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Truncated optical Bessel modes
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An orthonormal set of optical vortex modes is put forward and identified as the polarized truncated optical
Bessel (TOB) set, which is endowed with orbital as well as spin angular momentum. Members of this set of
modes can be realized once a circular aperture of radius R is placed centrally in the path of an optical Bessel
beam of winding number �. For a fixed power input P , the properties of the TOB set, namely, its helicity, energy,
linear momentum, and spin and orbital angular momenta, are evaluated, and their main features are explored.
The similarities and differences between the properties of the TOB mode set and those of the Laguerre-Gaussian
set are pointed out and discussed.
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I. INTRODUCTION

Free-space optical Bessel modes form one class of vortex
modes characterized by orbital angular momentum as well as
spin. Their electric field is an exact solution of the Helmholtz
equation ∇2E + (ω2/c2)E = 0. In cylindrical polar coordi-
nates r = (ρ, φ, z) the electric field of the Bessel mode has
the form

E(r, t ) = E0êJ�(κρ)ei�φeikzze−iωt . (1)

Here the unit vector ê represents wave polarization, E0 is a
normalization factor, and J� is the Bessel function of the first
kind of order � and frequency ω; the wave numbers kz and κ

are the axial (longitudinal) and radial (transverse) components
of the total wave vector k such that k = √

(k2
z + κ2). As a

form of structured light [1], the optical Bessel modes have
received considerable attention both theoretically and experi-
mentally, with a number of prominent applications, including
the controlled manipulation of small particles [2–5].

It is, however, well understood that such an unbounded
“free-space” optical Bessel mode J� of frequency ω propa-
gating along the +z axis with an axial wave number kz is not
realizable in practice since it would need an infinite amount
of energy. One method to realize it, albeit approximately, is
to use an aperture of radius R which is large relative to the
wavelength and so acts to isolate a sizable central part of the
beam cross section.

In this paper we are concerned with a scenario in which
the aperture radius R is so chosen that the Bessel argument κρ

at ρ = R as in Eq. (1) coincides with one of the zeros λ of
the Bessel function. The concept of an aperture introduced in
this manner first featured in the case of Bessel electron vortex
waves in an electron microscope [6]. Our optical Bessel mode
is subject to a circular aperture of radius R and acquires a well-
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defined transverse wave number κ = λ/R, so that J|�|(κR) =
J|�|(λ) = 0. A zero denoted as λp� is the (p + 1)th zero of
the Bessel function of order �, where p = 0, 1, 2, . . . is a
radial index and κ p� = λp�/R is the transverse (in-plane) wave
number. Thus, the truncated optical Bessel (TOB) modes are
characterized by two discrete indices � and p, resembling in
this way the two indices of Laguerre-Gaussian modes.

The optical field produced in the manner described above
is derivable from a vector potential Ap�(r, t ), which, in cylin-
drical polar coordinates, has the form

Ap�(r, t ) = (αx̂ + β ŷ)Fp�(ρ, φ)e(ikzz−iωt ), (2)

where α and β are, in general, complex constants. The am-
plitude function Fp�(ρ, φ) conforming with the requirements
whereby the Bessel argument κ p�ρ at ρ = R coincides with
one of the zeros λp� of the Bessel function is given by

Fp�(ρ, φ) = E0J|�|(κ p�ρ)ei�φ (ρ � R), (3)

Fp�(ρ, φ) = 0 (ρ > R), (4)

where E0 is an overall normalization factor which is fixed by
the requirement that its value is consistent with an input power
of known magnitude P . The members of this set of optical
vortex modes can be called truncated optical Bessel modes.

The magnetic field of the representative TOB mode
emerges from ∇ × A in the exact form

B = ikz(αŷ − βx̂)Feikzz + ẑ
(

β
∂F
∂x

− α
∂F
∂y

)
eikzz, (5)

where we have dropped the mode label p� from F and κ

and do not show the time exponential exp(−iωt ) for ease of
notation; these can be restored where required. It is easy to
check that this magnetic field satisfies ∇ · B = 0. The asso-
ciated electric field must follow from the main requirement
of duality such that E is related to B via the Maxwell equa-
tion for a monochromatic field, namely, E = (ic2/ω)∇ × B.
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FIG. 1. The radial variations of the amplitude function for three
members of the TOB set for which � = 1 and p = 0, 1, 2. Note that
all TOB mode functions vanish at ρ = R, coinciding with λp�, the
(p + 1)th zero of the Bessel function.

Consistency demands that the electric field must be of the
form

E = ickz(αx̂ + β ŷ)Feikzz − c

{
α

∂F
∂x

+ β
∂F
∂y

}
eikzz ẑ. (6)

This field satisfies ∇ · E = 0. Also, it can be verified, for
consistency, that the exact field B, Eq. (5), emerging as ∇ × A
must also emerge from E in Eq. (6) by application of the
second Maxwell equation for a monochromatic field, namely,
B = (1/iω)∇ × E. Note that both E and B have z (longi-
tudinal) components in addition to the transverse x and y
components.

It is straightforward to ensure that the set of TOB modes
defined by Eqs. (3) and (4), denoted as

{Fp�(ρ, φ)}, |�| = 0, 1, 2, . . . , p = 0, 1, 2, . . . ,

forms a complete orthonormal set of functions in the aperture
plane. The relevant integrals needed for orthonormalization
are

1
2π

∫ 2π

0 ei�φe−i�′φdφ = δ��′, (7)∫ R
0 J|�|(κ p�ρ)J|�′|(κ p′�′

ρ)ρdρ = R2

2 [J|�|+1(λp�)]2δ��′δpp′ . (8)

The normalization factor E0 is fixed in terms of the applied
power P . Appendix A shows the details and supplies the result
as follows:

E2
0 = 2μ0P

cπk2
z R2[J|�|+1(λp�)]2

. (9)

It is also clear that these TOB modes are eigenfunctions
of the z component of the orbital-angular-momentum oper-
ator L̂z = −ih̄∂/∂φ with eigenvalues h̄� and, like free-space
Bessel modes, they are orbital-angular-momentum modes. For
illustration, Fig. 1 displays the radial variations of the three
TOB modes for which � = +1 but p = 0, 1, 2.

As is the case for all electromagnetic fields satisfying
duality within Maxwell’s equations, the TOB modes are char-
acterized by the main properties, namely, optical helicity,
energy, linear momentum, and spin and angular momentum.
Besides identifying the set of the TOB modes, as detailed
above, the goal of this paper is to explore these proper-

FIG. 2. The radial variations of the helicity density (in Jsm−3)
displayed by the TOB modes p� with � = ±1 for the three cases in
which σ = 0, ±1. (a) and (b) refer to the cases for which p = 0,
but with � = 1 and � = −1, respectively. (c) and (d) refer to the
cases for which p = 1, but with � = 1 and � = −1, respectively.
Note that for the cases where σ = ±1, the helicity density does not
vanish at ρ = R. This can be traced to the contribution of the middle
term in Eq. (26), which depends on the first derivative of the Bessel
function, which does not vanish at ρ = R. Note also how the choices
of the signs of σ and � lead to different shapes of the helicity-density
distributions.

ties specifically for the TOB modes. We first consider the
cycle-averaged densities in turn and evaluate them specifically
for a general TOB mode, displaying the spatial distributions
in the aperture plane and identifying contributions from the
transverse- and longitudinal-field components. The next task
for each property is to integrate the respective densities over
the aperture plane, thereby deriving the total respective mode
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properties. In the Sec. VIII we summarize the main results of
the work and point out their main features relative to other
vortex modes.

II. CYCLE-AVERAGED DENSITIES

With the electric and magnetic fields of the truncated
Bessel mode as detailed in Eqs. (2) to (6), we can now pro-
ceed (i) to evaluate the cycle-averaged helicity density η̄, the
Poynting vector w̄, the linear momentum density π̄, the optical
spin angular momentum (SAM) density s̄, and the angular
momentum (AM) density j̄ of a polarized truncated optical
Bessel mode; (ii) to evaluate the cycle average per unit length
of the total helicity, total energy, total SAM, and total angular
momentum as space integrals over the x-y plane of the respec-
tive densities; and (iii) finally, to discuss the results obtained,
with special emphasis on the roles of the wave polarization
and vortex contributions to the properties.

The cycle-averaged densities are defined as follows:

η̄(r) = − ε0c
2ω

Im[E∗ · B] (helicity density), (10)

w̄ = 1
2μ0

Re[E∗ × B] (Poynting vector), (11)

π̄ = 1
c2 w̄ (linear momentum density), (12)

s̄ = ε0
ω

Im[E∗ × E] (SAM density), (13)

j̄ = r × π̄ (AM density), (14)

where Re[·] and Im[·] stand for the real and imaginary parts
and the asterisk (*) in E∗ stands for the complex conjugate of
E. As stated above, we deal in turn with the evaluations of the
above densities specifically in relation to the TOB modes.

III. HELICITY OF TOB MODES

The cycle-averaged helicity density η̄ of the TOB mode is
as defined in Eq. (10). The helicity as one of the main prop-
erties of an optical mode has attracted much interest recently
[7–12], and more recent accounts have revived interest in this
beam property and its relation to optical spin [13–19].

Substituting the electric and magnetic fields in Eqs. (5) and
(6), we have for the dot product E∗ · B

E∗ · B = ck2(αβ∗ − βα∗)|F |2 − c

{
α∗

(
∂F
∂x

)∗
+ β∗

(
∂F
∂y

)∗}(
β

∂F
∂x

− α
∂F
∂y

)
, (15)

where, for ease of notation, we do not show the labels p� and the argument ρ, φ in the field function F , as defined in Eq. (3).
In Eq. (15) we identify the derivative terms as contributions to the helicity density due to the z components (longitudinal
components). Multiplying out in the second term, we obtain

E∗ · B = ck2(αβ∗ − βα∗)|F |2 − c

{
βα∗

∣∣∣∣∂F∂x

∣∣∣∣
2

− αβ∗
∣∣∣∣∂F∂y

∣∣∣∣
2

+ |β|2
(

∂F
∂x

)(
∂F
∂y

)∗
− |α|2

(
∂F
∂x

)∗(
∂F
∂y

)}
. (16)

As F is a function of (ρ, φ), it is straightforward to evaluate
the x and y derivatives. We obtain, not showing the labels (p�)
in κ , (

∂F
∂x

)
= (Q cos φ − iT sin φ) (17)

and (
∂F
∂y

)
= (Q sin φ + iT cos φ), (18)

where Q and T are given by

Q = E0κJ ′
|�|e

i�φ, T = E0
�

ρ
J|�|ei�φ, (19)

where J ′
|�|(s) is the first derivative d[J|�|(s)]/ds. Without loss

of generality we now restrict considerations to the cases in
which the complex parameters α and β conform with the
following identities:

|α|2 + |β|2 = 1, αβ∗ − βα∗ = 2iIm[αβ∗]. (20)

So we then have

σ = i(αβ∗ − α∗β ) = 2αβ ′, (21)

where we have set β = iβ ′. We shall consider two cases.
(a) The linear polarization case is as follows:

α = 1, β = 0, so σ = 0. (22)

(b) The circular polarization case is such that

α = 1/
√

2, β = i/
√

2, so σ �= 0. (23)

We now explore the helicity properties of cases (a) and (b).
Continuing with the evaluation of the general helicity density,
we obtain for the dot product E∗ · B after some algebra

E∗ · B = −iσck2
z |J|�||2 − c

{
1

2
iσ (Q2 + T 2) − iQT

}
. (24)

Thus, we find for the cycle-averaged helicity density

η̄ = E2
0
ε0c2

4ω

{
σ
(
2k2

z |J|�||2 + Q2 + T 2
) − 2QT

}
. (25)

The first term is the σ -dependent helicity density of the
transverse-field components, and we can now see that the
longitudinal fields are responsible for adding the terms (Q2 +
T 2) to the σ -dependent part of the helicity density and they
give rise to a σ -independent, but �-dependent, contribution to
the density in the term −2QT . It is convenient at this stage to
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substitute for T and obtain

η̄ = E2
0
ε0c2

4ω

{
σ

[
2k2

z |J|�||2 + (κJ ′
|�|)

2 +
(

�

ρ
|J|�||

)2]

− �

(
2κJ ′

|�|J|�|
ρ

)}
, (26)

where the arguments in all functions are (κ p�ρ). This is the
general form of the helicity density of the circularly polar-
ized TOB mode, as defined above. Recall that the mode is
characterized by the winding number � and radial number p.
The helicity density consists of two distinct contributions: the
first, denoted η̄σ , is associated with wave polarization and is
proportional to σ . The second, denoted η̄�,p,0, is given by the
second term. This is a σ -independent contribution associated
with the orbital-angular-momentum vortex. Characteristically,
it is proportional to the vortex winding number �. Thus, we
can write the helicity density of the most general TOB beam
as the sum of the two contributions as follows:

η̄ = η̄σ + η̄�,p,0, (27)

where η̄σ is the expression in Eq. (26) that is proportional to
σ . We have

η̄σ = E2
0
ε0c2

4ω
σ

[
2k2

z |J|�||2 + κ2|J ′
|�||2 +

( |�|
ρ

|J|�||
)2]

. (28)

The rest of the expression in Eq. (26) defines η̄�,p,0,

η̄�,p,0 = −�E2
0
ε0c2

4ω

(
2κJ ′

|�|J|�|
ρ

)

= −�E2
0
ε0c2

4ωρ
κJ|�|{J|�|−1 − J|�|+1}. (29)

The helicity-density term η̄�,p,0 is nonzero when σ = 0,
i.e., for a linearly polarized TOB mode. This σ -independent
helicity density stems only from the longitudinal-field com-
ponents and is directly proportional to the winding number
� and changes sign when the winding number changes sign.
For example, the helicity-density distributions η̄1,0,0(ρ) and
η̄−1,0,0(ρ) of two linearly polarized TOB modes which differ
only in their winding numbers � are such that η̄1,0,0(ρ) =
−η̄−1,0,0(ρ) for all radial positions ρ in the aperture plane.

This is shown clearly by the orange dashed curves in Figs. 2(a)
and 2(b), and the same applies for the cases for the orange
dashed curves in Figs. 2(c) and 2(d) for which p = 1. As the
cycle-averaged helicity density is directly proportional to the
chirality density, this change in sign confirms that linearly
polarized TOB modes are characterized by a handedness, i.e.,
exhibit a chiral behavior [20].

IV. INTEGRATED HELICITY

A. Linear polarization

Note that the helicity-density distribution is, in general,
nonzero at points in the aperture plane. Using standard inte-
grals, we obtain the total helicity per unit length for a linearly
polarized TOB mode (σ = 0). Thus, we have

C̄�,p,0 = ∫ 2π

0 dφ
∫ R

0 ρ dρ η̄�,p,0

= −�E2
0

ε0c2

4ω

∫ 2π

0 dφ
∫ R

0

(
2κ p�J|�|(κ p�ρ)J ′

|�|(κ
p�ρ)

ρ

)
ρ dρ. (30)

The integral can be dealt with as follows. Let x = κ p�ρ, and
we have κ p�R = λp�; then

κ p�
∫ R

0 J|�|(κ p�ρ)J ′
|�|(κ

p�ρ)dρ = ∫ λp�

0 J|�|(x)J ′
|�|(x)dx

= 1
2

∫ λp�

0
d
dx [J|�|(x)]2dx = [J|�|(λp�)]2/2 = 0. (31)

Thus, we have reached the conclusion that, although the he-
licity density of a linearly polarized TOB mode has a nonzero
distribution which exhibits chirality, its space integral C̄�,p,0

vanishes identically for all TOB modes. The statement that
C̄�,p,0 = 0 is the first of our main results in this paper. It
asserts that without optical spin an optical vortex alone cannot
produce total helicity, even though it exhibits helicity-density
distributions, which in turn indicates that on radial integration
the different parts of the density distribution are canceled out
by other parts. A similar observation in the case of Laguerre-
Gaussian modes was pointed out recently [19].

B. CIRCULAR POLARIZATION

The total helicity for a circularly polarized TOB is obtained
by integrating over the density in Eq. (26). We have, restoring
the notation in the Bessel functions,

C�p,σ=E2
0
ε0c2

4ω

∫ 2π

0
dφ

∫ R

0

{
σ

[
2k2

z |J|�|(κ p�ρ)|2+[κ p�J ′
|�|(κ

p�ρ)]2 +
(

�

ρ
|J|�|(κ p�ρ)|

)2]
− �

(
2κ p�J|�|(κ p�ρ)J ′

|�|(κ
p�ρ)

ρ

)}
ρ dρ.

(32)
As shown in Eq. (31) integrating the last term in Eq. (32) gives zero. Dropping the last term, we have for the total helicity

C�p,σ = σE2
0
ε0c2

4ω

∫ 2π

0
dφ

∫ R

0

{
2k2

z |J|�|(κ p�ρ)|2 + [κ p�J ′
|�|(κ

p�ρ)]2 +
(

�

ρ
|J|�|(κ p�ρ)|

)2}
ρ dρ. (33)

The evaluation of Eq. (33) is detailed in Appendix C. The
result is as follows:

C�p,σ = σE2
0
πε0c2

2ω
{I1 + (I2 + I3)}, (34)

where I1, I2, and I3 are, respectively, the first, second, and
third integrals in Eq. (33). Appendix C supplies the results
for these integrals. We find on substitution from Eq. (C8)

C�p,σ = σE2
0

πε0c2k2
z R2

2ω

{
1 + λ2

p�

2k2
z R2

}
[J|�|+1(λp�)]2. (35)
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Substituting E0 from Eq. (A5), we can write the total helicity
per unit length as

C�,p,σ = σL0

{
1 + λ2

p�

2k2
z R2

}
, (36)

where L0 has the dimensions of angular momentum per unit
length,

L0 = P
ωc

. (37)

We identify Eq. (36) as the second of our main results. It
is easy to check that for a large R → ∞ the second term
in Eq. (36) is zero and total helicity becomes C�,p,σ = σL0,
which coincides with the helicity of a free Bessel mode. We
show below that the total axial spin angular momentum of
the TOB mode is S̄z = σL0. This suggests that the helicity for
the TOB mode as given by Eq. (36) differs from that of the
free-space Bessel mode by the additional second term, so it
no longer coincides with the optical spin.

V. ENERGY MOMENTUM OF THE TOB MODE

The components of the cycle-averaged Poynting vector w̄
are formally given by

w̄i = 1

2μ0
εi jkRe[E∗

j Bk]. (38)

Substituting the fields in Eqs. (5) and (6) and making use of
the Cartesian derivatives in Eqs. (17), (18), and (19), we find
after some algebra

w̄x = − c

2μ0

{
kz�

ρ
sin φ|J|�||2 − 2ikzαβ∗J|�|Q sin φ

}
, (39)

w̄y = c

2μ0

{
kz�

ρ
cos φ|J|�||2 + 2ikzα

∗βJ|�|Q cos φ

}
, (40)

w̄z = c

2μ0
k2

z |J|�||2E2
0 , (41)

where we have assumed circular polarization and so have
made use of the relations in Eqs. (20) and (21).

The linear-momentum-density vector π̄ is given by
Eq. (12), with components proportional to the Poynting-vector
components, so they can readily be deduced from the compo-
nents in Eqs. (39) to (41). These π̄ components enable the
evaluation of the total angular momentum, as we show in the
next section.

The cycle-averaged energy density is obtained on multiply-
ing the z component of the linear momentum density by the
velocity of light, so the TOB mode energy per unit length is
the integral over the aperture plane. We have

Ū =
∫ 2π

0
dφ

∫ R

0

[
c

w̄z

c2

]
ρ dρ. (42)

Substituting w̄z in Eq. (41), we find

Ū = πk2
z E2

0

cμ0

∫ R

0
|J|�|(κ p�ρ)|2ρ dρ, (43)

which yields

Ū = E2
0

πck2
z R2

2cμ0
[J|�|+1(λp�)]2 (44)

Substituting E0 from Eq. (A5), we find in terms of the input
power P

Ū = P
c

, (45)

which has the dimensions of energy per unit length.

VI. ANGULAR MOMENTUM OF THE TOB MODE

The cycle-averaged angular-momentum-density vector of
the TOB mode is given by Eq. (14), which is

j̄ = r × w̄/c2 = 1

2μ0c2
r × Re[E∗ × B] (46)

The three components of the angular-momentum-density vec-
tor can be evaluated on the focal plane by substituting directly
from Eqs. (39) to (41). We obtain for the x component

j̄x = ρ sin φw̄z = ck2
z E2

0

2μ0
|J|�||2ρ sin φ. (47)

Similarly, we have for the y component

j̄y = −ρ cos φw̄z = −ck2
z E2

0

2μ0
|J|�||2ρ cos φ, (48)

and we note that these transverse components are φ depen-
dent. Finally, we evaluate the z component and obtain, using
Eqs. (39) and (40),

j̄z = E2
0

ckz

2μ0c2
{�|J|�||2 − ρσκJ|�|J ′

|�|}. (49)

The total AM per unit length of the three angular momentum
components is defined as the two-dimensional space integral
of the respective densities. It is easy to see that on integrating
j̄x and j̄y we obtain zero in each case by virtue of a vanishing
φ integral. We therefore write

J̄x = 0 = J̄y. (50)

Thus, we conclude that although the transverse angular
momentum displays density distributions, their total space
integrals vanish identically. However, the z component is non-
vanishing on integration. We have, restoring the notation on
the Bessel functions,

J̄z = E2
0

ckzπ

μ0c2

∫ R

0
{�|J|�|(κ p�ρ)|2

− ρσκ p�J|�|(κ p�ρ)J ′
|�|(κ

p�ρ)}ρ dρ. (51)

The evaluations of the integrals are shown in Appendix B. We
have, with κ p� = λp�/R,

J̄z = E2
0

ckzπ

μ0c2

{
�I1 − σ

λp�

R
I2

}

= R2

2
E2

0
ckzπ

μ0c2
[J�+1(λp�)]2{� + σ }

= E2
0
πckzR2

2μ0c2
[J�+1(λp�)]2{� + σ }. (52)

Substituting for E0 from Eq. (A5) we have

J̄z = πckzR2

2μ0c2
[J�+1(λp�)]2{� + σ } 2μ0P

cπk2
z R2[J�+1(λp�)]2

. (53)
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We obtain, finally, on performing the cancellations

J̄z = P
c2kz

{� + σ } = L̃{� + σ }, (54)

where L̃ has the dimensions of angular momentum per unit
length. We have, using ω = ck and kz =

√
k2 − (κ p�)2,

L̃ = L0/
√

1 − (κ p�)2c2/ω2, (55)

where

L0 = P
ωc

. (56)

The ratio of angular momentum per unit length and energy per
unit length follows immediately from Eqs. (54) and (45),

J̄z

Ū
= {� + σ }P/(kzc2)

P/c
= � + σ

ω
√

1 − (κ p�)2c2/ω2
. (57)

This result differs from the corresponding result given by
Allen et al. [21] by the square-root-factor term in the de-
nominator which depends on κ p� = λp�/R. Thus, for large R

we recover the standard result (� + σ )/ω. The total-angular-
momentum axial component per unit length of the TOB mode
is the sum (� + σ ) multiplied by the angular momentum factor
L̃, which differs from L0 by the same square-root factor. The
constant L0 enters the helicity and, also enters the axial spin
angular momentum of the TOB mode. It follows that the
spin and orbital angular momenta are coupled for the TOB
mode, and furthermore, as we have shown above, the helicity
does not coincide with the axial spin angular momentum. The
square-root factor in the denominator of Eq. (54) suggests that
the axial angular momentum increases with diminishing R.
This result may well be amenable to experimental verification.

VII. SPIN ANGULAR MOMENTUM

The cycle-averaged optical spin-angular-momentum den-
sity is as defined in Eq. (13),

s̄�,p,σ = ε0

2ω
Im[E∗ × E], (58)

where the TOB mode electric field is as given by Eq. (6). All
three components of s̄�,p,σ can be evaluated. Consider the x
component

[E∗ × E]x = (E∗
y Ez − E∗

z Ey)

= ic2kz

{
β∗αF∗

(
∂F
∂x

)
+ α∗βF

(
∂F
∂x

)∗}
+ ic2kz|β|2

{
F∗

(
∂F
∂y

)
+ F

(
∂F
∂y

)∗}
. (59)

Substituting the derivatives in Eqs. (17) and (18), we find for the x component of the SAM density

s̄x = ε0

2ω
Im[E∗ × E]x

= −c2kzε0

2ω
E2

0

{
σ

�

ρ
|J|�||2 − κJ ′

|�|J|�|

}
sin φ. (60)

The y component of the SAM density follows in a similar fashion. We have

[E∗ × E]y = E∗
z Ex − E∗

x Ez = −ic2kz

{
αβ∗F

(
∂F
∂y

)∗
+ α∗βF∗

(
∂F
∂y

)
+ |α|2

[
F

(
∂F
∂x

)∗
+ F∗

(
∂F
∂x

)]}
. (61)

Then the y component of the SAM density is

s̄y = ε0

2ω
Im[E∗ × E]y

= −c2kzε0

2ω
E2

0

{
σ

�

ρ
|J|�||2 − κJ ′

|�|J|�|

}
cos φ. (62)

It is interesting to note that the transverse density compo-
nents s̄x and s̄y both display distributions in the focal plane
and each shows a spin-orbit term. However, all terms in these
SAM densities turn out to be proportional to the sine or cosine
of the azimuthal coordinate φ. As we show below, the space
integrals of these transverse density components both vanish
identically because of the angular integral.

Finally, we consider the SAM z component. We have

[E∗ × E]z = (E∗
x Ey − E∗

y Ex )

= k2(α∗β − αβ∗) = iσk2|F |2, (63)

so that the z component of the SAM density is

s̄z = ε0

2ω
Im[E∗ × E]z = k2ε0c2

2ω
σ |F |2. (64)

The total (integrated) SAM density components are obtained
by integration over the aperture plane. We have for the trans-
verse components at once

S̄x = 0 = S̄y. (65)

The vanishing of S̄x and S̄y follows the pattern of the trans-
verse components of the angular momentum, as discussed
earlier [Eq. (50)]. As in the case of angular momentum, the
only surviving SAM component is the z component, which
yields, on integrating the z component of the SAM density,

S̄z = 2E2
0 π

k2
z ε0c2

2ω
σ

∫ R

0
|J|�|(κ p�ρ)|2ρdρ. (66)
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We proceed to evaluate S̄z by making use of the standard
integrals∫ R

0
J|�|(κ p�ρ)J|�|(κ p′�ρ)ρ dρ = R2 δpp′

2
[J|�|+1(λp�)]2. (67)

We then have

S̄z = 2E2
0 π

k2
z ε0c2

2ω
σ

R2

2
[J|�|+1(λp�)]2, (68)

which is

S̄z = σE2
0

πk2
z R2ε0c2

2ω
[J|�|+1(λp�)]2. (69)

But from Appendix A we have for E0

E2
0 = 2μ0P

cπk2
z R2[J|�|+1(λp�)]2

, (70)

which leads, after cancellations, to the cycle-averaged axial
component of SAM,

S̄z = σ

( P
ωc

)
= σL0, (71)

and we note the same overall factor L0 in the optical spin
angular momentum. As the result in Eq. (71) is independent of
the aperture radius R, it applies also to the free-space Bessel
modes. Furthermore, the result is the same as for the total
SAM of a Laguerre-Gaussian mode.

VIII. COMMENTS AND CONCLUSIONS

We have focused on the electromagnetic modes arising
from the physical constraints due to the application of an aper-
ture on Bessel modes, and we have compared and contrasted
their properties with those of Laguerre-Gaussian modes. The
use of an aperture is commonplace in beam-shaping tech-
niques. Most laser systems operate in their fundamental mode,
and typically, spatial light modulators (SLMs) and other
beam-shaping devices are used. In higher-power applications,
beam shaping using an SLM of a finite size would lead to
a low power efficiency. Truncation allows a uniform beam
input in order to maximize the power throughput of the SLM
without damaging it. Truncation also arises naturally as in
biological experiments where small holes are used to isolate
the excitation volume of a broad beam illumination in a single
molecular fluorescence experiment.

Our aim here has been to study the properties of optical
modes which arise when Bessel modes are subject to an
aperture which is chosen so that the radius of the aperture
coincides with a zero of the mode Bessel function, leading
to what we termed truncated Bessel modes. We pointed out
that the TOB modes form an orthonormal set of modes in the
aperture plane and proceeded to evaluate in turn their optical
properties.

One of our main results states that the helicity C̄�,p,0 given
by Eq. (31) is identically zero for all linearly polarized TOB
modes. This asserts that with σ = 0 any linearly polarized
optical TOB mode alone cannot give rise to a nonzero to-
tal helicity, even though it exhibits nonzero helicity-density
distributions. This in turn indicates that on radial integration
the different parts of the density distribution are canceled out

by other parts. A similar observation in the case of Laguerre-
Gaussian modes was pointed out recently [19].

Our second main result is stated in Eq. (36) for the total
helicity when σ �= 0. It is easy to check that for a large
R → ∞ the second term in Eq. (36) is zero and total helicity
becomes C̄�,p,σ = σL0, which coincides with the helicity of a
free Bessel mode. We have also shown that the total optical
axial spin angular momentum of the TOB mode is S̄z = σL0.
This suggests that the helicity for the TOB mode as given by
Eq. (36) differs from that of the free-space Bessel mode by
the additional second term and it no longer coincides with the
axial optical spin angular momentum.

In our third main set of results in Eqs. (54) to (57), we
have shown that the ratio of total angular momentum to en-
ergy per unit length differs from the corresponding standard
result given by Allen et al. [21] by a square-root-factor term
which depends on κ p� = λp�/R. Thus, for large R we recover
the standard result (� + σ )/ω. The total-angular-momentum
axial component per unit length of the TOB mode is the
sum (� + σ ) multiplied by the angular momentum factor L̃,
which differs by the same square-root factor from L0 which
enters the helicity and, also enters the axial spin angular
momentum of the TOB mode. It follows that the spin and
orbital angular momenta are coupled for the TOB mode, and
as we have shown above, the helicity does not coincide with
the axial spin angular momentum. The square-root factor in
the denominator of Eq. (54) suggests that the axial angular
momentum increases with diminishing R. This result may
well be amenable to experimental verification.

Although we have shown that the total (integrated) trans-
verse components of the SAM (namely, S̄x and S̄y) and the
transverse components of the optical angular momentum J̄x

and J̄y all vanish identically and so could all be understood to
have no role to play in the vortex beam characteristics, there
has been considerable emphasis recently on the significant
roles which the nonvanishing transverse density distributions
s̄x and s̄y and j̄x and j̄y of twisted light play in a number of
scenarios. Such densities are considered to lead to various
applications, including optical chirality in the interaction with
chiral matter, optical sensing of biosystems, near-field mi-
croscopy, plasmonic devices, and the manipulation of atoms
and molecules as well as the control of bulk matter at the
nanoscale [22,23].

The significance of the total helicity result of the TOB
mode, namely, Eq. (36), is worth a separate comment. The
second term in the brackets in this equation stems directly
from the presence of the longitudinal-field components. This
term increases with diminishing radius R. For a TOB mode of
given �, p this term becomes greater than or equal to unity for
R values satisfying

λp� �
√

2kzR = 2
√

2π
R

�
, (72)

where � is the wavelength. As an example we consider the
case � = 1. Table I shows the zeros of the TOB modes for
which � = 1. Clearly, as the TOB radial number p increases,
the second term in Eq. (36) can equal or exceed unity when the
Bessel zero equals or exceeds the right-hand side of Eq. (72)
and the value of the helicity more than doubles in magnitude.
This is a manifestation of the inclusion of the longitudinal-
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TABLE I. The (p + 1)th zeros of the � = 1 Bessel function J1(s)
for p = 0 to 4.

(p + 1, � = 1) λp1

1 3.83
2 7.01
3 10.17
4 13.32
5 16.47
· · · · · ·

field components, and since it is � dependent, the second
helicity term is essentially a spin-orbit term which vanishes
when � = 0.

Finally, it should be remembered that we have focused
only on the beam properties in the focal plane at z = 0. The
question arises as to what properties the beam is destined to
have in other planes with z > 0 along the axis as influenced
by diffraction. However, an investigation of the effects of the
beam propagation on the beam properties, albeit interesting, is
beyond the scope of this paper, but in general, we expect the
densities of the helicity, spin, orbital, and linear momenta of
the truncated Bessel beam to change as the diffraction alters
the beam profile. In contrast, we expect the corresponding
integrated (total) properties will not change. This issue is not
considered any further in this paper.
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APPENDIX A: THE NORMALIZATION FACTOR E0

The overall normalization factor which appears in the form
of the truncated optical Bessel mode is evaluated in terms
of the average power P , which is the surface integral of the
average Poynting vector E∗ × B/2μ0 over the aperture plane.
The surface element is d� = d�ẑ, so only the z component
of the Poynting vector enters the integration,

P = 1

2μ0

∫ 2π

0
dφ

∫ R

0
|(E∗ × B)z|ρdρ. (A1)

The z component of the Poynting vector is given by

1

2μ0
Re[E∗ × B]z = cE2

0

2μ0
k2

z |J|�||2. (A2)

Thus, we have

P = E2
0

(
πck2

z

μ0

) ∫ R

0
|J|�|(κρ)|2ρdρ. (A3)

We can then make use of the standard integral∫ R

0
J|�|(κ p�ρ)J|�|(κ p′�ρ)ρ dρ = R2 δpp′

2
[J|�|+1(λp�)]2 (A4)

and so obtain, finally, for the normalization factor E0

E2
0 = 2μ0P

cπk2
z R2[J|�|+1(λp�)]2

. (A5)

It is straightforward to check that the dimensions of E0 are
consistent with Eq. (3).

APPENDIX B: EVALUATION OF EQUATION (51)

The relevant integrals are as follows. For I1 we have

I1 =
∫ R

0
[J|�|(κ p�ρ)]2ρ dρ. (B1)

Recall that κp� = λp�/R. Thus, we have

I1 =
∫ R

0
[J|�|(λp�ρ/R)]2ρ dρ = R2

2
[J|�|+1(λp�)]2. (B2)

Next, we deal with I2, which is

I2 =
∫ R

0
J|�|(κ p�ρ)J ′

|�|(κ
p�ρ)ρ2 dρ. (B3)

It is convenient to write κ p�ρ = x; then ρ = x(R/λp�). The
integral becomes

I2 = R3

(λp�)3

∫ λp�

0
J|�|(x)J ′

|�|(x)x2 dx

= − R3

2λp�
[J�+1(λp�)]2. (B4)

APPENDIX C: EVALUATION OF EQUATION (32)

The relevant integrals are

I1 =
∫ R

0

{
2k2

z |J|�|(κ p�ρ)|2}ρ dρ, (C1)

I2 =
∫ R

0
[κ p�J ′

|�|(κ
p�ρ)]2ρ dρ, (C2)

I3 =
∫ R

0

(
�

ρ
|J|�|(κ p�ρ)|

)2

ρ dρ. (C3)

We deal with these integrals in turn. For I1 we make use of the
standard integral in Eq. (C4). We have

I1 = k2
z R2[J|�|+1(λp�)]2. (C4)

Next, consider I2. We have

I2 = (κ p�)2
∫ R

0
[J ′

|�|(κ
p�ρ)]2ρ dρ

= 1

4
(κ p�)2

∫ R

0
[J|�|−1(x) − J|�|+1(x)]2ρ dρ. (C5)

We proceed to consider I3. We have, using the identity 2�
x =

[J|�|−1(x) + J|�|+1(x)], with x = κ p�ρ,

I3 =
∫ R

0

(
�

ρ
|J|�|(κ p�ρ)|

)2

ρ dρ

= 1

4
(κ p�)2

∫ R

0
[J|�|−1(κ p�ρ) + J|�|+1(κ p�ρ)]2ρ dρ.

(C6)
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We can now combine the two integrals I2 + I3 to obtain

(I2 + I3) = 1

2
(κ p�)2

∫ R

0
{[J|�|−1(κ p�ρ)]2

+ [J|�|+1(κ p�ρ)]2}ρ dρ

= 1

2
λ2

p�[J|�|+1(λp�)]2. (C7)

The sum of integrals is then given by

I1 + (I2 + I3) =
{

k2
z R2 + 1

2
λ2

p�

}
[J|�|+1(λp�)]2. (C8)
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