eigenvectors,

|ψ〉 =
∑

α

ψα|α〉, ψα = 〈̃α|ψ〉
〈̃α|α〉 , (B7)

|ψ̃〉 =
∑

β

ψ̃β |̃β〉, ψ̃β = 〈β|ψ̃〉
〈β |̃β〉 . (B8)

With these, the inner product between two arbitrary states |ψ〉
and |φ〉 becomes

〈φ̃|ψ〉 =
∑
αβ

φ̃∗
βψα〈β̃|α〉 =

∑
α

〈φ̃|α〉〈̃α|ψ〉
〈̃α|α〉 . (B9)

We define the expectation value of an arbitrary operator Â in
state |φ〉 analogously as

〈Â〉 = 〈φ̃|Â|φ〉
〈φ̃|φ〉 , (B10)

and as a special case, the expectation value in an eigenstate of
a non-Hermitian Hamiltonian is

〈Â〉β = 〈β̃|Â|β〉
〈β̃|β〉 . (B11)

The non-Hermitian Hamiltonian can have m-fold degenerate
eigenstates, i.e., an identical complex eigenvalue for several
states

λα = 〈̃αi|Ĥ |αi〉
〈̃αi|αi〉 , i = 1, 2, . . . , m. (B12)

In such cases the numerical diagonalization might not give
the correct biorthogonal eigenstates, but one instead has to
biorthogonalize them separately by using, e.g., the Gram-
Schmidt process. New right and left eigenvectors can be
obtained with the modified algorithm as∣∣φk

α

〉 = |αk〉 −
k−1∑
j=1

〈
φ̃

j
α

∣∣αk
〉〈

φ̃
j
α

∣∣φ j
α

〉 ∣∣φ j
α

〉
, (B13)

∣∣φ̃k
α

〉 = |̃αk〉 −
k−1∑
j=1

〈
φ

j
α

∣∣̃αk
〉〈

φ
j
α

∣∣φ̃ j
α

〉 ∣∣φ̃ j
α

〉
, (B14)

where we start with |φ1
α〉 = |α1〉 and |φ̃1

α〉 = |̃α1〉.
Once we have obtained the eigenstates of the effective

Hamiltonian, we can calculate the decay channels, that is the
decay rates between the states induced by the jump operators
of the master equation. The total decay rate of a state is given
by the imaginary part of the respective eigenvalue,

�α = −2

h̄
Im

( 〈̃α|Ĥ |α〉
〈̃α|α〉

)
. (B15)

Starting from Eqs. (B1)–(B3),

〈α|ĤR|β〉 − i

2
〈α|ĤI|β〉 = λβ〈α|β〉, (B16)

〈α|ĤR|β〉 + i

2
〈α|ĤI|β〉 = λ∗

α〈α|β〉, (B17)

we obtain

〈α|β〉 = 2
〈α|ĤR|β〉
λ∗

α + λβ

= i
〈α|ĤI|β〉
λ∗

α − λβ

. (B18)

Setting β = α we obtain

Eα = 〈α|ĤR|α〉
〈α|α〉 , �α = 〈α|ĤI/h̄|α〉

〈α|α〉 , (B19)
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where we have used Eq. (B3). Further, the imaginary part of
the Hamiltonian can be written as

ĤI = h̄
∑

k

γkb̂†
kb̂k, (B20)

where b̂k are the jump operators, and γk gives the jump rates.
Using this we obtain an expression for the total decay rate

�α =
∑

k

γk
〈α|b̂†

kb̂k|α〉
〈α|α〉

=
∑

k

γk

〈α|α〉 〈α|b̂†
k

∑
β

|β〉〈β̃|
〈β̃|β〉 b̂k|α〉,

=
∑

β

∑
k

γk
〈α|b̂†

k|β〉〈β̃|b̂k|α〉
〈α|α〉〈β̃|β〉 , (B21)

where we recover that the decay rate caused by the kth jump
operator from the state |α〉 to the state |β〉 is

�k
α→β = γk

〈α|b̂†
k|β〉〈β̃|b̂k|α〉

〈α|α〉〈β̃|β〉 . (B22)

In the case of a Hermitian system, the result reduces to Fermi’s
golden rule, �k

α→β = γk|〈β|b̂k|α〉|2.

APPENDIX C: NUMERICAL TIME EVOLUTION

The unitary time evolution of an open quantum system is
governed by a master equation, such as Eq. (2), which we can
write in the form of

d ρ̂

dt
= L(t )ρ̂, (C1)

where L is the Liouvillian superoperator, and ρ̂ is the system
density operator. In numerical calculations we first transform
the operators and superoperators in the master equation into
vectors and matrices, respectively. Suppose that the dimension
of the Hilbert space is d . Then, the density operator is a d × d
-dimensional matrix, which we tweak into a 1 × d2 column
vector r by stacking the columns of ρ̂ on top of each other.
The products between the operators and the density operator
then change to matrix vector products [76],

Âρ̂B̂† → ((B†)T ⊗ A)r, (C2)

where A and B are the d × d matrix forms of the operators
Â and B. One-sided operations such as Ĥ ρ̂ are understood by
replacing one operator in Eq. (C2) by a d × d identity matrix I.
With these one can write a master equation as a matrix-vector
equation

dr
dt

= L(t )r, (C3)

which can be solved with conventional numerical methods.
For a time-independent system the steady state density

operator ρ̂ss is defined as a state that does not change in time,

d ρ̂ss

dt
= 0 ⇒ Lρ̂ss = 0 ⇒ Lrss = 0. (C4)

In general, if the system contains dark states, the steady state
is not unique, and we can merely define a manifold of steady

states. However, since we always also include the bulk dissi-
pation, dark states also decay and there exists only one steady
state.

1. Time-independent Liouvillian

If the Liouvillian is time independent, then the time evolu-
tion generated by the master equation (C3) is solved by

r(t ) = eLt r0, (C5)

with r0 the initial state of the system. If the system is small
enough, one is able to diagonalize the Liouvillian L, in which
case the matrix exponential is trivial.

Full diagonalization is in many cases impractical as the
dimension of the Liouvillian matrix increases as d2 × d2. The
Krylov subspace method [77–81] that can be formulated to
employ efficiently sparse matrices is sufficiently accurate and
numerically affordable method for our purposes here. Assume
that we know the state of the system r(t ) at time t . After a brief
time �t the state becomes

r(t + �t ) = eL�t r(t ). (C6)

If the time step �t is sufficiently short, one can accurately
express the states r(t ) and the Liouvillian matrix L in an m-
dimensional subspace Km where m  d2. This subspace is
spanned by the vectors{

v0, Lv0, L2v0, . . . , Lm−1v0
}
, (C7)

where we have defined v0 ≡ r(t ). This basis is not orthogonal,
but one can construct an orthonormal basis with the Arnoldi
iteration using the Gram-Schmidt process, which results in an
orthonormal unitary matrix Km constructed from the orthonor-
malized vectors

Km = (v0 v1 v2 . . . vm−1), (C8)

and an upper Hessenberg matrix Mm, such that [77,78]

K†
mLKm = Mm. (C9)

At each step of the Arnoldi iteration one multiplies the pre-
vious vector by L and orthonormalizes it with respect to the
previous ones using the Gram-Schmidt process. Once the
matrices have been constructed, one can calculate the approx-
imate time evolution as

r(t + �t ) ≈ Kme�tMm K†
mr(t ), (C10)

where the matrix exponential of the small matrix Mm is easily
calculated, e.g., with the exact diagonalization or the Padé
approximation. The Krylov method gives accurate results be-
cause the eigenvalues of the upper Hessenberg matrix Mm

approximate the eigenvalues of the Liouvillian matrix that are
the most important for the dynamics during the current time
step.

2. Time-dependent Liouvillian

If the Liouvillian is time dependent, solving the master
equation is not as simple, as it would involve a time-ordered
integral if expressed in the form of Eq. (C5). To recover the
form, we apply the Magnus expansion [82], in which case the
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solution takes the form

r(t + �t ) = eU(t+�t,t )r(t ). (C11)

Here the matrix U(t, 0) is given by the Magnus series

U(t, 0) =
∫ t

0
dt1M(t1) + 1

2

∫ t

0
dt1

∫ t1

0
dt2[M(t1), M(t2)]

+ 1

6

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3{[M(t1), [M(t2), M(t3)]]

+ [M(t3), [M(t2), M(t1)]]} + · · · . (C12)

Truncating the series gives

U(t + �t, t ) = �tB0 − (�t )2[B0, B1] + O[(�t )5], (C13)

where the matrices Bk are

Bk (t ) = 1

�t k+1

∫ �t
2

− �t
2

τ kL
(

t + τ + �t

2

)
dτ. (C14)

In our studies, we found that the best numerical performance
was achieved by simply using the lowest order expansion

r(t + �t ) = e�tB0(t )r(t ). (C15)

The matrix exponential can then be calculated either exactly
or with the Krylov subspace method described above. No-
tice that even though the time-independent system might be
small enough to be solved using exact matrix exponentiation,
time-dependent case of the same size is much heavier since
the matrix exponential has to be calculated at each time step.
Thus, in the time-dependent case the Krylov method offers
benefits.
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