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Light propagation in a random three-dimensional ensemble of point scatterers in a waveguide:
Size-dependent switching between diffuse radiation transfer and Anderson localization of light
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Light transport in a disordered ensemble of resonant atoms placed in a waveguide is found to be very sensitive
to the sizes of the cross section of a waveguide. Based on a self-consistent quantum microscopic model treating
atoms as coherent radiating dipoles, we have shown that the nature of radiation transfer changes from Anderson
localization regime in a single-mode waveguide to a traditional diffuse transfer in a multimode one. Moreover,
the transmittance magnitude undergoes complicated steplike nonmonotonic dependence on the transverse sizes
of a waveguide.
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I. INTRODUCTION

The transition from extended to localized eigenstates upon
increasing disorder in a quantum or wave system is named af-
ter Philip Anderson who was the first to predict it for electrons
in disordered solids [1]. This transition manifests itself in
sharp decrease of the diffusion coefficient for electrons down
to zero and associated suppression of the conductivity, thus a
conducting medium turns into a dielectric. Actually, the effect
of phase transition induced by disorder has a general nature.
More recently, it was studied for various types of quantum
particles (cold atoms [2], Bose-Einstein condensates [3]) as
well as for classical waves (light [4–6], ultrasound [7,8]).
Anderson localization of light may find applications in the
design of future quantum-information devices [9], miniature
lasers [10], and solar cells [11]. Drawing a parallel between
Anderson localization predicted for electrons in solids and
localization of light in a dispersive medium, the analog of
the metallic phase is the regime of diffuse radiation transfer
whereas the analog of nonconducting phase is represented in
the Anderson localization of light. The phenomenon of Ander-
son localization of light can manifest itself in various physical
systems, but special attention is paid to random ensembles of
point scatterers (such as cold atomic gases or impurity atoms
embedded in a solid transparent dielectric matrix). This is con-
nected with the fact that these objects represent an excellent
playground for testing the theory.

In the literature, one can find different signs for Anderson
localization of light based on eigenstates diagram (mainly,
lifetimes of eigenstates), on the character of radiation trap-
ping, on the inverse participation ratio, on the Ioffe-Regel
parameter, on the Thouless number, to name a few. However,
these signs represent the necessary conditions for Anderson
localization but are not sufficient ones. The most reliable cri-
terion comes from the exact definition of localization, namely
the transmittance in a stationary mode must exponentially
decrease with increasing of the thickness of a sample. There
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are also some requirements, which have to be met if we want
to use this criterion. The first is the absence of any relaxation
channels which lead to energy losses of the joint atomic-field
system. This circumstance is not a problem in theoretical sim-
ulations, but it can represent a critical point for experiments
since the existence of such channels permits alternative expla-
nations for exponential behavior of the transmittance [12–14].
The second is that a medium has to be optically dense, so
the intensity of transmitted light is determined mainly by its
incoherent component. Actually, both these requirements are
valid not only in the case of transmission criterion but also for
all other signs for Anderson localization of light.

By now, it has been understood that Anderson localization
of light in a random three-dimensional (3D) ensemble of
point scatterers without applying external control fields is ab-
sent [15]. However, a static magnetic field restores Anderson
localization of light in a cold-atom gas [16]. The situation
essentially changes when we deal with low-dimensional sys-
tems [17]. It is known that in two dimensions, there is no
true metallic behavior of a disordered electronic system [18].
Thus, reduced dimensionality facilitates the achievement of
Anderson localization. This also holds true when understand-
ing Anderson localization in a broad sense, including both
metal-insulator transitions and quantum-Hall-type transitions
between phases with localized states [19]. Focusing on the
Anderson localization of light in atomic ensembles, it is worth
to note that the fabrication of low-dimensional ensembles
usually assumes their coupling with a cavity or waveguide
structures [20,21]. This imprints the nature of interaction be-
tween atoms and electromagnetic field, that, in turn, leads to a
modification of interatomic dipole-dipole interaction [22–24]
and associated cooperative effects [25–31]. A correct descrip-
tion of these effects requires a realistic three-dimensional
picture both because of 3D arrangement of atoms and, which
is more fundamental, because of the vector nature of elec-
tromagnetic field. Moreover, we have recently shown that
polarization effects play a crucial role in spontaneous decay
of an excited atom in a single-mode waveguide [32].

In this paper we report the results of fully 3D calculation
of light intensity transmitted through a random ensemble of
point scatterers in a waveguide. We show that the nature of
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FIG. 1. Sketch of the waveguide and the atomic ensemble inside it.

light transport dramatically depends on the transverse sizes
of a waveguide. Thus, when a waveguide is single-mode
with respect to resonant transition wavelength, the regime
of Anderson localization is realized even for an arbitrarily
low atomic density. An increase in the transverse size turns
a single-mode waveguide to a multimode one, that, in turn,
instantly cancels Anderson localization and restores classical
diffuse radiation transfer.

II. BASIC ASSUMPTIONS AND APPROACH

We consider an ensemble of N � 1 identical two-level
atoms at random position {ri} inside a waveguide, see Fig. 1.
The resonant frequency ω0 of atoms defines the natural length
scale 1/k0 = c/ω0, where c is the vacuum speed of light.
The ground state |gi〉 of an isolated atom i is nondegenerate
with the total angular momentum Jg = 0, whereas the excited
states |ei〉 is threefold degenerate with Je = 1 and natural
free space linewidth γ0. The three degenerate substates |ei,mJ 〉
correspond to the three possible projections mJ = 0,±1 of the
total angular momentum Je on the quantization axis z. For
convenience, let us choose the z axis coinciding with the axis
of a waveguide.

The cross section of the waveguide is assumed to be
rectangular having the sizes a and b. Atomic ensemble oc-
cupies a whole cross section of a waveguide and has the
longitudinal length L along the z axis. Both input and out-
put of a waveguide are far remote from the edges of the
atomic medium (corresponding separations are much larger
than L). Atomic ensemble is illuminated by stationary probe
radiation, which is considered to be monochromatic with the
frequency ωs. Transmitted radiation is measured by a pho-
todetector, which absorbs the whole output signal integrated
over the area of cross section indifferent to the polarization
state.

To describe the stationary regime of atomic excitation
induced by external radiation within the framework of con-
sistent quantum-mechanical treatment, we use the following
technique. Let us suppose that probe radiation is created as
a result of spontaneous emission of some remote atom in
a waveguide, which has the same level structure as atoms
from an ensemble but different resonance transition frequency
ωs and narrow linewidth γs (hereafter we call it the “source
atom”). It allows us to consider the following initial condi-
tions: only the source atom is excited whereas all other atoms
forming an ensemble are in their ground state; the electromag-
netic field is in the vacuum state at t = 0. Thus, the problem
considered here can be formally reduced to the problem of
collective spontaneous decay in a waveguide, which we stud-
ied previously [32].

Assuming the walls of a waveguide to be perfectly con-
ductive (i.e., neglecting the absorption), the dynamics of
the atomic-field system can be treated on the basis of the
non-steady-state Schrodinger equation with the following
Hamiltonian [33]:

Ĥ =
N+1∑
i=1

1∑
mJ=−1

h̄ω0|ei,mJ 〉〈ei,mJ |

+
∑
k,α

h̄ωk

(̂
a†

k,α
âk,α + 1

2

)
−

N+1∑
i=1

d̂i · Ê(ri )

+ 1

2ε0

N+1∑
i �= j

d̂i · d̂ jδ(ri − r j ), (1)

where the first two terms correspond to noninteracting atoms
and the electromagnetic field in an empty waveguide, respec-
tively, the third term describes the interaction between the
atoms and the field in the dipole approximation, and the last,
contact term ensures the correct description of the electromag-
netic field radiated by the atoms [33]. In Eq. (1), â†

k,α
and âk,α

are the operators of creation and annihilation of a photon in
the corresponding mode, ωk is the photon frequency, d̂i is the
dipole operator of the atom i, Ê(r) is the electric displacement
vector in a waveguide, and ri is the position of the atom i. The
vacuum reservoir is also included in the atomic-field system
described by the Hamiltonian represented in Eq. (1).

The field operator Ê(r) can be obtained on the basis of
well known classical mode expansion of the electromagnetic
field in a waveguide with corresponding boundary conditions
[34] followed by standard quantization [35]. The specific
form of this operator is determined by the cross section of
a waveguide. For the given geometry, Ê(r) can be read as
follows:

Ê(r) =
∑
k,α

√
h̄

2ωk
Ek,α (x, y)

× exp (ikzz )̂ak,α + H.c., (2)

where α denotes the type of waveguide mode – TE (transverse
electric) or TM (transverse magnetic), i means imaginary
unit.

Ex
k,T E (x, y) = − iknk

k2
m + k2

n

Bmn cos (kmx) sin (kny), (3)

Ey
k,T E (x, y) = ikmk

k2
m + k2

n

Bmn sin (kmx) cos (kny), (4)

Ez
k,T E (x, y) ≡ 0, (5)

Ex
k,T M (x, y) = ikzkm

k2
m + k2

n

Bmn cos (kmx) sin (kny), (6)

Ey
k,T M (x, y) = ikzkn

k2
m + k2

n

Bmn sin (kmx) cos (kny), (7)

Ez
k,T M (x, y) = Bmn sin (kmx) sin (kny). (8)

Here km = mπ/a, kn = nπ/b, k = √
k2

m + k2
n + k2

z = ωk/c.
The indexes m and n are positive integers for TM modes,
and for TE modes m, n = 0, 1, 2, ..., herewith both indexes
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cannot be zero together. Bmn is the normalization constant,
which can be obtained on the basis of the standard form of
the field Hamiltonian. Reference point is chosen at one of the
corners of the cross section, so the space into a waveguide
corresponds to the positive values of the coordinates x and y,
as shown in Fig. 1.

Formally solving the Schrodinger equation for the joint
system, which consists of N + 1 atom (N atoms of an en-
semble + source-atom) and the electromagnetic field, and
restricting ourselves by the states containing no more than
one photon (i.e., neglecting nonlinear effects), one obtains a
system of equations for the amplitudes be of one-fold atomic
excited states with the coupling between atoms caused by the
dipole-dipole interaction. For Fourier components be(ω) we
have (at greater length see Ref. [36])∑

e′
[(ω − ωe)δee′ − �ee′ (ω)]be′ (ω) = iδes. (9)

The index s as well as the indexes e and e′ contain information
both about the number of atom and about specific atomic
sublevel excited in the corresponding state.

The matrix �ee′ (ω) describes both spontaneous decay and
photon exchange between the atoms. It is connected with
the Green’s matrix Gee′ (ω) by a simple relation �ee′ (ω) =
(−γ0/2)Gee′ (ω).

According to the general quantum microscopic approach
essentially based on the coupled-dipole model, the Green’s
matrix Gee′ (ω) is given as follows:

Gee′ (ω) = − 2

γ0

{ ∑
g

Ve;gVg;e′ζ (h̄ω − Eg)

+
∑

ee

Ve;eeVee;e′ζ (h̄ω − Eee)

}
. (10)

This equation includes matrix elements of the operator V̂
of the interaction between atoms and electromagnetic field,
ζ (x) is a singular function which is determined by the rela-
tion ζ (x) = lim

k→∞
(1 − exp(ikx))/x. To calculate the Green’s

matrix, we should perform a summation over resonant single-
photon states “g” as well as over nonresonant states with two
excited atoms and one photon “ee” (as greater length, see
Ref. [36]). Actually, this approach allows one to describe from
a single position both monatomic dynamics and cooperative
effects caused by interatomic dipole-dipole interaction. The
main idea of this approach was proposed by Foldy [37],
further it was developed by a number of authors, to name
a few [38–42]. This method was successfully used in our
group for the analysis of the optical properties of dense atomic
ensembles as well as for studying light scattering from such
ensembles [43–49]. Further it allowed us to describe coop-
erative effects in atomic ensembles located in a Fabry-Perot
cavity [28,29] and near a conducting surface [50–52].

The explicit expressions for the elements of the Green’s
matrix corresponding to a waveguide were derived in [32]
(see, mainly, the Appendix in Ref. [32]).

By the inverse Fourier transform, we get the dynamics of
the quantum amplitudes in a time domain, be(t ):

be(t ) =
∫ ∞

−∞

idω

2π
×

bs exp(−iωt )
∑
e′ �=s

Ree′ (ω)�e′s(ω)

ω − ωs − �s(ω)
, (11)

where

�s(ω) = −i
γs

2
+

∑
e,e′ �=s

�se(ω)Ree′ (ω)�e′s(ω). (12)

Further, we go to the stationary limit of atomic excitation
by an external unaffected light source. For this, we should
remove the reverse influence of the atomic ensemble on the
source atom and then consider γs → 0 and t → ∞ assuming
γst 
 1. Technically, it can be performed as follows. Firstly, it
is important to clarify the physical sense of Eq. (12). Here, the
first term describes self-action of the source atom, and second
term describes the influence of atoms forming an ensemble on
the source atom. Thus, in order to simulate unaffected light
source from the considered source-atom, we should artificially
eliminate the second term in Eq. (12). After that, we go to
the limit γs → 0, which means monochromatic probe light.
Looking at the denominator in Eq. (11), we can write

lim
γs→0

1

ω − ωs + i γs

2

= ζ (ω − ωs),

where ζ (x) is a singular function. Next, we go to the limit
t → ∞, which describes the stationary regime. Here, we can
use the relation

lim
t→∞ ζ (ω − ωs) exp(−iωt ) = −2π iδ(ω − ωs) exp(−iωst ).

Useful relations between singular functions, which underlie
these calculations, can be found in the textbook, Ref. [53].
Thus, after these limiting passages, we obtain the final expres-
sion:

be(t ) = exp(−iωst )
∑
e′ �=s

Ree′ (ωs)�e′s(ωs), (13)

where Ree′ (ω) is a resolvent operator of the considered
multiatomic ensemble, which is defined as Ree′ (ω) = [(ω −
ω0)δee′ − �ee′ (ω)]−1.

Since the photodetector measures the electric component
of the electromagnetic field, namely, E(−)E(+), we define the
transmission coefficient as follows: T = Pt/(Pt + Pr ), where
Pt is the total power of the electric component in the transmit-
ted light and Pr refers to the same quantity in the reflected
radiation. Both Pt and Pr can be naturally calculated as
corresponding intensities integrated over the whole area of
cross section of a waveguide.

The electric component of the light intensity can be
calculated in a straightforward manner, as it was done in
Refs. [49,54], or it can be simulated on the basis of the
alternative method, which considers the so-called “atom de-
tector”. The idea of this alternative approach is taking into
consideration an imaginary elusive “atom”, which sense radi-
ation emitted by the environment medium but do not re-emit
photons. So, it works as a point detector. It is also important
here that atom detector must perceive any kind of polarization
of electromagnetic waves with equal susceptibility. The inten-
sity of light at the point of the atom detector is proportional
to its excited state population. Thus, the calculation of the
transmission coefficient, T , is reduced to the calculation of
the population of the excited state of the atom detector in two
cases: when the atom detector is behind the atomic ensemble
to get Pt and before the medium to get Pr . In the last case, we

063513-3



A. S. KURAPTSEV AND I. M. SOKOLOV PHYSICAL REVIEW A 105, 063513 (2022)

FIG. 2. Transmission depending on the length of atomic
medium in a waveguide. n = 2 × 10−3, 
 = γ0. (a) a = 4, b = 2;
(b) a = b = 8.

artificially exclude the primary radiation produced directly by
the laser source from the consideration.

III. RESULTS AND DISCUSSION

Figure 2 shows the transmission coefficient depending on
the length of atomic sample, T (L), for both cases of a single-
mode waveguide, Fig. 2(a), and a multimode one, Fig. 2(b).
The transverse sizes of a waveguide were chosen as a = 4,
b = 2 when plotting Fig. 2(a) and a = b = 8 when plotting
Fig. 2(b). 1/k0 = c/ω0 defines a unit of length. The mode
composition of a waveguide can be easily justified on the
basis of well-known expression for cutoff frequencies of dif-
ferent modes, ωc = c

√
(mπ/a)2 + (nπ/b)2, where m and n

are transverse indexes of a given mode. Thus, in the case of
a = 4, b = 2, only the TE10 mode can propagate in a waveg-
uide at long distances as an oscillating wave at the transition
frequency, while in the case of a = b = 8, there are 10 such
modes: TE10, TE01, TE20, TE02, TE11, TE12, TE21, TM11,
TM12, TM21.

Atomic density is chosen sufficiently small, n = 2 × 10−3,
so that cooperative effects in free space are negligible and, a
fortiori, Anderson localization of light in free space ensemble
is impossible. The detuning of the probe frequency related to

the resonant frequency of atomic transition, 
 = ωs − ω0, is
chosen 
 = γ0. Under a given condition, the mean free path
of a photon can be estimated on the basis of its free space
value,

lph = 1

nσ0
× 
2 + (γ0/2)2

(γ0/2)2
, (14)

where σ0 is single-atom resonant cross section, σ0 = 6π . Sub-
stituting the given values of n and 
 in Eq. (14), we get
lph ≈ 133. So, in order to study incoherent light transfer, we
should consider the values of L several times larger than this
estimation. That is exactly we do when plotting Fig. 2.

Figure 2(a) shows that in a single-mode waveguide, the de-
pendence T (L) is exponential, T (L) = T0 exp(−L/lloc). This
indicates on the regime of Anderson localization of light,
the parameter lloc means the localization length and T0 is
normalization parameter. For given parameters, T0 ≈ 0.43 and
lloc ≈ 235. With increasing in the transverse sizes of a waveg-
uide, a and b, both parameters T0 and lloc undergo complex
steplike changes. Sharp steps correspond to the changes in
the mode composition of a waveguide, e.g., when single-mode
waveguide turns out to be two-mode. With further increasing
in the transverse sizes, the nature of transmittance scaling
itself changes and ceases to be purely exponential. Thus, in
the case of the multimode waveguide, the dependence T (L)
becomes close to hyperbolic, T (L) ∝ 1/L, see Fig. 2(b). This
indicates on the regime of classical diffuse radiation transfer.

It can be also useful to plot the dependencies T (L) for
the intermediate cases of the few-mode waveguide. Figure 3
demonstrates this behavior for the case a = b = 4 (two-mode
waveguide, TE10 and TE01 modes are present) and for the case
a = b = 5 (four-mode waveguide, TE11 and TM11 modes add
to the previous ones). For clarity, we show ln(T ) in Fig. 3(a)
as well as T L in Fig. 3(b). It is hardly to identify the character
of the dependence T (L) for a few-mode waveguide definitely.
In our glance, for the two-mode case, it is closer to exponen-
tial law; whereas for the four-mode case, it is closer to the
hyperbolic one.

In addition, we have investigated the dependence of the
transmission coefficient on the transverse size of a waveguide
when the length of atomic medium is fixed, see Fig. 4. The
cross section of a waveguide is square, so a = b. In Fig. 4, we
observe complicated nonmonotomic behavior with extremely
sharp changes in the vicinities of the critical values of the
transverse size which correspond to the changes in the mode
composition of a waveguide (indicated by reference dashed
lines). We do not smooth the curve in order to better demon-
strate the difference in the gradient for vicinities of the critical
values of the transverse size and for the areas far from these
critical points.

The effect shown in Fig. 4 is much unexpected. In our
opinion, its qualitative explanation is connected with multiple
interference between different modes of the electromagnetic
field. It is especially important in the cases when the trans-
verse size of a waveguide, a, is close to the critical values
indicated by vertical dashed lines, because in the right side
of their vicinities we get new allowed modes with small z
projection of the wave vector. For these modes, interference
phenomena are especially important, because a photon un-
dergoes a huge number of reflections from the walls of a
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FIG. 3. Transmission depending on the length of atomic medium
in a waveguide. Solid curves refer to the case of two-mode waveguide
with sizes a = b = 4; dashed curves correspond to the four-mode
case when a = b = 5. Other parameters are the same as in Fig. 2.

waveguide. This interference can be constructive or destruc-
tive depending on a number of parameters; as a result we
observe the enhancement of transmission, e.g., near the criti-
cal points a = π

√
2 and a = 2π , or its suppression, like in the

right side of the vicinity of critical point a = π
√

5.

IV. CONCLUSION

In conclusion, we have calculated the transmission of dis-
ordered atomic ensemble in a waveguide on the basis of
self-consistent quantum microscopic treatment taking into ac-
count 3D arrangement of atoms and the vectorial nature of
the electromagnetic field. We have found that the nature of
light transport essentially depends on the transverse sizes of a
waveguide. A single-mode waveguide with small transverse

FIG. 4. The dependence of the transmission coefficient on the
transverse size of a waveguide with square cross section, a = b.
L = 1000, other parameters are the same as in Fig. 2. Vertical dashed
lines indicate critical values of the transverse size when new modes
appear: π

√
2 (permitting TE11 and TM11 modes); 2π (permitting

TE20 and TE02 modes); π
√

5 (permitting TE12, TE21, TM12, TM21

modes). Leftmost vertical dashed line indicates the minimal value of
the transverse size, π , which corresponds to the cutoff. The curve is
not smoothed, calculated points are indicated by circles.

sizes exhibits Anderson localization of light, which mani-
fests itself in exponential decrease of the transmittance with
increasing in the thickness of atomic sample. An increase
of the transverse sizes breaks exponential law, so that in a
few-mode waveguide we observe complicated dependence of
the transmission on the thickness due to complex interplay
between Anderson localization of light and diffuse radiation
transfer. With further increasing of the transverse sizes of
a waveguide, the transmission scaling obeys hyperbolic law,
which indicates on the regime of diffuse transfer in a multi-
mode waveguide.

Finally, we would like to note that light localization is a
rather general phenomena, taking place in a wide range of
physical systems. In the present paper, we discussed con-
ventional Anderson localization of light induced by disorder.
However, light localization can be obtained in different ways
besides Anderson scheme. One of examples is described in
Ref. [55], were the authors analyze a coherence-driven pho-
tonic nanosystem in the nonequilibrium configuration.
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