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Coupling of magnetic and optomechanical structuring in cold atoms
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Self-organized phases in cold atoms as a result of light-mediated interactions can be induced by coupling
to internal or external degrees of the atoms. There has been growing interest in the interaction of internal spin
degrees of freedom with the optomechanical dynamics of the external center-of-mass motion. We present a
model for the coupling between magnetic and optomechanical structuring in a J = 1/2 → J ′ = 3/2 system in a
single-mirror feedback scheme, which is representative of a larger class of diffractively coupled systems such as
longitudinally pumped cavities and counterpropagating-beam schemes. For negative detunings, a linear stability
analysis demonstrates that optical pumping and optomechanical driving cooperate to create magnetic ordering.
However, for long-period transmission gratings the magnetic driving will strongly dominate the optomechanical
driving, unless one operates very close to the existence range of the magnetic instability. At small lattice periods,
in particular at wavelength-scale periods, the optomechanical driving will dominate.
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I. INTRODUCTION

Recently, there has been interest in self-organization in
cold atoms in transversely pumped cavities [1–11] and via
diffractive coupling in longitudinally pumped cavities [12],
counterpropagating-beam schemes [13–16], and single-mirror
feedback schemes [17–21]. In these schemes coupled light-
matter structures are created via optical nonlinearities and the
back-action of the structured matter on light. In this paper, we
concentrate on single-mirror feedback schemes, but we antici-
pate that the main conclusions are also valid for other systems.
In the single-mirror feedback system (see Fig. 1), effective
coupling between atoms is provided by retroreflecting back
a laser beam which initially interacted with the atoms. Any
spatial structure within the atomic sample will influence the
refractive index of the cloud and imprint onto the phase of the
transmitted light. Through diffractive dephasing in the feed-
back loop the retroreflected light will acquire a corresponding
structure which will sustain the atomic structure (see [22]
for a recent review). The spontaneous formation of atomic
density patterns due to optomechanically mediated interaction
was demonstrated in [17], where the light-matter interaction
was provided via the dipole force. Spontaneous magnetic or-
dering of dipolar and quadrupolar nature was demonstrated
in [19,20,23], where light-matter interaction was mediated
by optical pumping. The interplay between optomechanical
structures and the electronic two-level nonlinearity was stud-
ied in [17,24]. In this contribution, we address the question
of whether optomechanical and magnetic orderings can exist
together and potentially support each other. This complements
recent interest in mixed spin-density textures in cavity QED
systems [8,11,25–29].

A simplified J = 1/2 → J ′ = 3/2 model for the Rb tran-
sition (Fig. 2) allows us to take into account dipolar magnetic

structures analogous to spin-1/2 magnets and the optome-
chanical effects due to light shifts. Figure 3(a) illustrates the
magnetization of atoms and the light spin patterns, on the one
hand, and the dipole potentials and the resulting bunching, on
the other hand. It confirms that for negative detuning the two
mechanisms will support each other: Where optical pumping
by the optical spin structures leads to the prevalence of, e.g.,
a population with a positive magnetic quantum number [red
solid line and green dotted line in Fig. 3(a) at, e.g., point 0],
this state will also have lower energy in the dipole potential
(red dotted line at point 0). Hence, one expects that thresholds
are lower and that the resulting magnetization peaks are nar-
rower, more “spiky,” than those without the bunching effect
[Fig. 3(b)]. The latter might have interesting consequences for
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FIG. 1. Experimental scheme for single-mirror feedback. A
cloud of length L is driven by a pump laser beam. A plane mirror
at a distance d retroreflects the transmitted light back into the cloud.
The theoretical treatment assumes d � L. The optical axis and quan-
tization axis are in the z direction. Structuring is depicted here in the
x direction but could, by symmetry, be anywhere in the transverse
x-y plane. See text for further explanation.
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FIG. 2. J = 1/2 → J ′ = 3/2 transition. a = 1/3 denotes the rel-
ative strengths of weak and strong transitions. a′ = 2/9 < a allows
us to account for a lower optical pumping efficiency as some cycles
will return to the original state. The main part of the dynamics takes
place in the stretched states with maximum modulus of the magnetic
quantum number.

the interaction range of the self-induced lattice, as discussed
in [21,22]. Reference [16] discusses the optomechanical part
in a J = 1/2 → J ′ = 3/2 model following a wave-mixing ap-
proach. However, it neglects the intrinsic magnetic instability;
that is, it would not lead to an instability for stationary atoms.
We will develop a model which can describe both situations in
their limiting cases but will use the simplest possible optome-
chanical model for this assessment, overdamped dynamics in
externally imposed molasses, as originally suggested by [13]
for diffractively mediated transverse self-organization. The
experiments on optomechanical self-organization reported in
[17] did not use optical molasses and were interpreted in the
framework of a conservative Vlasov-equation model [17,30].
Optical molasses, potentially at lower amplitude and differ-
ent detuning than that used for the initial trapping, is also
interesting for extending the lifetime of the structured state
against the heating from scattered pump photons, as demon-
strated earlier for the collective atomic recoil lasing instability
[31]. The first indications of the extension of the lifetime
of structured transverse states were found in counterpropa-
gating beams [16] and single-mirror feedback schemes [32].
Most importantly for our present intentions, the simplicity
of the overdamped model compared to the Vlasov model
makes it suited to an initial assessment of the interaction
between optomechanical and magnetic orderings. As the over-
damped and conservative models have the same threshold
condition for the same initial temperature [30,33,34], the re-
sults developed here for the combined magnetic-overdamped
optomechanical model will also provide guidance for the
combined magnetic-conservative optomechanical situation.
Hence, the current investigations are fruitful even if scattering
of molasses photons can be expected to be detrimental to the
magnetic ordering because it will provide a background of
photons with all polarizations.

II. MODEL

In the experimental scheme (Fig. 1) a cold atomic cloud
of 87Rb atoms is driven by a detuned laser beam close to
the D2 line. The transmitted beam is phase modulated by any
structure (with transverse spatial period �) in the gas which
could be due to magnetic ordering of Zeeman substates or
a density modulation due to atomic bunching. The beam is
retroreflected by a plane mirror of reflectivity R. Diffractive
dephasing leads to an amplitude modulation of the backward
beam which can then sustain the structure in the cloud. Details

0.0 0.5 1.0 1.5 2.0

-1

0

1

m
ag
ne
tiz
at
io
n

x (pattern period)

(b)

0.0 0.5 1.0 1.5 2.0

-1

0

1

m
od
ul
at
io
n
in
in
te
ns
ity
,

op
tic
al
po
te
nt
ia
la
nd
de
ns
ity

x (pattern period)

(a)

FIG. 3. Schematic illustration of the interplay of magnetic and
optomechanical degrees of freedom. The plots depict atomic states
and optical fields and potentials in transverse space x measured in
units of the lattice period �. (a) The intensity of the σ+ [solid red
(dark gray) line] and σ− (solid black line) components of optical
field. Dotted red (dark gray) and black lines are the corresponding
potentials for spin-up and spin-down atoms, respectively. The green
(light gray) lines indicate the resulting spatially antiphased bunching
in density for spin-up (dotted) and spin-down (solid) atoms. The
atomic density is narrower than the intensity for cold (enough) atoms.
(b) Black line: Atomic magnetization (with dominance of spin-up
atoms where positive) resulting from optical pumping from the opti-
cal spin patterns [solid red and black lines in (a)] at low saturation.
Green (light gray) line: more peaked structure of magnetization if
atoms also bunch. The profiles of the curves are artist impressions
and are not calculated self-consistently. Here, and in the following,
the information in parenthesis indicates gray levels in black and
white print version.

can be found in [17,19,20,22]. Self-organization via single-
mirror feedback was originally predicted in [35].

For the description of the internal degrees of freedom we
follow the spirit of the approach in [36] for a J = 1/2 →
J ′ = 1/2 transition, adapted to a J = 1 → J ′ = 2 transition
in [19,20]. In these works, the dynamics for the ground-state
magnetization was derived in a semiclassical approxima-
tion from the Liouville equation for the density matrix. All
excited-state populations, excited-state coherences, and the
optical coherence (dipole moment) are adiabatically elimi-
nated as they evolve on the timescale of the lifetime of the

063508-2



COUPLING OF MAGNETIC AND OPTOMECHANICAL … PHYSICAL REVIEW A 105, 063508 (2022)

excited state (i.e., <100 ns), whereas the dynamics of the
ground state evolves on a timescale of hundreds of microsec-
onds (see [19,20] and below). Afterwards, it is assumed that
the total population resides in the ground state. As we are
interested in an initial assessment of the interplay of internal
(magnetic) and external (optomechanical) degrees of freedom,
we consider a further simplification by neglecting excited-
state coherences altogether and just consider rate equations for
atomic populations (as used in the discussion of Fig. 2). In
principle, we could have constructed an even simpler rate-
equation model based on a J = 1/2 → J ′ = 1/2 transition,
which would have avoided the complication of multiple pump
paths (i.e., aP±, a′P±) and potential excited-state coherences
altogether, but we decided to go for the J = 1/2 → J ′ = 3/2
transition because it is retains the experimental feature typical
of the Rb D2 line in that the final state of optical pumping
is bright and not dark. The model will be valid in the regime
where the pump rate is much lower than the decay rate � of
the excited-state populations and coherences, i.e., saturation
values of about a few times 0.01 to about 0.1, depending
on the level of qualitative or quantitative accuracy we are
interested in.

The optomechanical model is based on overdamped dy-
namics by means of an additional external optical molasses
as used in [13,34]. Under overdamped conditions, the atom
density ρ(r, t ) obeys a Smoluchowski drift-diffusion equa-
tion [5,37],

∂tρ(r, t )= 2σD

�
∇⊥ · [ρ(r, t ) ∇⊥P(r, t )] + D∇2

⊥ρ(r, t ) (1)

= 2σD

�
[∇⊥ρ∇⊥P + ρ∇2

⊥P] + D∇2
⊥ρ(r, t ), (2)

where D is the cloud diffusivity and P(r, t ) = �s/2 is the
pump rate proportional to the total light intensity and the
saturation parameter s(r, t ). � corresponds to the light-atom
detuning in units of the full linewidth �. The relative strength
of optomechanical driving to thermal fluctuations is charac-
terized by

σ = h̄��

2kBT
, (3)

where kB represents the Boltzmann constant and T is the tem-
perature of the cloud. The formulation of Eq. (2) is beneficial
as the grad-grad term can be neglected in the linear stability
analysis (LSA) because it is second order in spatially inhomo-
geneous perturbations. It should be noted that σ ∼ 1/T and
D ∼ T [see Eq. (29)]; hence, the driving of the optomechan-
ical instability is actually independent of temperature, but the
counteracting fluctuations increase with temperature. Because
in a dilute thermal gas with well-controlled stray magnetic
fields there is no relaxation mechanism for magnetization
structures other than the residual atomic motion, this implies
that the temperature dependence of the optomechanical and
magnetic instabilities will be similar.

The treatment of the magnetization is based on the J =
1/2 → J ′ = 3/2 transition depicted in Fig. 2. The quanti-
zation axis is chosen to be the wave vector of the pump
light. Under the assumption that we are interested in rate
equations for only the ground-state populations as discussed
before, the equations of motions for the populations ρ± of the
ground states with mj = ±1/2 are

ρ̇+ = − r

2
(ρ+ − ρ−) + a′P+ρ− − a′P−ρ+ + D∇2

⊥ρ+

+ 2σD

�
[∇⊥ρ+∇⊥(P+ + aP−) + ρ+∇2

⊥(P+ + aP−)],

(4)
ρ̇− = − r

2
(ρ− − ρ+) − a′P+ρ− + a′P−ρ+ + D∇2

⊥ρ−

+ 2σD

�
[∇⊥ρ−∇⊥(P− + aP+) + ρ−∇2

⊥(P− + aP+)],

(5)

with a = 1/3 and a′ = 2/9 [38].
The effective decay rate r for the magnetization due to the

residual atomic motion introduced in [19] is

r = 4

π�

√
8kBT

πM
. (6)

It results from an average time of atoms needing to cross a
pattern period ballistically if no velocity damping by molasses
is present. It will be dropped in the combined model with
diffusive damping by D. However, it is useful to keep for the
moment to compare it to the established theory for magnetic
self-organization.

The populations are separated into total density ρ and
orientation w,

ρ = ρ+ + ρ−, (7)

w = ρ+ − ρ−, (8)

ρ+ = w + ρ

2
, (9)

ρ− = −w + ρ

2
. (10)

To make a connection to the two-level optomechanical model,
φS is the linear phase shift if the whole population is in one
of the stretched states. Then the linear phase shift for equal
population ρ+ = ρ− = 1/2 is

φlin = 1 + a

2
φS = b0

�

� [1 + (2�/�)2]
, (11)

where b0 is the optical density in the line center measured for
equal Zeeman populations. This formulation implies the nor-
malization ρ = 1 in the homogeneous state. The equations of
motion are

ẇ = −rw + a′(P+ + −P−)ρ − a′(P+ + P−)w

+ D∇2
⊥w + σD

�
[w(1 + a)∇2

⊥(P+ + P−) + ρ(1 − a)∇2
⊥(P+ − P−)]

+ σD

�
∇⊥(w + ρ) · ∇⊥(P+ + aP−) + σD

�
∇⊥(w − ρ) · ∇⊥(P− + aP+), (12)

063508-3



T. ACKEMANN et al. PHYSICAL REVIEW A 105, 063508 (2022)

ρ̇ = D∇2
⊥ρ + σD

�
[ρ(1 + a)∇2

⊥(P+ + P−) + w(1 − a)∇2
⊥(P+ − P−)]

+ σD

�
∇⊥(w + ρ) · ∇⊥(P+ + aP−) + σD

�
∇⊥(w − ρ) · ∇⊥(P− + aP+). (13)

The transmitted field is given by

E±(L) = E±(0) exp (iφSρ± + iaφSρ∓) (14)

= E±(0) exp

(
iφlinρ ± iφlin

1 − a

1 + a
w

)
, (15)

where E± refers to the complex field amplitude of the σ±-
polarization components which are scaled such that their
squares are the pump rates P±. The argument in parentheses
refers to the position on the z axis. E±(0) is the input field
at the entrance of the cloud, and E±(L) is the one at the exit.
It is assumed that the atomic variables do not change over z
(quasi-two-dimensional situation). It is also assumed that the
cloud is diffractively thin; that is, we can neglect diffraction
within the medium. The backward field is then obtained in
Fourier space. The diffractive dephasing between the on-axis
pump and the off-axis spontaneous sidebands of the field is
described by the phasor 
 = q2 × z/(2k) = q2 × d/k after
propagation of a distance z = 2d to the mirror and back
[22,35]. The total pump rate is taken to be the sum of the
intensities of the forward and backward fields neglecting the
interference of the counterpropagating beams and the approxi-
mately wavelength-scale gratings created by it. The restriction
to a diffractively thin medium and the neglect of wavelength-
scale gratings is useful for this discussion of the interaction
between optomechanical and optical pumping nonlinearities
and is sufficient for a qualitative description of our experimen-
tal situation in most circumstances [22]. Extensions are quite
complex and are discussed for the simple case of a two-level
nonlinearity in [39]. We will comment on the limitations of
this approach where appropriate below.

The input field is linearly polarized, |E+(0)|2 = |E−(0)|2 =
P0. For a J = 1/2 ground state allowing only for dipolar
ordering the phase between the σ± components is not im-
portant for the optical pumping in the ground state. Hence,
any transverse input polarization is possible. The spontaneous
emergence of π light (polarized parallel to the quantization
axis) is not expected and has not been reported in the liter-
ature for longitudinal pumping as it would demand coupling
via a checkerboard pattern in the longitudinal direction and
at least one transverse direction on wavelength scales. This
is the natural situation in transversely pumped cavities but
not in systems with a single distinguished axis such as the
single-mirror feedback system, counterpropagating beams,
and longitudinally pumped cavities.

The homogeneous solution for the system is a homoge-
neous density, ρh = 1, and zero orientation, wh = 0. The
ansatz for the linear stability analysis is then

ρ = 1 + δρ, (16)

w = δw, (17)

where δρ and δw are small spatially periodic functions,
∼ cos (	q · 	r), with wave vector 	q and position vector 	r in

two-dimensional transverse space. As the system is rotational
symmetric, the threshold condition does not depend on the
direction of 	q, only on the wave number q = |	q| (this was
already used in the calculation of the diffractive phasor 
),
and can be obtained by considering a single spatial harmonic.
The linear expansion of the transmitted field yields

E±(L) ≈ E±(0) exp (iφlin )

× (1 + iφlinδρ)

(
1 ± iφlinδw

1 − a

1 + a

)
(18)

≈ E±(0) exp (iφlin )

×
(

1 + iφlinδρ ± iφlinδw
1 − a

1 + a

)
. (19)

This yields

E±(L) = E±(0) exp (iφlin ) (1 + iei
φlinδρ)

×
(

1 ± iei
φlinδw
1 − a

1 + a

)
, (20)

|E±(L + 2d )|2 ≈ |E±(0)|2
(

1 − 2φlin sin 
δρ

∓ 2φlin sin 
δw
1 − a

1 + a

)
, (21)

P±(L + 2d ) = P0

(
1 − 2φlin sin 
δρ

∓ 2φlin sin 
δw
1 − a

1 + a

)
, (22)

where we assume that the input light is linearly polarized and
hence |E+(0)|2 = |E−(0)|2 = P0. Note that the phase of the
reentrant σ± fields is not affected for a J = 1/2 ground state;
that is, the polarization direction is not modulated, just the
helicity.

A linear stability analysis of the density gives

δρ̇ = −Dq2δρ + 4σDφlin sin 
P0Rq2

�
(1 + a) δρ, (23)

with threshold

P0,th = �

4φlin sin 
σR(1 + a)
. (24)

Note that for linearly polarized light P0,th represents only half
the input intensity. This result agrees with the expression for
the scalar case in [34] for a = 0. The minimal threshold is
achieved for sin 
 = 1, which corresponds to a phase shift of
π/2 after a quarter of the Talbot distance. This provides pos-
itive feedback for a self-focusing situation [17,22,35]. Note
that this is independent of the sign of detuning as both σ and
φlin change sign with detuning. The threshold condition for the
overdamped case is the same as that for the conservative case
at the same initial temperature. Equation (6) of [30] reduces
to Eq. (24) for high enough optical densities. At these optical
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densities (and the one considered below) the optical dipole
potential can be taken to be proportional to log (1 + P) ≈ P.
Using ln(1 + P) as the expression for the dipole potential in
the derivation here would lead to Eq. (6) of [30].

The LSA for the orientation gives

δẇ = −rδw − Dq2δw − 2a′P0(1 + R)δw

− 4RP0φlin sin 
a′ 1 − a

1 + a
δw

+ 4σDφlin sin 
P0Rq2

�

(1 − a)2

1 + a
δw, (25)

where the first line describes decay and saturation by the total
pump rate, the second line describes driving by optical pump-
ing, and the last line describes driving by optomechanics. The
magnetic decay and driving terms have the same structure as
derived in [19] for a J = 1 → J ′ = 2 transition but with dif-
ferent numerical values for the prefactors. The term describing
optomechanical driving of a magnetic state in the last line
is the one derived in this treatment. For negative detuning
(� < 0, σ < 0, φlin < 0), the minimal threshold is reached
for sin 
 = 1, and the optomechanical effect enhances the
magnetic instability as expected from the considerations in
Fig. 3. For positive detuning, the optimal feedback is ob-
tained for the magnetic instability for sin 
 = −1 and for
the optomechanical instability for sin 
 = 1; that is, the two
instabilities oppose each other. This is because the magnetic
one is self-defocusing (as the trapping state is bright on the
D2 line, the optical pumping nonlinearity is defocusing for
blue detuning) and the optomechanical one is focusing. In
the potential picture in Fig. 3, for blue detuning the optically
pumped atoms would be expelled from the intensity maxima
optimally sustaining the magnetic ordering. The threshold is
given by

P0,th = Dq2

−2a′(1+R)−4Rφlin sin 
a′ 1−a
1+a +4Rφlin sin 
q2 σD

�

(1−a)2

1+a

. (26)

An interesting aspect is that the two instabilities are not
directly coupled in linear order as the equations for δρ and
δw are not coupled to each other. The reason seems to be that
a magnetic instability at q would drive a density modulation
at 2q. A density modulation at q will drive a magnetic modu-
lation at q/2. These are second-order processes.

III. ANALYSIS

In a first step, Fig. 4 compares the relaxation of the struc-
tures assuming ballistic motion using an effective decay rate
r, Eq. (6), with the diffusive ansatz with molasses (giving
a decay rate of Dq2) for the magnetic self-ordering. Ob-
viously, in both cases relaxation decreases with increasing
lattice period �, but the functional relationship is proportional
to q−1 for the ballistic case and q−2 for the diffusive one.
Matching the rates for the experiment performed at Institut
de Physique de Nice (INPYNI) using a large atomic cloud
[17,20] at the relevant scale of about � ≈ 100 μm gives a
diffusion coefficient of about (7–9) × 10−7m2/s. For the ex-
periment performed at Strathclyde with a smaller cloud [19],
it is D ≈ 3 × 10−7m2/s to match at � ≈ 50 μm. These values
are compatible with diffusion coefficients obtained in optical
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FIG. 4. Effective relaxation rate (solid lines) vs lattice pe-
riod from Eq. (6) for the temperatures relevant for [17,19,20]
compared to diffusive modeling (dotted lines) for different dif-
fusion constants. Black (corresponding to the situation in [17]):
solid line, T = 290 μK; dotted line, 8.7 × 10−7m2/s. Red (dark
gray; corresponding to the situation in [20]): solid line, T =
200 μK; dotted line, 7 × 10−7m2/s. Green (light gray; correspond-
ing to the situation in [19]): solid line, T = 120 μK, dotted line,
3 × 10−7m2/s.

molasses. Measurements in a lin-perp-lin configuration in [40]
indicate values of D ≈ (1–2) × 10−7m2/s for the diffusion
coefficient above saturation intensity and (2–3) × 10−7m2/s
at lower intensities. This order of magnitude is fine for the
current preliminary estimations. Properties of the molasses
would need to be optimized anyway.

Temperature and the diffusion coefficient are not indepen-
dent in an optical molasses. Temperature is related to the
momentum diffusion coefficient Dp and the velocity damping
coefficient α [40,41] by

T = Dp

αkb
, (27)

and the space diffusion coefficient is given by

D = Dp

α2
. (28)

Hence,

D = kBT

α
. (29)

For the velocity-damping coefficient we use the estimation of
[40] for a three-dimensional (3D) lin-perp-lin molasses,

α ≈ 3
7 h̄k2 |�M |, (30)

where �M denotes the detuning of the molasses normalized
to �. Detunings in the range of 1.35–1.9 will then produce
the combination of temperatures and diffusion coefficients
identified in Fig. 4, and taking |�M | = 1.8 will sweep the
diffusion coefficient from 3.1 × 10−7m2/s at 120 μK to 7.6 ×
10−7m2/s at 290 μK; that is, it allows us to cover the range of
estimations intended here.

Figure 5(a) shows the threshold saturation parameter, s0 =
P0/(�/2), for one circular component of the linearly polarized
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FIG. 5. Threshold saturation parameter for one circular compo-
nent vs temperature for � = −8.6, � = 100 μm. (a) Black lines
(b0 = 80): solid line, threshold for magnetic ordering; dotted line,
threshold for optomechanical bunching. The thresholds for combined
magnetic and optomechanical driving of magnetic ordering are es-
sentially indistinguishable from the black solid line for magnetic
ordering alone at this scale. Red (dark gray) lines (b0 = 70): solid
line, threshold for magnetic ordering; dotted line, threshold for op-
tomechanical bunching (both are above their black counterparts). The
cyan (light gray) solid line [just below the red (dark gray) solid line]
represents the combined threshold for magnetic and optomechanical
driving for negative detuning and b0 = 70; the green (light gray)
solid line [just above the red (dark gray) solid line] represents pos-
itive detuning. (b) Same as (a), but for b0 = 69.31. The cyan line
is now dotted to indicate the difference from the green line. The
parameter σ changes from infinity at T = 0 to 4.3 at T = 300 μK
via 12.5 at T = 100 μK and 8.4 T = 150 μK.

input vs temperature for the parameters analyzed in [19,20],
� = −8.6, � = 100 μm, b0 = 80. The solid black line indi-
cates the threshold for magnetic ordering, Eq. (26); the dotted
black line indicates the one for optomechanical bunching,
Eq. (24). They are almost two orders of magnitude apart.
Indeed, the structures observed in [19,20] were identified
as arising from magnetic ordering. The predicted intensity

thresholds rise from about 0.2 mW/cm2 at 100 μK via 0.4
mW/cm2 at 200 μK to 0.6 mW/cm2 at 300 μK. The experi-
mentally observed threshold for 200 μK is about 2 mW/cm2.
The difference is attributed to stray magnetic fields, the finite
reflectivity of the mirror, and imperfect antireflection coatings
of cell windows. The predicted intensity thresholds for the
optomechanical bunching rise from about 6.4 mW/cm2 at 100
μK via 13 mW/cm2 at 200 μK to 19 mW/cm2 at 300 μK. No
experiments on optomechanics have been performed in this
parameter range, but the experiments in [17] can serve as a
guideline as the threshold should be independent of detuning
and dependent on only the initial temperature at the optical
densities used, independent of whether the molasses is present
or not [30,33,34]. The minimum thresholds found there are
about 50 mW/cm2 at 290 μK, i.e., in reasonable agreement
with the estimation allowing for some heating effects by the
pump beams.

As the magnetic and optomechanical thresholds are quite
different, the thresholds for combined optical pumping–
optomechanical driving of the magnetic ordering are essen-
tially indistinguishable from the optical pumping one for both
detunings and are not included in Fig. 5(a) for b0 = 80. The
reason that temperature is not a strongly distinguishing pa-
rameter between instabilities is that, as indicated before, the
driving is independent of temperature for both instabilities
(σD is independent of temperature) but both are counteracted
by the residual atomic motion. By introducing a transverse
magnetic field one can open a relaxation channel for the
orientation and destroy it (e.g., [19]), leaving the possibility
of optomechanical and/or electronic structuring. However,
no detailed experimental investigations of the transition have
been done.

This changes somewhat at lower optical densities as the
presence of the saturation term in the expression for the mag-
netic ordering implies a minimum value of the linear phase
shift, φlin > (1 + R)/R. For � = −8.6 this implies b0 > 69.3.
The solid and dotted red (dark gray) lines in Fig. 5(a) de-
note the situation for b0 = 70. Both the optomechanical and
magnetic thresholds increased, but the gap between them nar-
rowed as the magnetic threshold is much more susceptible to
a density change due to the saturation term. In this situation
the thresholds for combined driving are discernible from the
optical pumping one, leading to a reduction of the threshold
for negative detuning [cyan (light gray) line] and an increase
of the threshold for positive detuning [green (light gray)
line]. Going closer to the magnetic threshold, b0 = 69.31,
the optomechanical and magnetic thresholds nearly coincide
[Fig. 5(b)]. The cooperation between the optomechanical and
magnetic drivings leads now to a substantial reduction of the
threshold [dotted cyan (light gray) line] for negative detuning,
whereas the combined threshold is enhanced for positive de-
tuning [green (light gray) line], demonstrating the interaction
between the driving terms. Experiments in the apparatus at
Strathclyde are performed at lower optical density, measured
to be b0 ≈ 27, which is very close to the minimum density
required [19,22]. More robust agreement between experi-
ment and theory has been obtained assuming b0 ≈ 30 [23].
The current considerations indicate that the self-organization
might have been helped by the reinforcement between

063508-6



COUPLING OF MAGNETIC AND OPTOMECHANICAL … PHYSICAL REVIEW A 105, 063508 (2022)

0 25 50 75 100 125 150

10-3

10-2

10-1

s 0

lattice period (µm)

FIG. 6. Threshold saturation parameter for one circular compo-
nent vs lattice period for � = −8.6, b0 = 80, T = 150 μK. Solid
black line, threshold for magnetic ordering; dashed black line, thresh-
old for optomechanical bunching; cyan (light gray) dotted line,
combined threshold for magnetic and optomechanical driving of
magnetic ordering for negative detuning; and green (light gray) solid
line, combined threshold for positive detuning � = +8.6.

optomechanical and magnetic degrees of freedom already
under this situation. (There is no quantitative correspondence
between thresholds quoted here and in [19,22] because the lat-
ter papers assume a more realistic J = 1 → J ′ = 2 transition
which changes the pre-factors of order 1 in the susceptibilities
and pump rates.) One can also note that there is a strong
preference for magnetic patterns to appear for negative de-
tuning [19,20,22] and only some indications are found for
positive detuning [42]. Although this observation agrees in
tendency with the prediction above, the main reason for this
asymmetry is probably the fact that under self-defocusing
conditions (as indicated, the optical pumping nonlinearity be-
haves self-defocusing for positive detuning on the D2 line)
the assumption of a homogeneous distribution of orientation
along the beam axis is not well justified, as previously identi-
fied for defocusing situations [17,22,43].

However, one difference between the magnetic and op-
tomechanical self-organizations is that in the latter not only
relaxation but also driving increases with increasing trans-
verse wave number, i.e., decreasing lattice period, as the
dipole force depends on the gradient of the optical potential.
Hence, these effects cancel, and the threshold is independent
of wave number, as is apparent from Eq. (24). The same
holds for the conservative model discussed in [18]. In reality
we expect stochastic effects due to the scattering of pump
photons to favor longer-period grating over shorter-period
ones, in particular for the conservative case, as argued in
[17]. We will discuss some aspects of this further below.
Figure 6 shows an analysis of a representative temperature
around the Doppler temperature, T = 150 μK. The horizontal
dashed line indicates the optomechanical threshold for density
bunching that is independent of lattice period in the frame-
work of this treatment. The magnetic threshold increases with
decreasing lattice period (solid black line) as the structure

is washed out by the residual transverse atomic motion. The
intersection is at � ≈ 17 μm. For smaller lattice periods the
density modulation is the primary driver. In the vicinity of this
point, there is again the splitting of the threshold condition
for the magnetic case, which is apparent because the optome-
chanical driving either supports (dotted cyan line, � < 0) or
inhibits (solid green line, � > 0) the magnetic ordering. It
should be noted that this point is not accessible in an ex-
periment with thermal atoms as the small transverse period
violates the assumption of a diffractively thin medium. The
minimum length scale which can be obtained is of the order
of �min ≈ √

λL, where L is the longitudinal extension of
the cloud [22,39]. This scale agrees roughly with the scale
expected for an instability in two independent counterprop-
agating pump beams [44,45]. This implies Lmax ≈ 0.37 mm,
which is much smaller than needed for thermal clouds with
sufficient optical density to reach the threshold (L ≈ 2–10 mm
in our experiments). The region in question also gives a
relatively high threshold of s ≈ 0.1 where the limitation to
ground-state dynamics becomes questionable. Hence, to stay
within the assumptions of the ground-state model, the tem-
perature of the cloud needs to be lower, and/or the optical
density needs to be higher, demanding further optimization of
the trapping and cooling processes. However, these consider-
ations can be important for extending the treatment in [18,21]
on optomechanical self-organization in quantum degenerate
gases with optical feedback to spinor Bose-Einstein conden-
sates because they have sufficient optical density in small
clouds.

This limitation on period holds for gratings stemming
from the interference between a pump beam and (nearly)
copropagating sidebands (so-called transmission gratings). In-
terference between a pump and (nearly) counterpropagating
sidebands results in gratings with a wave number slightly
smaller than 2k (so-called reflection gratings). Although not
directly included in our analysis, the argument can be made
that these gratings are mainly driven by optomechanical
effects. This was, indeed, argued in [14–16], which treat op-
tomechanical bunching concentrating on reflection gratings
in a J = 1/2 → J ′ = 3/2 transition without considering the
option of a purely magnetic ordering.

A final consideration is that the presence of the 3D mo-
lasses implies a background field with many polarization
components, which can be expected to scramble the magnetic
substates and to counteract the optical pumping by the pump
beams. Formally, this can be seen from Eq. (25), in which
the intensity-dependent damping term in the first row repre-
sents the action of the total pump rate. We model the action
of the molasses by adding a corresponding damping −6Pm,
where Pm is the pump rate of a single molasses beam and
no allowance is made for the difference in Clebsch-Gordon
coefficients between substates. We also take temperature and
diffusion constant to be constant for simplicity. Figure 7 il-
lustrates that a saturation parameter slightly larger than 10−3

is already sufficient to drive the magnetic threshold above
the optomechanical one. At this point, the total saturation by
the pump and molasses which needs to be overcome by the
driving is of the order of the optomechanical threshold. Hence,
experiments on magnetic ordering will need to be performed
without molasses, as in [19,20,23].
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FIG. 7. Threshold saturation parameter for one circular compo-
nent vs the saturation parameter for one molasses beam for � =
−8.6, b0 = 80, T = 150 μK, � = 100 μm. Horizontal solid black
line, threshold for magnetic ordering without molasses; horizontal
dashed black line, threshold for optomechanical bunching; red (dark
gray) line, the threshold for magnetic ordering including the repump-
ing of the molasses.

IV. CONCLUSIONS

We demonstrated using linear stability analysis that optical
pumping and optomechanical driving will cooperate in mag-
netic ordering for negative detuning, in principle. However,
for long-period transmission gratings the driving by optical
pumping will strongly dominate. Close to the existence limit
of magnetically ordered states (i.e., at low optical density),
the additional driving by optomechanics is more important
and will help to sustain these states over a larger parame-
ter regime. The background photons from the molasses will
scramble the magnetic ordering at quite low saturation values.
Hence, an overdamped system with molasses is not attractive
for these investigations, and magnetic-optomechanical cou-
pling should be realized without molasses in the conservative
limit, with a view of including the potential cooling and
heating effects of the pump and self-organized gratings in
the long term. Reference [15] found indications for 3D Sisy-
phus also in the transverse direction after self-organization
occurred in a counterpropagating-beam scheme. However,
as the optomechanical threshold conditions are identical for
the overdamped and conservative cases for the same initial
temperature, we expect that the results obtained here with
molasses are indicative of what to expect in the conser-
vative case. The current characteristic to establish that the
structures are of magnetic origin is their sensitivity to an exter-
nal transverse magnetic field [19,20]. As for well-controlled
magnetic fields, the residual atomic motion represents the
fluctuations counteracting both instabilities; temperature can-
not be used to favor optomechanical ordering vs magnetic
ordering. The prevalence of magnetic structures to enable
optomechanical ordering has been broken by introducing a
polarizer in the feedback loop to enforce the incident linear
polarization state [17]. Switching between circular and linear

input polarization is an alternative way to distinguish between
magnetic (or mixed) self-organization and optomechanical
self-organization without putting a polarizer in the feedback
loop and, as such, keeping all residual losses and alignments
the same if analyzing the predicted difference between mag-
netic and optomechanical thresholds. In the analysis, φlin

needs to be replaced by φS , and the saturation parameter needs
to be low enough to avoid excitation of the excited state. This
has a parallel in the experiment of Ref. [8], in which a change
in polarization state (there, polarization direction) of the pump
also leads to a preference for the density-modulated state
over the spin-modulated state. In systems in which the spinor
interaction is not implemented via the tensor susceptibility
of a transition but by engineered Raman transitions between
pseudospins (e.g., [3,6,25,28]), there is still an interesting
parallel as the threshold of the superradiance combining spin
and recoil effects will depend on the difference between recoil
frequency and Raman detuning, i.e., the change with sign of
detuning [28].

Reducing the structure period increases the relative impor-
tance of the optomechanical driving, and at periods below
about 20 μm the optomechanical density structuring will pre-
vail as not only relaxation but also the driving by the dipole
force increases. This transition might be observable using
quantum degenerate gases which have the necessary optical
density in small-size clouds. The results also indicate that
optical-pumping-induced wavelength-scale reflection gratings
are not significant compared to the long-period transmis-
sion gratings. This supports the assumption in [14–16] to
treat only optomechanical effects in a counterpropagating-
beam scheme. In conclusion, the best prospects for studying
the interaction between optomechanical and magnetic driv-
ings for thermal atoms is to use cold and small clouds
with structure periods on the order of some tens of
micrometers.

Having established the effects of magneto-optomechanical
coupling on threshold conditions, it would now be interesting
to look at the nonlinear stage of evolution using numerical
simulations. Even if the instabilities for density and orienta-
tion decouple in linear approximation during the initial stage
of the instability, this will not be the case in the saturation
regime where the structures achieve significant amplitudes.
Modulations of total density will appear even if the instability
is driven by the orientation and vice versa. One can expect
a narrowing of structures for negative detuning [Fig. 3(b)].
Via the higher harmonics involved, this will have conse-
quences for the coupling behavior across the self-induced
lattice [21,22].
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