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Unusual scenarios in four-wave-mixing instability
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A pump carrier wave in a nonlinear dispersive system may decay by giving birth to blue- and redshifted
satellite waves due to modulation or four-wave mixing instability. We analyze situations where the satellites are
so different from the carrier wave, that the redshifted satellite either changes its propagation direction (k < 0,
ω > 0) or even gets a negative frequency (k, ω < 0). Both situations are beyond the envelope approach and
require application of the Maxwell equations.
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I. INTRODUCTION

The key property of a dispersive system is the existence of
linear small-amplitude waves, e.g., of the form Re[ei(k·r−ωt )]
with a certain dispersion relation ω = �(k). An increase of
power results in a nonlinear wave, which may become un-
stable [1]. A very common instability scenario is excitation
of two growing satellite waves with the reduced and in-
creased frequencies: the Stokes and anti-Stokes (or just red-
and blueshifted) spectral lines [2]. The satellite frequencies
are equally displaced from the incident one. Starting from
the seminal study on modulated water waves [3], the effect
was observed in many nonlinear dispersive systems including
optical fibers [4], which are in the focus of this work.

A small frequency displacement that is proportional to the
incident power is the defining feature of the most common
modulation instability (MI). If the new lines are separated
from the carrier, no matter how small the incident power,
one deals with a four-wave mixing (FWM) instability. In both
cases, the parameters of the blueshifted (b) and redshifted (r)
satellites are connected to that of the carrier (c) wave by the
resonance (phase matching) conditions

ωb + ωr = 2ωc, kb + kr = 2kc, (1)

where the dispersion relation ω = �(k) must hold for all three
waves [5,6].

Conditions (1) are necessary but not sufficient, the suffi-
cient condition for MI was given by Lighthill [7]. With respect
to optical fibers, both instability scenarios are described by
a generalized nonlinear Schrödinger equation (GNLSE) for
the wave envelope [8–15]. Moreover, Lighthill’s criterion can
be reformulated to cover both MI and FWM regimes [16].
Note that GNLSE actually refers to a class of increasingly
complex equations with higher-order dispersion, losses, Ra-
man integral, and self-steepening derivative terms [17–24].
To our knowledge, the most comprehensive “all included” MI
analysis was published in Ref. [15]. One can also study MI
directly with the full Maxwell equations [25].

This work considers wave instabilities in optical fibers
and takes advantage of the fact that fiber dispersion can be

engineered [26]. One can manipulate �(k) and solutions of the
system (1) to excite a wide range of frequencies via the FWM
mechanism [27–33]. We aim to answer the question: can the
redshifted satellite be so different from the carrier wave that it
either propagates in the opposite direction or gets a negative
frequency, as schematically shown in Fig. 1? In this case, the
blueshifted frequency will be greater than 2ωc.

Appearance of the backward wave may resemble the Bril-
louin scattering with the difference that the FWM instability
takes place due to cubic nonlinearities and without any contri-
bution of material waves. Our interest to negative frequencies
is motivated by recent papers on classical nonlinear optics
(and on water waves [34,35]), where calculation of the excited
spectral line leads to a negative frequency. One scenario is
scattering of a wave packet at a quickly moving perturba-
tion of the refractive index created by another pulse. One
can observe several scattered waves: a standard frequency-
shifted backward wave identical to that reflected by a moving
mirror [36], forward scattering [37], and an exotic classical
Hawking radiation with a negative frequency [38,39]. An-
other option is the so-called dispersive or Cherenkov radiation
emitted by solitons in fibers [40]. A formal calculation of
the radiation frequency may lead to a negative value. The
positive-frequency partner of the emitted wave was observed
in experiment [41,42] and predicted by a novel modification
of GNLSE [43,44]. A search for new phenomena involving
negative frequencies seems to be interesting and instructive;
the stability problem for a nonlinear wave is worth a try.

II. FRAMEWORK

The majority of studies on MI and FWM instability in
optical fibers use various versions of GNLSE. The latter is ex-
tremely powerful, GNLSE can even be adapted to describe the
contribution of negative frequencies [43,44]. Yet, an envelope
equation does not fit well to our needs for several reasons.

First, GNLSE describes waves moving in one direction,
whereas a possible backward satellite is not covered.

Second, GNLSE approximates medium dispersion by Tay-
lor expansion around a carrier frequency. The expansion is
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FIG. 1. A schematic dispersion law within a transparency win-
dow and possible instability regimes are shown. An anisotropic �(k)
with k = (0, 0, k) is used for better visibility. The necessary Eq. (1)
selects the feasible instability. A sufficient condition (e.g., that of
Lighthill) decides whether the instability develops.

limited by its convergence radius, which is determined by
resonances of the dielectric function ε(ω, k) in the complex ω

plane. If the low-frequency resonances are present, the Taylor
expansion at ωc covers neither the red or blue stars in Fig. 1
nor the general relation [45]

ε∗(ω, k) = ε(−ω∗,−k), (2)

which we use later.
Third, GNLSE in optical fibers is a space-propagated prob-

lem in (t, z) coordinate space. The initial pulse is given for
some z and ∀ t , in conflict with the causality principle. The
pulse shape is then calculated for a larger z and ∀ t , a possible
instability manifests itself by a complex-valued kz. Dealing
with such a delicate question as negative frequencies, it is
preferable to have a causal system that evolves in time with
either real- or complex-valued ω, i.e., to consider an absolute
instability [46]. This point of view is taken in Eq. (2).

For the above reasons, we will follow Ref. [25] and directly
employ the Maxwell equations to study the stability problem
with the difference being that our system is time-propagated
and retains causality, and that both forward and backward
waves are covered. Before proceeding, we need to make a few
remarks:

i. Given a reasonable incident power, MI satellites are too
close to the carrier to have unusual properties. FWM instabil-
ity is the only case of interest.

ii. Plane waves in what follows will have a real k and
possibly complex ω, which is called “negative” if Re(ω) < 0.
We should modify Eq. (1) for ω ∈ C.

iii. Re[ei(k·r−ωt )] is invariant with respect to the sub-
stitution ω �→ −ω∗, k �→ −k, generated by the complex
conjugation, cf. Eq. (2).

iv. Any positive-frequency branch of the dispersion law
has a negative-frequency partner

ω = �(k) comes with ω = −�∗(−k). (3)

The situation we are interested in is schematically shown in
Fig. 1 by five- and eight-pointed stars. Now we can formulate
the problem more precisely. Let ωc, kc and ωb, kb belong to
the positive-frequency branch in Eq. (3). It is not enough to
know whether ωr , kr , which come from Eq. (1), can belong
to either backward or negative-frequency branch. We shall get

a dispersion relation for the satellites and study if they grow
up.

III. MODEL EQUATION

A generic electromagnetic wave is described by the wave
equation

μ0∂
2
t D + rot rot E = 0, (4)

where the displacement D(t, r) and field E(t, r) are confined
by a material relation. We consider an isotropic dispersive di-
electric medium with a cubic nonlinearity that is characterized
by a single Kerr parameter χ :

1

ε0
D = E + K ◦ E + χ (E · E)E, (5)

where, for simplicity, χ is just a constant and E · E is the stan-
dard scalar product. The simplest nondispersive nonlinearity
is combined with a generic linear dispersion: the term K ◦ E
denotes a causal convolution with a suitable kernel K (t, r)

K ◦ E =
∫ ∞

0

∫
R3

K (t ′, r′)E(t − t ′, r − r′)dt ′d3r′.

A wave with E ∝ ei(k·r−ωt ) yields K ◦ E = (ε − 1)E, where
the dielectric function reads [45]

ε(ω, k) = 1 +
∫ ∞

0

∫
R3

K (t, r)ei(ωt−k·r)dtd3r. (6)

Again, for simplicity and with optical fibers in mind, we
consider only one-dimensional (1D) propagation with

k = (0, 0, k), E = E(t, z) = (Ex, Ey, 0),

and use the notations

ε(ω, k) = ε(ω, k)|k=(0,0,k), �(k) = �(k)|k=(0,0,k).

Equations (4) and (5) are then reduced to a single partial
differential equation (PDE) for a complex variable �,

∂2
t (� + K ◦ � + χ |�|2�) − c2∂2

z � = 0, (7)

where �(t, z) = Ex + iEy.
Equation (7) is our starting point. It might look like an

envelope equation, but it applies directly to the electric field.
Being an exact reduction of (4) and (5), it is not limited
by any kind of unidirectional or slowly-varying-envelope ap-
proximation. Moreover, Eq. (7) describes causal evolution of
both forward and backward waves for an arbitrary medium
dispersion. Both positive and negative frequencies are covered
such that Eq. (7) is well suited to study two unusual FWM
scenarios from Fig. 1.

IV. CARRIER WAVE

For brevity we introduce a kind of generalized dispersion
function E(ω, k) and notation for its derivatives:

E = ε(ω, k) − k2c2

ω2
, Ė = ∂E

∂ω
, E′ = ∂E

∂k
. (8)

A small-amplitude Aei(kz−ωt ) solution to Eq. (7) corresponds
to a linear wave with circular polarization and requires
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E(ω, k) = 0. This yields the main (generally speaking, mul-
tivalued) dispersion relation ω = �(k) and its partner (3). The
group velocity V and the group-velocity dispersion D are
given by the derivatives of an implicit function

V = dω

dk
= −E′

Ė
, (9)

D = d2ω

dk2
= − ËV 2 + 2Ė′V + E′′

Ė
, (10)

where a bit clumsy form of D(ω, k) is the price we pay for a
general ε(ω, k).

A possible instability develops upon a weakly nonlinear
carrier wave with circular polarization

� = Acei(kcz−ωct ) with σ = χA2
c � 1, (11)

where σ is a dimensionless power parameter. The carrier
should belong to a transparency domain, such that ωc, kc ∈ R
and Im[ε(ωc, kc)] ≈ 0. Equations (7) and (11) yield a nonlin-
ear dispersion relation

E(ωc, kc) + σ = 0. (12)

The carrier wave has a nonlinear frequency shift ωnl, which is
defined such that ωc − ωnl and kc satisfy the linear dispersion
relation E(ωc − ωnl, kc) = 0, i.e.,

ωnl = − σ

Ėc
+ O(σ 2). (13)

Here and from now on, we use the notations

Eξ , Ėξ , E′
ξ , Vξ , Dξ

when the involved quantities are calculated for the carrier
wave (ξ = c) or its satellites (ξ = b, r). We now turn to the
carrier-stability problem.

V. DISPERSION RELATION

We consider a small perturbation ψ of the carrier wave (11)

�(t, z) = Acei(kcz−ωct ) + ψ (t, z),

which is subject to a linear PDE yielded by Eq. (7)

∂2
t (ψ + K ◦ ψ + 2σψ + σe2i(kcz−ωct )ψ∗) = c2∂2

z ψ.

We look for a special solution for ψ that combines one blue-
and one redshifted satellite

ψ = Abei(kbz−ωbt ) + Arei(kr z−ωr t ),

with Ab = const and Ar = const. Recall that ωc and all wave
vectors are real. The satellite frequencies ωb and ωr may be
real or complex. By construction we require, cf. Eq. (1),

ωb + ω∗
r = 2ωc and kb + kr = 2kc, (14)

such that the nonhomogeneous term in the PDE for ψ is
expressed through the same satellites

e2i(kcz−ωct )ψ∗ = A∗
r ei(kbz−ωbt ) + A∗

bei(kr z−ωr t ).

The amplitudes Ab and Ar are then nontrivial solutions to a
system of two linear homogeneous equations(

Eb + 2σ σ

σ E∗
r + 2σ

)(
Ab

A∗
r

)
=

(
0
0

)
, (15)

find from

for all where

Given where

FIG. 2. Summary of the dispersion relation (16). Eξ denotes
ε(ωξ , kξ ) − k2

ξ c2/ω2
ξ with ξ = c, b, r for the carrier wave and its

blue or red satellites, respectively. ωb,r ∈ C yields instability, σ is
a normalized incident power from Eq. (11).

which finally leaves us with the dispersion relation for the
satellites

(Eb + 2σ )(E∗
r + 2σ ) = σ 2. (16)

Equation (16), being causal and valid for positive and negative
frequencies, contains all we need to know about the instability
regimes depicted in Fig. 1.

Let us make a few remarks before continuing. Figure 1 and
the standard phase matching conditions (1) apply, of course,
to the real parts of the satellite frequencies. The satellites will
typically belong to the transparency window, and yet ωb,r may
be complex, which indicates instability. If this is the case, Eb

and Er are complex as well and the complex conjugation in
Eq. (16) is essential. Equations (2) and (14) yield

E∗
r = E(−ω∗

r ,−kr ) = E(ωb − 2ωc, kb − 2kc), (17)

such that all stable solutions of Eq. (16) can be plotted as a
real-valued ωb(kb). The plot contains gaps, where ωb(kb) turns
complex because of losses or instability.

It is remarkable that the merged MI/FWM problem gets
such a compact formulation as Eq. (16) for an arbitrary
ε(ω, k). On the other hand, the dispersion relation for the
satellites that comes from a GNLSE can be solved im-
mediately [8–15]. At most, one is facing a fourth-order
equation [25]. In our case, the implicit Eq. (16) requires addi-
tional work to be done, as summarized in Fig. 2.

VI. MODULATION-INSTABILITY CASE

The general approach of the previous sections is an overkill
for the classical MI, where the carrier wave and both its
satellites perfectly fit to a slowly varying envelope approxi-
mation and GNLSE. Nevertheless, MI is of course covered by
Eq. (16). Note that for kb,r = kc, we have an exact solution
ωb,r = ωc of the problem sketched in Fig. 2. In the vicinity of
this solution, one can set

ωb = ωc + �, ωr = ωc − �∗, kb,r = kc ± κ,

such that both phase matching conditions (14) are satisfied,
and look for �(κ ). We expand Eq. (16) with respect to � and
κ . Two successive iterations yield the classical result

(� − κVc)2 =
(

2ωnl + Dcκ
2

2

)
Dcκ

2

2
, (18)
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FIG. 3. (a) Solutions of Eq. (20) are plotted as ωb(kb) for kb � kc

by thick dashed (the blue-satellite solution) and thin solid (the red-
satellite solution) lines. We use a bulk fused silica dispersion [48],
take the carrier wave at 1 μm, and set σ = 0. A gap for kb ≈ 2kc (i.e.,
kr ≈ 0) appears due to the low-frequency absorption of the red satel-
lite. The FWM instability results from a generic crossing of the blue
and red (dashed and solid) curves on the inset. Panels (b)–(d) show
stable and unstable reconnections yielded by the right-hand-side of
the full Eq. (16).

which contains the group velocity (9) and group velocity
dispersion (10) of the carrier wave. The nonlinear frequency
shift ωnl was defined in Eq. (13).

For (Lighthill criterion) ωnlDc < 0, Eq. (18) describes a MI
that evolves in time with the complex modulation frequency
� and the maximal increment

[Im �]max = |ωnl| = σ

|Ėc|
. (19)

Note that a more common MI formulation for fibers is
space-propagated and yields complex κ (�), see Ref. [47].
Equation (18) describes a corresponding time-propagated ab-
solute instability with the complex �(κ ).

VII. FOUR-WAVE-MIXING CASE

We are now ready to consider the FWM instability without
any reference to GNLSE and dispersion coefficients at carrier
frequency. Let us neglect for a moment the right-hand-side of
Eq. (16),

[E(ωb, kb) + 2σ ][E∗(ωr, kr ) + 2σ ] = 0. (20)

Solutions of Eq. (20) are split into the “blue” and “red” ones.
Within the transparency domain, we get two real-valued im-
plicit functions, which can be plotted on the same (kb, ωb)
plane using Eq. (17). An example is shown in Fig. 3(a).
Assume that these two curves cross each other at some point
(kb0, ωb0), see the inset in Fig. 3(a). In the vicinity of this
double root one can set

ωb = ωb0 + �, ωr = ωr0 − �∗, � = O(σ ),

kr = kb0 + κ, kr = kr0 − κ, κ = O(σ ),

with the real values of

ωr0 = 2ωc − ωb0, kr0 = 2kc − kb0.

By expanding over � and κ , we get

Eb = −2σ + Ėb0� + E′
b0κ + O(σ 2),

Er = −2σ − Ėr0�
∗ − E′

r0κ + O(σ 2),

where the derivatives Ėb0,r0 and E′
b0,r0 and the corresponding

group velocities Vb0,r0 are real.
We now return to the full Eq. (16), consider the vicinity of

the intersection point, and derive

(� − Vb0κ )(� − Vr0κ ) = − σ 2

Ėb0Ėr0
. (21)

The effect of the right-hand-side in Eq. (21) is that the two
lines � = Vb0κ and � = Vr0κ [Fig. 3(b)] are now reconnected
in one of two possible ways, as shown in Figs. 3(c) and 3(d).
A gap, like one in Fig. 3(d), indicates a complex-valued �(κ )
and results in the FWM instability. The latter occurs if

Ėb0Ėr0 > 0, (22)

and develops with the maximal increment

[Im �]max = σ√
Ėb0Ėr0

. (23)

It is remarkable that the MI increment (19) is covered by
Eq. (23) for ωb0 = ωr0 = ωc. Equation (23) is universal. On
the other hand, Eq. (22) is very different from the MI criterion
because it does not depend on the nonlinear frequency shift.

VIII. EXAMPLES

The main result of the previous section can be summarized
as follows:

An unusual scenario of the FWM instability occurs if an
intersection of two curves yielded by Eq. (20) on (kb, ωb)
plane, like (kb0, ωb0) in the inset in Fig. 3(a), takes place
not before but after the attenuation gap at kb = 2kc.

If so, the redshifted wave-vector kr0 = 2kc − kb0 is negative.
Two situations are then possible. A positive value of ωr0 =
2ωc − ωb0 means a backward satellite, otherwise one deals
with a forward negative-frequency wave.

(a)

b 
(ra

d/
s)

kb (m-1)kb (m-1)

(k c
, c

) (k b0
, b0

)

2kc

(b)

(k c
, c

)

2kc

FIG. 4. Solutions of the reduced Eq. (20) are shown for (a) KSR-
5 glass with the carrier wave at 1.14 μm and (b) ZBLAN with the
carrier wave at 1.4 μm. Change to the full Eq. (16) yields the FWM
instability with the backward satellite in panel (a); but it does not
yield the negative-frequency wave in panel (b). Notations are as in
Fig. 3.
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An example of the backward propagating red satellite is
shown in Fig. 4(a) for KRS-5 glass [48], which is transparent
within 0.6-40 μm, and for a carrier at 1.14 μm. The backward
satellite is at 15.6 μm. Similar behavior is expected in several
other materials.

FWM instability at a negative frequency is a different
story: typical dispersive materials from Ref. [48] proved to
be unsuitable. Some systems are very close to the required
behavior, e.g., ZBLAN with the carrier wave at 1.4 μm in
Fig. 4(b). Here the red (thin solid) and blue (thick dashed)
curves are very close to each other. Double roots with negative
frequencies should appear for a slightly tuned dispersion law.
However, one can demonstrate that even in such a favorable
case the negative-frequency wave is not generated because the
instability condition (22) is not satisfied.

To demonstrate this, we use Eq. (9) to rewrite the inequality
(22) as (E′

b0/Vb0)(E′
r0/Vr0) > 0. As spatial dispersion is small

for optical materials, Eq. (8) yields that E′ ≈ −2kc2/ω2 and
the FWM instability criterion takes the form

(kb0/Vb0)(kr0/Vr0) > 0. (24)

Examining Fig. 1, we see that inequality (24) is satisfied
for the backward satellite but not for the negative-frequency
one. The latter satellite does not experience resonant
growth.

IX. CONCLUSIONS

Nonlinear waves in dispersive systems are typically de-
composed giving birth to new satellite waves, but how far
these satellites can go from their origin? Can they go beyond
the standard slowly varying envelope approximation and even
beyond an extended envelope equation equipped by numer-
ous dispersion coefficients? To address these questions we
studied the carrier stability problem using a general material
relation (5) and an exact reduction (7) of Maxwell equations.
The dielectric function is not expanded at carrier frequency,
moreover, the system in question evolves in time in full
agreement with the causality principle. This approach resulted
in a surprisingly compact dispersion relation for the satel-
lite frequencies (16), which however is implicit and difficult
to analyze, as compared with the standard space-propagated
modeling of the optical four-wave instabilities. Using geo-
metrical arguments, we revealed the instability criterion (22),
and a general expression (23) for the instability increment.
In the first place, we have found that the redshifted satellite
can reverse its velocity in the laboratory frame and propagate
backward to the carrier, as long as the dispersive material is
transparent for the infrared radiation. In the second place, we
have found that generation of the negative-frequency satellite,
while formally possible, does not take place because the wave-
mixing instability is switched off for this exotic wave.
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