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Quantum states of cylindrical surface charge density for modeling plasmonic circuit elements:
Nanowires, nanorods, cavities, and waveguides
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Nanostructures in the form of ellipsoids, prolate spheroids, rings, and cylinders are known to exhibit resonant
surface and cavity modes with applications in nanophotonics and plasmonics and, more recently, in novel quan-
tum experiments, in which control of plasmons and their interactions with plasmons, photons, phonons, excitons,
and quantum emitters are desired. Nanorods and nanowires are examples of plasmonic structures with spectral
properties of potential use as interconnects and circuit components. Estimates of the surface properties of these
components are needed in circuit design and integrated systems. Here, we present a quantum Hamiltonian for the
cylindrical surface charge density. We then study the photon excitation of plasmons on the cylindrical surface and
calculate their scattering and radiative decay rate. Nonradiative decay of plasmons induces an efficient heating of
the nanoparticle and can photoacoustically excite mechanical oscillations. Computational calculations are also
presented for the plasmonic modes and the ensuing excitations of nanomechanical eigenmodes of nanoparticles
with near-cylindrical symmetries.

DOI: 10.1103/PhysRevA.105.063507

I. INTRODUCTION

Large-aspect-ratio metal and semiconductor structures,
such as wires and antennas, owing to their superior transport
properties, have enabled conduction of energy and infor-
mation across device-relevant and free-space length scales,
enabling electronics and communication. Collective elec-
tronic effects in the surface regions of metal nanoparticles
with various morphologies have enabled plasmonics [1].
Mixed photon-surface mode excitations have enabled po-
laritonics, where hybrid particles composed of photons are
strongly coupled to surface modes or quasiparticles (e.g., plas-
mons, excitons) and can carry information. Much opportunity
awaits such structures to enable novel effects in these con-
texts and beyond in topological and quantum materials and in
quantum sensing. Examples are numerous in the range from
conceptual designs, such as ion and molecular trapping in
nanorings [2] to experimentally demonstrated cases, such as
plasmon-assisted electron emission from nanotips [3]. Exotic
states such as the formation of topological solitons or twistons
[4] in graphene nanoribbons and bendons [5] in nanowires are
other examples.

In the limit of very large aspect ratio, the cylindrical system
approaches a one-dimensional (1D) material, which has the
potential to enable new capabilities in electronics and com-
puting [6]. Examples include use of carbon nanotubes as the
gate materials in transistors to overcome the beyond-Morse-
law development [6] and the topological states in emerging
computing paradigms [6]. Nanoscale cylindrical domains oc-
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cupied by a single material or multiple materials, as in the
case of Janus arrangement or a stratified medium [7,8], offer
unique prospects for emerging quantum circuits and devices,
where low-loss fast surface mode dynamics may facilitate
qubit manipulations and operations.

It is known that photon-surface plasmon interactions, sim-
ilar to photon-atom interactions, lead to elastic and inelastic
scattering. Therefore, many scattering processes such as Ra-
man, Compton, Thomson, and Rayleigh that lead to emission
and absorption may be treated if the needed surface plasmon
operators can be constructed. Field enhancement and coherent
oscillations as a result of plasmon excitation are accompanied
by thermal effects due to nonradiative decay of plasmons
[9–11]. Recent theoretical calculation suggests the entangle-
ment of a pair of qubits subject to a dissipative plasmonic
reservoir [12]. Moreover, theoretical study of the electromag-
netic field imbalance in surface plasmon polaritons (SPPs)
[13–15], and interaction of a single photon with two-level
quantum dots [16] have been discussed.

A segment of a conceptual circuit component depicting use
of quantum surface modes is shown in Fig. 1. The extended
dimension along the cylindrical axis, and the cross-sectional
dimensions similar to finite-volume nanoparticles, calls for
specific attention when modeling the electronic and opti-
cal responses. Particles with genus g surfaces, appear very
promising for both classical and quantum sensing, but the
value of g can significantly alter the accessibility and tractabil-
ity of analytical solutions. For g = 0, one obtains a sphere, for
which much work has been reported (Mie theory). Recently,
we reported quantum calculations for infinite geometries [17]
and both classical and quantum calculations and the added an-
alytical complexity for particles with g = 1, which generates
a torus [18].
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FIG. 1. A segment of a conceptual circuit in plasmonics im-
plemented using cylindrical and toroidal subunits for transport of
information. Analogous to electronic circuitry, plasmonic circuits
may be envisioned to be intimately integrated with nanophotonics in
which information is transported by utilizing fast electronic excita-
tions in a variety of nanostructures. Here, the eigenmodes of surface
charge density, making up the quantum states, may be approximated
by |mi, ki〉 cylindrical states. New quantum states |�i〉 emerging out
of the interaction region are envisioned to take the form of correlated
cylindrical plasmonic eigenstates. In elastic scattering (Hel), photons
(blue arrows) are scattered into a cone of directions at an angle about
the cylindrical axis, while in inelastic scattering (Hinel) a plasmon
(black arrows) is excited. Absorption (Habs) entails a photon being
annihilated to create a plasmon, while in emission (Hem), a plasmon
is annihilated to create a photon.

The axial resonance properties of the cylindrical surface
modes are wavelength λ dependent, the strength of which
is affected by the length zC of the cylindrical structure. The
corresponding frequencies ω of the axial surface charge den-
sity oscillations can thus vary for a cylindrical particle of
radius rC when zC ∝ rC, versus when zC � rC . Furthermore,
unlike atomic systems with sharp and distinct resonances,
nanoparticles possess elaborate spectral features and plasmon
dispersion relations, which are strongly material dependent.
In this article, we present a quantum Hamiltonian for a cylin-
drical nanostructure such that the underlying normal mode
distribution associated with the surface charge density can be
illuminated. As applications of the Hamiltonian, we employ
Ritchie’s interaction Hamiltonian [19] and calculate the ra-
diative decay, followed by absorption, elastic, and inelastic
scattering of cylindrical surface plasmons. In doing so, we
first calculate the plasmon dispersion relations for cylindrical
media. For appropriate values of rC, the dispersion relations
agree well with the quasistatic plasmon dispersion, which will
also be discussed.

The presentation has been organized as follows. In Sec. II,
we introduce the modeled system and calculate the plas-
mon dispersion relations. Here, we show the recovery of
the quasistatic dispersion relations in suitable limits. This

section ends with computational results to account for the
nonradiative decay of plasmons and the photothermal exci-
tation of mechanical motion. In Sec. III, we first calculate the
noninteracting quantum Hamiltonian for a solid cylinder in
vacuum. We then calculate the interaction of photons with sur-
face plasmons for the cylindrical electronic system. Therefore,
in Sec. VI, we begin to set up the photon and surface plasmon
operators. Cross sections and transition probabilities, involv-
ing appropriate matrix elements, for photons interacting with
cylindrical surface plasmons, will follow. Our work closely
follows the approach by Ritchie et al. (see, e.g., Ref. [18]).
Lastly, we conclude in Sec. VII.

II. DISPERSION AND FIELDS OF CYLINDRICAL
SURFACE PLASMONS

The interaction of the radiation field with matter, described
as a scattering process, may exhibit strong spectral variation
depending upon the geometric and material properties. There-
fore, prior to quantization of the cylindrical surface waves
to obtain the surface plasmon states, we consider electro-
magnetic normal modes of the solid domain as a starting
point. With reference to Appendix B, solving the Helmholtz
equation for points r = (ρ, ϕ, z) in a domain partitioned by
an infinite cylinder of radius ρ = ρ0, the solution set of eigen-
functions is given in terms of modified Bessel functions of first
and second kinds, Im(κρ) and Km(κρ), respectively, for the
triple (κ, kz, m), where the choice of Bessel functions depends
on two factors: (1) the radiative or nonradiative regime being
considered and (2) the asymptotic behavior of the modified
Bessel functions. Therefore, in the nonradiative regime, the
solutions may be obtained for the z component of the electric
field as

Ez(r, t ) =
∞∑

m=−∞
Cm(t )ei(kz z+mϕ−ωt )[θ<

m (κi, ρ) + θ>
m (κo, ρ)],

(1)

where Cm(t ) is the complex mode amplitude at time t , with
m ∈ Z, counting the azimuthal modes, where we introduce

θ<
m (κ, ρ) = 	(ρ0 − ρ) Im(κ ρ) Km(κ ρ0), (2)

θ>
m (κ, ρ) = 	(ρ − ρ0) Im(κ ρ0) Km(κ ρ), (3)

after partitioning the space with the Heaviside function 	,
with the half-maximum convention, 	(0) = 1/2.

Denoting the dielectric functions at frequency ω for the in-
terior and exterior domains by εi and εo, we impose Dirichlet
and Neumann boundary conditions [see Eq. (B7)]. Consid-
ering the dielectric properties of the involved media εi/εo,
we may assume εo = 1 and εi(ω) = ε(ω), that is a vacuum-
bounded solid cylinder with a local frequency-dependent
dielectric function. Therefore, one may obtain

ε(ω) = κ3
i κ3

o Im Km − κ4
i κ2

o K2
m + (mωpkz/ρ0)2

κ2
i κ4

o I2
m − κ3

i κ3
o Im Km + (mωpkz/ρ0)2 , (4)
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FIG. 2. Energy dispersion of the first three surface plasmon
modes excited on a cylinder of radius ρ = 50 nm. The cylindrical
domain is modeled as a Drude material (see Appendix A) bounded
by vacuum.

where

Im =
[

d

d (κiρ)
ln Im(κiρ)

]∣∣∣∣
ρ=ρ0

, (5)

Km =
[

d

d (κoρ)
ln Km(κoρ)

]∣∣∣∣
ρ=ρ0

, (6)

for m = 0, 1, 2, . . . (also see Ref. [20]).
The energies of the first few plasmon modes m in Fig. 2

[obtained by solving Eq. (B10) explicitly for ε] correspond to
set of pairs (kz, ω) for which Eq. (B10) is zero, that is, for
each m, the roots (kz, ω) of the implicit function Eq. (B10) are
found and enhanced by interpolation. The results agree well
with reported cylindrical surface modes [8,21]. The solutions
on the right-hand side of the light line ω = c kz correspond to
the nonradiative regime (whereas the radiative regime solu-
tions will appear on the left-hand side, not displayed).

The quasistatic plasmon dispersion relations may be ob-
tained from Eq. (B10) by letting c → ∞. Alternatively, they
may also be obtained directly from the scalar potentials sat-
isfying the Laplace equation, as described in Appendix C,
where we have shown that our solution in Eq. (B10) agrees
well with the special case of that of a multilayered cylinder
[8]. In the quasistatic limit, we note from the scalar electric
potential (see Appendix D),

�(r, t ) =
∞∑

m=−∞

∫ ∞

−∞
Cmk (t )ei(mϕ+kz)

× [θ<
m (|k|, ρ) + θ>

m (|k|, ρ)] dk, (7)

FIG. 3. Quasistatic resonance values of the dielectric function for
the first few leading modes. The cylindrical domain is modeled as a
free electron gas bounded by vacuum, that is, the y axis is ω2

p/ω
2.

that the amplitudes satisfy Cmk (t ) = C−m−k (t ), using the fact
that the scalar potential is real-valued (see Appendix D).
Following Eqs. (D7)–(D13), the equation of motion for the
surface charge will now take the form C̈mk (t ) + ω2

mkCmk (t ) =
0, where

ω2
mk = ω2

p |k| ρ0 I ′
m(|k|ρ0) Km(|k|ρ0) (8)

are found to be equal to those obtained above and shown in
Fig. 3.

The effect of retardation on the surface plasmon energies
may now be explicitly investigated for each mode of a given
cylinder. For m = 1, 2, 3 and ρ = 50 nm, Fig. 4 compares
the solutions of Eqs. (4) and (8). Similar to Cartesian surface
modes, the quasistatic mode energies are red shifted by the
retardation to be completely confined to the region below the
light line. In many cases, the differences in the dispersion
relations are smaller when comparing the retarded versus
quasistatic solutions. In the simpler case of the Cartesian
solutions, for example, this is observed by all the dispersion
branches being pushed down below the light line when one
accounts for retardation.

Having obtained the surface plasmon dispersion relations,
one may now consider a specific example to illuminate the
calculation of the plasmon fields and photothermal effects.
Plasmon decay, in addition to radiative processes, generates
substantial heat. Beyond presenting a quantitative assessment
of the nonradiative losses, here the effect does not play
a significant role (unless one attempts plasmon sensing or
surface-enhanced Raman spectroscopy or imaging). However,
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FIG. 4. Effect of retardation on the surface plasmon dispersion.
A comparison between quasistatic dispersion relations given in
Eq. (B10) and the quasistatic limit given in Eq. (8) for fixed modes
m = 1, 2, 3 and for a fixed ρ = 50 (nm) has been shown. In each plot,
the dashed line represents the light line ω = ckz, while solid blue line
is obtained using Eq. (B10) and as described in Fig. 2. Lastly, solid
red line is the energy levels obtained for different values of frequency
given by Eq. (8).

the effect is not only significant but must indeed be included in
the calculations for proper assessment of, for example, Raman
cross section calculations of the surface enhancement. The
term “thermoplasmonics” was introduced in Ref. [22] to em-
phasize the photothermal nature and processes associated with
plasmon resonances. As an example, we further discuss these
points using the specific example of a nanorod, as described
in Appendix A.

III. HAMILTONIAN OF THE SURFACE CHARGE DENSITY

The initial state of the system may be composed of the
initial state of the cylindrical surface plasmon and the ini-
tial state of an incident photon. This initial state may then
transition into a state composed of the final states of the
plasmon and an outgoing particle. To calculate the scat-
tering rate, that is, the rate of transitions in these events,
we will require the plasmon Hamiltonian in terms of cre-
ation and annihilation operators. With the canonical form
obtained, other related operators can be constructed. In ad-
dition, having a quantum Hamiltonian that explicitly shows
the eigenmodes is helpful for analyzing the various transitions
or when calculating other quantum scenarios, for example,
qubit-plasmon coupling for quantum information processing
or performing quantum optical operations such as quantum-
dot-induced beam splitting [16]. In general, when treating,
for example, the coupling between a quantum emitter and
a plasmonic nanostructure, having an appropriate quantum
Hamiltonian for the nanostructure is necessary for the cal-
culations. Other potentially important information includes
the development of concepts based on entangled plasmons,
entangled photon-plasmon, plasmon-electron, etc. In all such
calculation, utilizing specific quantum states of the plasmonic
system could be beneficial. Electronically large systems such
as various nanoparticles pose difficulty for many-body treat-
ments that take into account the geometry of the electronic
system. The presented treatment helps illuminate the inner
working of involved quantum modes.

From the potential in Eq. (7), the classical energy E of
the cylindrical polarization surface charges can be calculated
(Appendix E) for a scaling factor b as

E = bπ

2

∞∑
m=−∞

∫ ∞

−∞

θm(k, ρ0)

ω2
mk

[|Ċmk (t )|2 + ω2
mk|Cmk (t )|2] dk,

(9)

where, for convenience, we have defined

θm(k, ρ0) = Im(|k|ρ0)Km(|k|ρ0).

Following the symmetry properties of modified Bessel
functions and the relations outlined through Eqs. (E7)–(F9),
we write the amplitudes in terms of the new complex functions
cmk as

Cmk (t ) = γmk

2ωmk
[cmk (t ) + c∗

−m−k (t )], (10)

Ċmk (t ) = iγmk

2
[cmk (t ) − c∗

−m−k (t )], (11)

and thus express the energy as

E = bπ

4

∞∑
m=−∞

∫ ∞

−∞

γ 2
mk

ω2
mk

θm(k, ρ0)(cmkc∗
−m−k + c∗

mkc−m−k ) dk

(12)

using

|Ċmk (t )|2 + ω2
mk|Cmk (t )|2 = γ 2

mk

2
(cmkc∗

−m−k + c∗
mkc−m−k ).

We can now write (12) as a quantum Hamiltonian in terms
of the annihilation and creation operators, ĉmk and ĉ†

mk ,
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respectively,

H = 1

2

∑
m

∫ ∞

−∞
h̄ωmk (ĉ†

mkĉmk + ĉmk ĉ†
mk ) dk. (13)

From the equity of Eqs. (9) and (13) while using Eqs. (10) and
(11), one finds

γ 2
mk = 2h̄

bπ

ω3
mk

θm(k, ρ0)
. (14)

To obtain the quantized scalar potentials, we consider �i given
by Eq. (7) for ρ0 < ρ and its complex conjugate. Following
Appendix F, using the fact that the scalar potential is real
valued, and Eq. (14), we obtain the following complex am-
plitudes:

Cmk (t ) =
√

h̄ Amk (ĉmk + ĉ†
−m−k ),

with

Amk =
√

h̄ωmk

2bπθm(k, ρ0)
, (15)

where the operator cmk and its complex conjugate c∗
mk are

replaced by creation and annihilation operators, ĉmk and ĉ†
mk ,

respectively. Therefore, Eq. (7) can be rewritten as

�(r, t ) =
∞∑

m=−∞

∫ ∞

−∞
Amk[θ<

m (|k|, ρ) + θ>
m (|k|, ρ)]

× (ĉmk + ĉ†
−m−k )ei(kz+mϕ) dk,

with θ<
m and θ>

m given in Eqs. (2) and (3). In order to transit
from integral to sum, one may use a quantization volume
V , enclosing a length L of the cylinder, where V = πρ2

0L.
Carrying the integral to a sum, where in transition, we have

utilized the expression [23]
∑

k
→

√
L
2π

∫
dk, the quantized

potential is found:

�(r, t ) =
√

2π

L

∞∑
m=−∞

∑
k

Amk [θ<
m (|k|, ρ) + θ>

m (|k|, ρ)]

× (ĉmk + ĉ†
−m−k )ei(kz+mϕ).

It is instructive to note that, utilizing the potential and kinetic
energies, given in Eqs. (E5) and (E6), respectively, the La-
grangian of the system takes the explicit form

L = 1

4

∞∑
m=−∞

∫ ∞

−∞

|Ċmk (t )|2 − ω2
mk|Cmk (t )|2

ωmk A2
mk

dk,

from which we derive the equation of motion as

|C̈mk (t )|2 − ω2
mk|Cmk (t )|2 = 0.

Noting the real-valued electric scalar potentials, the ampli-
tudes [see Eq. (F5)] satisfy Cmk (t ) = C−m−k (t ), for all m and
k. In order to quantize the system, it is convenient to separate
the real and imaginary parts of the complex dynamical vari-
ables Cmk (t ) by defining real dynamical variables xmk and ymk

and write

Cmk (t ) = xmk + i ymk .

The Lagrangian now becomes a function of the coordinates
xmk and ymk as

L = 1

4

∞∑
m=−∞

∫ ∞

−∞

1

ωmk A2
mk

{|ẋmk (t )|2 − ω2
mk |xmk (t )|2

+ 2i[ẋmk (t )ẏmk (t ) − ω2
mk xmk (t ) ymk (t )]

− |ẏmk (t )|2 − ω2
mk |ymk (t )|2} dk,

and the corresponding “velocities” ẋmk and ẏmk and conjugate
momenta (pmk = ∂L/∂ ẋmk and qmk = ∂L/∂ ẏmk):

pmk = 1

2

∞∑
m=−∞

∫ ∞

−∞

[ẋmk (t ) + iẏmk (t )]

ωmkA2
mk

dk, (16)

qmk = 1

2

∞∑
m=−∞

∫ ∞

−∞

−[ẋmk (t ) + iẏmk (t )]

ωmkA2
mk

dk. (17)

The Hamiltonian now takes the form

H =
∑
m,k

(pmkẋmk + qmkẏmk ) − L,

and by inverting Eqs. (16) and (17),

H =
∞∑

m=−∞

∫ ∞

−∞

1

ωmk A2
mk

[|ẋmk (t ) + i ẏmk (t )|2

+ ω2
mk |xmk (t ) + i ymk (t )|2] dk,

which gives

H = bπ

2

∞∑
m=−∞

∫ ∞

−∞
dk θm(k, ρ0)

[
|xmk (t ) + i ymk (t )|2

+ 1

ω2
mk

|ẋmk (t ) + i ẏmk (t )|2
]
,

and is thus consistent with the classical energy given in
Eq. (9).

IV. INTERACTION HAMILTONIAN

Here, we consider the quantum formulations to describe
the photon-surface charge interaction, in which the solid
cylinder may be treated as an electron fluid. Briefly, without
any specific boundary conditions, we may invoke the hydro-
dynamical formulation of a plasma. The collective linearized
hydrodynamic equation of motion for an electron, ignoring
the damping, in an electric field is written as

∂v
∂t

= − e

m
E − β2

n0
∇n1(r, t ), (18)

where v denotes the nonequilibrium velocity correction to
the static sea of electrons, β is the propagation speed of the
disturbance through the electron gas, and ∇n1(r, t ) denotes
the semiclassical correction term in electron charge density,
that is,

n(r, t ) = n0 + n1(r, t ),

while n0 is the electronic density in the undisturbed state
satisfying n1 � n0. The last term in Eq. (18), originates from
a quantum description of pressure effects in the electron
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gas. The continuity equation is given as ∂t n = −∇ · (nv). In
Eq. (18), the first term is the Lorentz force, while the second
term is due to the internal kinetic energy of the electron
gas, here described within the Thomas-Fermi model, with
β proportional to the Fermi velocity vF [24,25]. In order to
solve Eq. (18) along with the continuity equation, the standard
procedure is to expand the physical fields in a zeroth-order
static term, where, as mentioned above, n0 is the homoge-
neous static electron density, with a small first-order dynamic
term, n1 [26]. In the frequency domain, and by linearizing the
equations, one may obtain

β2∇(∇ · J) + J = i
e2 n0

m ω
E,

where J is the induced current density, here, the cylindri-
cal surface charge, which can be written as J = −n0e v,
where n0 and e denote the number density of electrons and
charge of the electron, respectively [24]. Within the linearized
hydrodynamic model using quantization and perturbation the-
ory, Ritchie and Wilems [27] obtained important interaction
Hamiltonians. An example is H int = 1

c

∫
J · A d�, where A

is the vector potential operator of the photon field.
Other interactions of interest include the first and second

terms of the perturbed Hamiltonian describing the photon-
plasmon interaction, denoted by H int

em and H int
inel, respectively,

in the model developed by Ritchie [19]. The first interaction
is useful to describe the creation of a plasmon by a photon (ab-
sorption) or the decay of a plasmon into a photon (emission).
The second-order interaction describes the inelastic scattering
of a photon in creating a plasmon. A zeroth-order interaction
H int

el may be used to describe the elastic scattering of photons
due to the presence of an electron gas with uniform density.
Thus, with an explicit form of the vector potential operator for
the electromagnetic field, A, the various forms of matrix ele-
ments of the interaction Hamiltonian may be derived. In what
follows, we introduce matrix elements of the main interest
and derive the expressions for different kinds of interactions
between photons and surface plasmons for a solid cylinder.

To obtain the operator for the current density, we first write
the time derivative of the charge displacement vector Ż as

Ż = − e

me
∇

∑
m

eimϕ

×
∫ ∞

−∞

Ċmk (t )

ω2
mk

Im(|k|ρ)Km(|k|ρ0)eikz dk. (19)

If we use the following,

Ċmk (t ) = iγmk

2
(ĉmk − ĉ†

−m−k )

= i
√

h̄Amk (ĉmk − ĉ†
−m−k ),

where Amk is given in Eq. (15), then one may write

J = − iω2
p

4π
∇

∑
m

∫ ∞

−∞

Amk

ωmk
(ĉmk − ĉ†

−m−k )

× Im(|k|ρ)Km(|k|ρ0)eikzeimϕ dk, (20)

where the definition of the bulk plasma frequency ωp =√
4πn0e2/me has been used.

Replacing the integral with summation in (20) gives

J = − i
√

h̄ ω2
p

4π
√

bL
∑

m

∑
k

√
Km(|k|ρ0)

ωmkIm(|k|ρ0)

× (ĉmk − ĉ†
−m−k ) ∇[Im(|k|ρ)eikzeimϕ]. (21)

The current density operator can now be written as J =
n0e ∇�̇, where v = ∇�̇, and

�̇ = i
√

h̄ ω2
p

4π
√

bL
∑

m

∑
k

√
Km(|k|ρ0)

ωmkIm(|k|ρ0)

× (ĉmk − ĉ†
−m−k )Im(|k|ρ) eikzeimϕ. (22)

V. PHOTON AND PLASMON STATES

For a photon of wave vector s and polarization êq ⊥ s, q =
1, 2, the vector potential, A, in the Coulomb gauge (transver-
sality condition), can be expressed as [28]

A = c
√

h̄

(2π )3

∑
q=1,2

∫
êq√
ωs

[asq(t )eis·r + a∗
sq(t )e−is·r]d3s,

(23)

where the energy of the photon is given by h̄ωs, ωs = cs =
c|s| is the photon frequency, and asq(t ) and its conjugate a∗

sq(t )
are the photon operators, such that the equations for motion of
the field for all s are

[asq(t ), ȧsq(t )] = (1,−iωs)asq(0)e−iωst . (24)

To write the photon field as a sum with discrete momentum
eigenstates as opposed to the continuous representation, we
consider the field to be confined to a volume V, which can
be taken to be represented by a cube over which we im-
pose periodic boundary conditions. Since the electromagnetic
energy confined to this volume is independent of the shape
of the volume [23], we take as our quantization volume as
a cylindrical box with volume V and side L, and carry the
following substitutions:

∑
s

→ V
(2π )3/2

∫
d3s →

√
V

(2π )3

∫
d3s, (25)

where the normalization factor 1√
V [29] has been used to

arrive at the last expression. This substitution over the quan-
tization box does not affect the validity of expressions for
Hamiltonian and vector potentials [29–31]. Therefore, in sec-
ond quantization, the vector potential is expressed as

A =
∑

s

∑
q=1,2

√
h̄c2

Vωs
êq(âsq eis·r + â†

sq e−is·r ), (26)

where â†
sq and âsq denote the creation and annihilation photon

operators, respectively, and we write HA = ∑
s,q h̄ωs â†

sqâsq.
A photon in a given momentum and polarization state is
written as

|s, q〉 = â†
sq|0〉, (27)
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with |0〉 denoting the zero population in the photon field. The
general noninteracting plasmon states including the initial and
final states, i and f , respectively, are written as

|σ 〉 ≡ |νmiki . . . νm f k f 〉, (28)

where νmk are the number of plamons in the state (m, k).
The quantum state |σ 〉 of the cylinder charge density may be
written in terms of the number of plasmons in the (m, k) state
as |νmk〉, which in the zeroth order is obtained by populating
the no-plasmon state |0〉 via |â†

mk|0〉. The plasmon states are
orthonormal, that is,〈

. . . νmN . . . νm1 |νk1 . . . νkN . . .
〉 = . . . δm1k1 . . . δmN kN . . . . (29)

Similarly, the radiation field in noninteracting state of photons
can be represented by

|s, q〉 ≡ ∣∣νsiqi . . . νs f q f

〉
, (30)

where νsq show the number of photons with wave vector s
and polarization q = 1, 2. The general state for the composite
photon-plasmon field, using the fact that photon operators act
only on the photon states and the plasmon operators only act
on plasmons, can be written as

|s, q〉 ⊗ |σ 〉 ≡ ∣∣νsiqi . . . νs f q f

〉 ⊗ ∣∣νmiki . . . νm f k f

〉
. (31)

In the following calculations, we note that for all photon states
sq and s′q′, we have

〈0 | âs′q′ â†
sq | 0〉 = δ(s − s′) δqq′ , (32)

with δ(s − s′) as the Dirac delta function, not to be confused
by δqq′ as the Kronecker delta function. Similarly, for all
the plasmon states, mk and m′k′, we have 〈0 | ĉm′k′ ĉ†

mk | 0〉 =
δ(k − k′) δmk′ .

VI. SCATTERING CROSS SECTIONS AND DECAY RATE

A. Elastic scattering

To calculate the scattering cross section, that is, the rate
of scattering divided by the flux of the incoming particles,
we first set our full system as the combined surface plasmon
and photon field. Then we consider the ground state or zero
population for both plasmon and photon as |0〉. The cross
section per unit length for the scattering process can be ob-
tained by summing up the transition rate over final states. We
proceed by calculating the corresponding matrix element for
direct scattering (elastic, including the Thomson limit). For
scattering of photons out of the incident beam direction

Mel := 〈0|âq f (s f ) H int
el â†

qi
(si )|0〉, (33)

for a wave vector s with indices f and i indicating the final
and initial states, respectively, and the zeroth term of the
interaction Hamiltonian H int

el represents the direct scattering:

H int
el = n0e2

2mc2

∫
ρ�ρ0

A · A dV . (34)

Therefore, in calculating H int
el , using Eq. (26), one may

write

H int
el = n0e2 h̄

2mV√
ωs ωs′

∫ ∞

0

∫ 2π

0

∫ ρ0

0∑
s,q,s′,q′

(âsq eis·r + â†
sq e−is·r )(âs′q′ eis′ ·r + â†

s′q′ e−is′ ·r )

× (êq · êq′ )hρhϕhz dρdϕdz. (35)

Direct scattering matrix element as expressed in Eq. (33) can
now be calculated by means of the commutative relations
[âsq, â†

sq] = δqq′δss′ . Therefore,

Mel = b2 n0e2 h̄

2mV ωs

∫ ∞

0

∫ 2π

0

∫ ρ0

0
ρ (êq · êq)

× (âsq eis·r + â†
sq e−is·r )dρdϕdz, (36)

with no m and k dependency. In order to calculate the differen-
tial scattering cross section per solid angle �, one may utilize
the transition-rate formula,

w f i = 2π

h̄2 |Mel|2 δ(ωs f − ωs0 ), (37)

to find differential scattering cross section as

dσel

d� f
= 1

c

∑
q f

∫
w f i ω

2
s f

(2πc)3
dωs f . (38)

The normalized cross section by unit length is obtained by
summing the transition rate over final states and normalizing
by length L and c sin ψ0/V , where ψ0 is the angle between a
fixed wave s0 and the cylindrical axis [30]. Thus,

σel|ρ0
= V

Lc sin ψ0

2π

h̄2

∑
q f

∑
s f

|Mel|2 δ
(
ωs f − ωs0

)
. (39)

B. Emission and absorption

It can be observed from Eqs. (40) and (42) that surface
plasmons emission and absorption originate from the same
dipole transition matrix element and they assume the same
magnitude in principle. Therefore, in this case they are re-
versible in the sense that an emitted photon from such a
quantum system should be absorbed by the same system. In
general, the reciprocity between emission and absorption oc-
cur for many transitions. This is not unlike the electromagnetic
reciprocity, time-reversal symmetries, and Kirchhoff’s law of
thermodynamics for equilibrium systems, which can impose
constraints on emission and absorption properties of, for ex-
ample, antennas in a broad frequency range. The requirement
of reciprocity means that the optical antenna transmits and
receives fields equally well from the same direction. Breaking
the reciprocity is currently the focus of recent work to enable
new applications [32].

Here, we provide a detailed calculations the rate at which
an excited surface emits lights per solid angle � in a cylin-
drical domain. Based on the argument above, deriving the
same expressions for absorption should follow immediately.
The matrix elements corresponding to emission via radiative
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decay of surface plasmons may be written as

Mem := 〈0|âq f (s f ) H int
em ĉ†

miki
|0〉, (40)

where

H int
em = 1

c

∫
J · A dV . (41)

The term H int
em represents the interaction of one photon and

one plasmon, which can be used to predict the creation of a
plasmon by a photon or the decay of a plasmon into a photon.
This term also corresponds to the interaction Hamiltonian
used to calculate the rate of absorption. The matrix element
for absorption is given by

Mabs := 〈0|ĉm f k f H int
em â†

qi
(si )|0〉, (42)

which is the Hermitian dual to Eq. (40), since it represents the
inverse process.

The interaction Hamiltonian, imposing the Coulomb gauge
condition ∇ · A = 0 and considering the fact that current is
confined to the surface of the cylinder, is given by

H int
em = −n0e

c

∫ 2π

0

∫ ∞

0
(�̇A · êρ )hϕ hz dϕ dz, (43)

which leads to

H int
em = n0e2

m0c

∑
s

∑
k=1,2

√
h̄

Vωs
(êρ · êk )

× (âskeis·r + â†
ske−is·r )

∑
m

J k
m(ρ0), (44)

where V = πρ2
0L is the volume of the finite cylindrical box

with length L, γ is given in (14), and

J k
m(ρ) =

∫ 2π

0

∫ L

−L

{∫ ∞

0
Km(|k|ρ)Im(|k|ρ)eimϕeikz

× −iAmk

ωmk
(ĉmk − ĉ†

−m−k )dk

}
hϕhz dϕdz, (45)

Hence, the emission matrix element becomes

Mem = −i
n0e2

m0

√
h̄

Vωs

Amk

ωmk
θm(k, ρ0)Imk (ρ), (46)

where

Imk (ρ) =
∫ 2π

0

∫ L

−L
(êρ · êk )e−is·reimϕeikzhϕhz dϕdz. (47)

Taking s = ωs(cos ψ, 0, sin ψ ), allows us to take êq, as
ê1 = (0, 1, 0) and ê2 = (sin ψ, 0,− cos ψ ). This leaves us
with two different integrals to calculate:

I (1)
mk = bρ0

∫ 2π

0

∫ L

−L
sin ϕeimϕeikzEmk (ϕ, z) dϕdz (48)

and

I (2)
mk = bρ0

∫ 2π

0

∫ L

−L
sin ψ cos ϕeimϕeikzEmk (ϕ, z) dϕdz,

(49)

where

Emk (ϕ, z) = e−iωs (ρ0 cos ψ cos ϕ+sin ψz). (50)

Radiative decay rate with respect to solid angle � is given
by the following, which after using (14) takes the form

dγmk

d�
=

(
n0e2

me

)2
θm(k, ρ0)

8πbc3

[(
I (1)

mk

)2 + (
I (2)

mk

)2]
. (51)

The analytic solution for I (1)
mk and I (2)

mk can be obtained as

I (1)
mk = −2ibρ0

α β
sin(Lα)

[
(−1)me−iβ − im

2π
Jm(β )

]
(52)

and

I (2)
mk = 2bρ0 sin ψ

4πα
sin(Lα) [Jm+1(β ) + Jm−1(β )], (53)

where

α = k − ωs sin ψ, β = ρ0 ωs cos ψ. (54)

In Fig. 5, contour plots corresponding to two specified modes
(m, k) = (0, 1) and (m, k) = (0, 2) for shape parameters ρ,
using Eq. (51) and the integral solutions given in Eqs. (52)
and (53), are illustrated.

C. Total elastic and inelastic scattering

Matrix element for the total elastic scattering, assuming
that γ is the plasmon damping factor, is obtained as shown
below:

Mtel = Mel +
∑
mk

1

h̄

[ MemMabs

ωsi − ωmk + (iγ /2)

− M∗
emM∗

abs

ωs f + ωmk − (iγ /2)

]
. (55)

For inelastic photon scattering resulting in excitation of
a surface plasmon mode (m, k) on the cylinder, the matrix
element is

Minel = 〈0|âq f (s f )ĉm f k f H int
inel â†

qi
(si )|0〉, (56)

where

H int
inel = e2

2mc2

∫
n̂(r, t ) A · A dV, (57)

with n̂(r, t ) being the number charge density operator. The
involvement of two photons and one plasmon describes
the inelastic scattering of a photon in creating a plasmon.
The number density operator n(r, t ), is found from the vol-
ume charge density, �, for the cylindrical domain. We note
Eq. (D1), and with � given in Eq. (7), we find

� = δ(ρ − ρ0)

4πh2
ρρ0

∞∑
m=−∞

eimϕ

∫ ∞

−∞
Cmk (t )eikz dk.
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FIG. 5. Contour plots of curvature-induced shift in the radia-
tion pattern associated with the decay of plasmons excited on the
cylindrical surfaces for the specified modes (m, k) = (0, 1) (up) and
(m, k) = (0, 2) (down), and for different shape parameter ρ and
varying emission angle ψ [see Eq. (51)].

Using Cmk (t ) = √
h̄ Amk (ĉmk + ĉ†

−m−k ), with Amk given in
Eq. (15), the operator n̂(r, t ) can be written as

n̂(r, t ) = −δ(ρ − ρ0)

4π e h2
ρρ0

∞∑
m=−∞

eimϕ

×
∫ ∞

−∞

√
h̄ Amk (ĉmk + ĉ†

−m−k )eikz dk. (58)

Therefore,

H int
inel = − b n0e h̄3/2

8π m ρ2
0V

√
ωs ωs′

∞∑
m=−∞

∑
s,q,s′,q′∫ ∞

0

∫ 2π

0

∫ L

−L
Gk

m(ρ0)(êq · êq′ )(âsq eis·r + â†
sq e−is·r )

× (âs′q′ eis′ ·r + â†
s′q′ e−is′ ·r )dz dϕ dk, (59)

and with L → ∞, we have
Gk

m(ρ) = Amk (ĉmk + ĉ†
−m−k )ei(mϕ+kz). (60)

We may now use Eq. (56) and the commutation relations for
photon and plasmons interaction, to obtain the matrix element

Minel = − i b n0e h̄3/2L1/2

4π m ρ2
0V

√
ωs ωs′

(êqi · êq f ) Amk Jm(μ), (61)

where Jm(·) denotes the Bessel function of the first kind and μ

is calculated by the choice of wave-vector travel direction be-
ing perpendicular to the polarization vectors, i.e., êq ⊥ s, q =
1, 2.

As presented above, by expressing the energy in the canon-
ical form followed by replacing the mode amplitudes with
boson creation and annihilation operators for the surface plas-
mons, various quantum cross sections may be calculated.
However, a note on a comparison of these results to classical
results may be worthwhile. Despite previous reports [33–35]
on the difference between the classical and quantum mechan-
ical definitions of scattering cross sections and the problem of
classical limit, the general derivation of classical results from
the quantum mechanics, i.e., the reduction theory, is still afar.
While such calculations are outside of the current work, to
compare the classical and quantum results, one may consider
the more tangible case of a finite nanostructure. For example,
the prolate spheroidal nanoparticle may be employed in a
comparison study.

VII. CONCLUSIONS

In summary, the classical and quantum calculations present
a reasonable modeling framework when working with nanos-
tructures with cylindrical symmetry. The quasistatic plasmon
dispersion relations, predicting the availability of useful res-
onance modes in the low-eV range, appear to be modified
significantly by retardation effects near the light line. The
computed fields, corresponding to the resonance modes, in-
duce significant and rapid (ns) heating of the nanostructures
and, by conduction, of the substrate. The quantum calcu-
lations, while illustrating the nature of the various surface
electronic normal modes, provides a first estimate of the
plasmon energies. The obtained Hamiltonian proved useful
as a means to calculate relevant scattering quantities. The
quantum state of the collective surface charge density oscil-
lation provides a direct access to the quantum numbers of the
modes, which can be insightful when studying particle-emitter
coupling. In quantum sensing with plasmonic nanostructures,
the eigenstates of the Hamiltonian corresponding to different
charge oscillations may be useful for coupling to and con-
trolling of specific qubits. It may be of interest to consider
specific thin film cylindrical coatings of nonlinear materials,
envisioned in a multilayer cylindrical circuit element, which
may provide squeezing and entanglement of specific modes.
Given the long propagation of surface plasmons, it is conceiv-
able to devise circuits that facilitate transport of qubits across
larger segments of an integrated on-chip photonics system.
The described photon-plasmon interaction Hamiltonian may
be upgraded to a higher order, beyond the first order employed
here. The example depicted in Fig. 1, although conceptual,
is of current interest in the study of metamaterials, e.g., for
designing optomechanical metamaterial systems [36]. More-
over, large-aspect-ratio structures, similar to hyperboloids
and paraboloids, are excellent platforms for photoemission,
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making the obtained results of potential use for the study
of nanostructures as electron sources [37,38]. Similarly, our
quantum calculations can serve to further study the electronic
and magnetic properties of carbon nanotubes, where cylindri-
cal domains are the natural modeling environment [8,39].
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APPENDIX A: FURTHER DISCUSSIONS ON LOSSES

Here, we present a specific example that illuminates the
calculation of the plasmon fields and their photoacoustic or
photothermal effects. In the following, to compute the needed
fields and spectra, we use the numerical technique of finite
elements (FEM [40]). The complex dielectric function ε(ω) is
taken to be in the Drude form,

ε(ω) = 1 − ω2
p

ω2 + �2
+ i

ω2
p�

ω(ω2 + �2)
, (A1)

where ωp is the usual plasma frequency, and the relaxation
constant � quantifies the damping. Since the damping is at
least three orders of magnitude smaller than the actual energy
and its absolute value increases with the increasing k, often
one suffices with considering only the real part, as in the
case of Fig. 2. We may consider a metallic domain such as
a substrate-supported nanoparticle or nanostructure real mate-
rials from a comparison with the experimentally determined
optical properties of solids (such the compilations by Johnson
and Christy [41] or Palik [42]). This configuration is par-
ticularly useful for studies of interactions between quantum
emitters and the plasmon-supporting particles, as depicted in
Fig. 6. As a brief illustration, the dipole-excited fields may
be computed, as visualized for the near zone in Fig. 7. For
a gold particle immobilized on a quartz substrate, the fields
were here computed by numerically solving the 3D field equa-
tions subject to appropriate boundary conditions. Assuming
a properly polarized incoming field, that is, one which is
defined with respect to the symmetries of the structure, we
can compute (using the finite elements method) the spectral
properties of the ensuing scattering, as shown in Fig. 8. The
scattering and extinction cross sections are here given without
any normalization (in units m2 for 3D models). The red shift
and significantly lower energy (nW) dissipation for the case
with a substrate are evident. With the excited polarization for
specific spectral peaks, as visualized in Fig. 9, the deposited
power into the nanostructure as a result of its interaction with
the field can be computed, shown in Fig. 10. To account
for the temperature T changes, brought about by the optical

FIG. 6. An example of a basic substrate-bound nanoparticle for
integrated plasmonics. Shown is a nanorod-type metallic particle
with a dielectric function of εm placed on a substrate with a di-
electric function εs. A number of quantum emitters ei, i = 1, 2 with
dipole moments μ̄i, i = 1, 2 may be brought into interaction with
the particle. The angles α1 and β1 depict a possible orientation of the
first emitter. Other types of nanoparticles, substrates, emitters, and
their configurational relations can be similarly envisioned. A field
with momentum k̄, here arbitrarily shown in a plane of incidence
perpendicular to the x axis, interacts with the nanoparticle and the
emitters. The system may be assumed thermodynamically open.

losses, we may solve the heat diffusion equation. Neglecting
heat flux by radiation and convection (nanometer-scale sur-
face area), and with zero velocity vector for the subdomain
translational motion, we solve T (r, t ): −∇ · k∇T + ρCTt =
S (λ), where ρ, C, and k are, respectively, the density, heat
capacity, and thermal conductivity of gold or quartz, while S
is the wavelength-dependent λ source term. In general, k is
a symmetric positive-definite second-order tensor. Thus, the
ensuing thermoelastic effect generates a source term −αT :
dσ/dt, where α is the thermal expansion coefficient, d/dt
is the time derivative operator in the material frame, and σ

is the stress distribution. The temperature changes yields an
effective mechanical force. By solving the equation of motion,
we thus compute the mechanical eigenmodes of the nanopar-
ticle. By solving the heat diffusion equation with the source
term provided by the optical losses, as can be seen in Fig. 11,
the time evolution is seen to be sufficiently fast that, as far
as energy diffusion is concerned, one may assume that the de-
posited power is instantaneous and uniform. From the solution
of the diffusion equation, we can therefore obtain the energy
transport from the nanoparticle into the surrounding domain
via radiation and conduction but neglecting convective trans-
port. Inclusion of the dielectric substrate will not only red shift
plasmon energies but also facilitate a new transport channel
for the dissipated heat energy.

We also note that when the radius of the structure is smaller
than the electron mean free path, the losses are larger [43].
Classical computational calculation of the nonradiative losses
(leading to very effective localized heating) can be informa-
tive. The generated heat makes the plasmonic nanostructure
a very effective heat source for applications such as killing
cancer cells and microfluidic actuation. Other than present-
ing a quantitative assessment of the nonradiative losses, the
effect does not play a significant role for the objectives of
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FIG. 7. Field component distribution Ex (top), Ey (middle), and
Ez (bottom) engendered in the nanoparticle by two dipoles symmetri-
cally placed along the long axis of the nanoparticle. The dipoles emit
at a wavelength of 535 nm with their moments parallel to the z axis.

the present work (unless one attempts plasmon sensing or
surface-enhanced Raman spectroscopy and imaging [44]). In-
deed, due to the difficulties associated with calculation of the
nonradiative losses, many reported works have simply ne-
glected the photothermal effect. However, the effect is not
only significant but must indeed be included in the cal-
culations for proper assessment of for example Raman
cross-section calculations of the surface enhancement. We
introduced the term “thermoplasmonics” to emphasize the
photothermal nature and processes associated with plasmon
resonances

APPENDIX B: RETARDED DISPERSION RELATIONS

Cylindrical coordinates is given by

x = bρ cos ϕ, y = bρ sin ϕ, z = b z, (B1)

(a)

(b)

(c)

FIG. 8. The spectral properties of the nanoparticle shown in
Fig. 6. For a 400-nm-long gold nanoparticle with prolate spheroidal
end curvature (long axis 77 nm, short axis 50 nm), the scatter-
ing of photons exhibit two main peaks (≈535 nm and 642 nm)
corresponding to excitation of the longitudinal and cross-sectional
excitations. In addition to the substrate-induced plasmon damping,
the two primary bands are observed to undergo a red shift and
broadening as shown for the scattering cross section (a) and for the
energy dissipation (b). The worsening of the spectral quality due to
the substrate is shown (c) for the fused silica substrate as well an
artificial substrate with higher index n.

where ρ ∈ [0,∞), ϕ ∈ [−π, π ], and z ∈ (−∞,∞) with
scale factors hρ = hz = b and hϕ = bρ, and b as the scaling
constant. The cylinder of revolution is the surface generated
by the revolution of a line parallel to an axis, around this axis,
here the z axis. Therefore, the resulting surface has azimuthal
symmetry with respect to the z axis. A cylinder in the cylin-
drical coordinator could be obtained by fixing the coordinate
component ρ as the radius of the cylinder, i.e., ρ = ρ0.
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FIG. 9. Polarization distribution of the nanoparticle at the spec-
tral peaks of the scattering cross section for an excitation field
of a polarization that provides both axial and cross-sectional field
components.

1. Helmholtz equation: Time-dependent dispersion relations

The Helmholtz equation in cylindrical coordinate has the
closed from ∇2E + h2E = 0, with ∇2 denoting the Laplace
operator, and is given by

1

ρ

∂

∂ρ

(
ρ

∂E
∂ρ

)
+ 1

ρ2

∂2E
∂ϕ2

+ ∂2E
∂z2

+ h2 E = 0. (B2)

The goal is to find the complex amplitude of the secondary
field E satisfying the Helmholtz equation given above. The
only possible set of solutions after considering the separation

FIG. 10. Computed nanoparticle plasmon-induced heat genera-
tion for a gold nanorod on a quartz substrate.

FIG. 11. Temperature distribution at t = 0.2 ns (top) and t =
2 ns (bottom) in the substrate plane due to energy losses in the
nanoparticle. The energy loss density is visualized for an interacting
field at a wavelength of 642 nm, corresponding to the plasmon
excitation along the long axis of the nanoparticle.

of variables E = R(ρ) �(ϕ) Z (z) is

ρ
d

dρ

(
ρ

dR(ρ)

dρ

)
+ [

κ2 ρ2 − m2]R(ρ) = 0,

d2�(ϕ)

dϕ2
+ m2�(ϕ) = 0,

d2Z (z)

dz2
+ k2

z Z (z) = 0, (B3)

where κ , m, and k are constants of x, y, and z with κ and k
satisfying

κ2 + k2
z = h2. (B4)

The final solution for a given set of κ , kz, and m is given by

Eκkm = Bm(κρ) f (mϕ) g(kzz), (B5)

where Bm(κρ) is the combination of Bessel functions. De-
pending on the boundary conditions, it may be chosen among
Jm(·) and Ym(·), Bessel function of first and second kind,
respectively, or Im(·) and Km(·), the modified Bessel function
of first and second kind, respectively. The Hankel functions
may be replaced by Jm(·) and Ym(·), Bessel functions of
the first and second kind, as an alternative representation
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[45]. Lastly, the choice of modified Bessel functions for in-
side and outside of the solid cylinder lies in the asymptotic
behaviors of these functions. Im(|k|ρ) → ∞ when ρ → ∞
while Km(|k|ρ) → ∞ when ρ → 0 [45].

In Eq. (B2), we may make the substitution

h2 = ε
ω2

c2
, (B6)

as the corresponding total momentum, where ω is the angular
frequency of the excitation and c denotes the so-called speed
of light. We may define a solid cylinder as a surface of revolu-
tion by fixing ρ = ρ0, and the position vector as r = (ρ, ϕ, z).
One may impose the Dirichlet boundary condition (which
specifies the value of the function on a surface, i.e., Ei = Eo

when ρ = ρ0) as well as Neumann boundary condition which
specifies the normal derivative of the function on a surface, as

εi(ω) ∇Ei · ñ|ρ=ρ0 = εo(ω) ∇Eo · ñ|ρ=ρ0 . (B7)

2. Retarded dispersion relations

The interaction of the radiation field with matter, described
as a scattering process, may exhibit strong spectral variation
depending upon the geometric and material properties. There-
fore, prior to quantization of the cylindrical surface waves to
obtain the surface plasmon states, we consider electromag-
netic normal modes of the solid domain as a starting point.
With reference to Appendix B, solving the Helmholtz equa-
tion for points r = (ρ, ϕ, z) in a domain partitioned by an
infinite cylinder of radius ρ = ρ0, the solution set of eigen-
functions for the triple (κ, kz, m) is given by

Eκkzm = Bm(κρ) f (mϕ) g(kzz),

where Bm(κρ) is the combination of Bessel functions, as

Bm(κρ) ∼ Jm(κρ)Ym(κρ) Im(κρ) Km(κρ),

where Jm(·) and Ym(·) denote the Bessel function of the first
and second kind, respectively, and where Im(·) and Km(·) de-
note the modified Bessel functions of the first and second kind,
respectively. The Bessel functions of the first and second kind,
Jm(·) and Ym(·), may also be replaced by the Hankel functions,
H (1)

m (κρ), H (2)
m (κρ), also known as the Bessel functions of the

third kind, as an alternative representation [45].
The choice of Bessel functions depends on two factors:

(1) the radiative or nonradiative regime being considered and
(2) the asymptotic behavior of the modified Bessel func-
tions. More specifically, Bessel functions of the first and
second kinds, Jm(·) and Ym(·), are associated with the radia-
tive regime, whereas modified Bessel functions of the first
and second kinds, Im(·) and Km(·), represent the nonradia-
tive regime. The radiative regime requires [as will be seen
from Eq. (B9) and the light line in Fig. 2], up to some con-
stant, Bm(κρ) = Jm(κρ) H (1)

m (κρ), while for the nonradiative
regime Bm(κρ) = Im(κρ) Km(κρ). In the interior versus ex-
terior of the cylinder, we note Im(κρ) → ∞ when ρ → ∞
while Km(κρ) → ∞ when ρ → 0 [45].

To simplify the equations, after partitioning the space with
the Heaviside function 	, with the half-maximum convention,
	(0) = 1/2, we introduce θ<

m (κ, ρ) and θ>
m (κ, ρ) as given in

Eqs. (2) and (3). In the nonradiative regime, the solutions may

be obtained for the z component of the electric field as

Ez(r, t ) =
∞∑

m=−∞
Cm(t )ei(kz z+mϕ−ωt )

× [θ<
m (κi, ρ) + θ>

m (κo, ρ)], (B8)

where Cm(t ) is the complex quasistatic mode amplitude at
time t , with m ∈ Z, counting the azimuthal modes. Here,
kz is the magnitude of the wave vector along the cylinder
axis, κ is the transverse momentum, indexed to indicate the
interior and exterior domains (κi and κo) of the solid, and ω

is the field frequency. Alternatively, one may rewrite Eq. (1)
using the Euler relation for the azimuthal solutions with the
consideration that now m ∈ N + {0}, and for a fixed value of
m, there are two different sets of solutions depending on the
branches in sin(·) or cos(·). The remaining field components
can be written as

Eϕ (r, t ) =
∞∑

m=−∞

[
− hm

κ2ρ
Dm(t )Im(κρ) + iω

κ
Em(t )K ′

m(κρ)

]

and

Eρ (r, t ) =
∞∑

m=−∞

[
− mω

κ2ρ
Fm(t )Im(κ ρ) + ih

κ
Gm(t )K ′

m(κρ)

]
.

Since κ2 + k2
z = h2, we may use Eqs. (B4) and (B6) to write

κ2
i = k2

z − h2
i = k2

z −ω2εi(ω)/c2,

κ2
o = k2

z − h2
o = k2

z −ω2εo(ω)/c2, (B9)

where εi and εo denote the values of the dielectric functions
at frequency ω for the interior and exterior domains, respec-
tively. Imposing Dirichlet and Neumann boundary conditions
[see Eq. (B7)] results in

(cρ0κiκo)2(κ2
o εiIm − κ2

i εoKm
)(

κ2
o Im − κ2

i Km
)

− [mωkz(εo − εi )]
2 = 0, (B10)

where Im and Km are given in Eqs. (5) and (6), for m =
0, 1, 2, . . . (also see Ref. [20]). We later show that Eq. (B10)
reduces to the quasistatic dispersion relations when c → ∞.
Considering the dielectric properties of the involved media
εi/εo, we may assume εo = 1 and εi(ω) = ε(ω), that is,
a vacuum-bounded solid cylinder with a local frequency-
dependent dielectric function. Solving Eq. (B10) explicitly for
ε, one may obtain

ε(ω) = κ3
i κ3

o Im Km − κ4
i κ2

o K2
m + (mωpkz/ρ0)2

κ2
i κ4

o I2
m − κ3

i κ3
o Im Km + (mωpkz/ρ0)2 . (B11)

The energies of the first few plasmon modes m in Fig. 2
correspond to set of pairs (kz, ω) for which Eq. (B10) is
zero, that is, for each m, the roots (kz, ω) of the implicit
function Eq. (B10) are found and enhanced by interpolation.
The results agree well with reported cylindrical surface modes
[8,21]. The solutions on the right-hand side of the light line
ω = c kz correspond to the nonradiative regime (whereas the
radiative regime solutions will appear on the left-hand side,
not displayed).
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APPENDIX C: QUASISTATIC DISPERSION RELATION

The quasistatic plasmon dispersion relations may be ob-
tained from Eq. (B10) when c → ∞. Alternatively, they may
also be obtained directly from the scalar potentials satisfying
the Laplace equation. In Appendix C, we have shown that our
solution Eq. (B10) agrees well with the special case of that of
a multilayered cylinder [8]. In the quasistatic limit, c → ∞,
Eq. (B10) reduces to[

κo ε(ω)
I ′
m(κi ρ0)

Im(κi ρ0)
− κi

K ′
m(κo ρ0)

Km(κo ρ0)

]

×
[
κo

I ′
m(κi ρ0)

Im(κi ρ0)
− κi

K ′
m(κo ρ0)

Km(κo ρ0)

]
= 0. (C1)

Observing Eqs. (B9) in this limit, we have |κi| = |κo| = |kz| =
κ , and since the Wronskian of the modified Bessel functions
prevents the second bracket in Eq. (C1) from being zero, we
obtain, for a Drude metal of plasma frequency ωp, the energy
of a surface plasmon mode (m, κ )

h̄ωmκ = h̄ωp

√
I ′
m(|κ| ρ0) Km(|κ| ρ0)

W{Im(|κ| ρ0), Km(|κ| ρ0)}
= h̄ωp

√|κ| ρ0 I ′
m(|κ| ρ0) Km(|κ| ρ0),

where the last expression is obtained from the fact that the
Wronskian satisfies the identity [46,47] W{Im(z), Km(z)} =
z−1, which agrees with the cylindrical limit frequency given
in Eq. 3.10 in Ref. [48]. The results are shown in Fig. 3.
In greater detail, given explicitly in [8], the non-quasi-static
solution for frequencies are expressed as the following deter-
minant: ∣∣∣∣τm−1 ϕm

ζm νm−1

∣∣∣∣ = 0, (C2)

whose solutions for a double-nanowire system are given in
Ref. [21] as

κ2
i κ2

o

[
κo εi

I ′
m(κi ρ)

Im(κi ρ)
− κi εo

K ′
m(κo ρ)

Km(κo ρ)

]

×
[
κo

I ′
m(κi ρ)

Im(κi ρ)
− κi

K ′
m(κo ρ)

Km(κo ρ)

]

− m2 k2

ρ2
(εo − εi )

ω2

c2
= 0. (C3)

On the one hand, without loss of generality, one may assume
the geometry is placed in a void with εo = 1, εi = ε, and κi =
κo = κ . Hence,

κ4

[
κ ε(ω)

I ′
m(κ ρ)

Im(κ ρ)
− κ

K ′
m(κ ρ)

Km(κ ρ)

]

×
[
κ

I ′
m(κ ρ)

Im(κ ρ)
− κ

K ′
m(κ ρ)

Km(κ ρ)

]

− m2 k2

ρ2
[1 − ε(ω)]

ω2

c2
= 0. (C4)

Using the relation ω2
p/ω

2 = 1 − ε, we have

κ4

[
κ ε(ω)

I ′
m(κ ρ)

Im(κ ρ)
− κ

K ′
m(κ ρ)

Km(κ ρ)

]

×
[
κ

I ′
m(κ ρ)

Im(κ ρ)
− κ

K ′
m(κ ρ)

Km(κ ρ)

]

− m2 k2
z

ρ2
[1 − ε(ω)]

ω2

c2
= 0. (C5)

Therefore,[(
1 − ω2

p/ω
2) I ′

m(κ ρ)

Im(κ ρ)
− K ′

m(κ ρ)

Km(κ ρ)

][
I ′
m(κ ρ)

Im(κ ρ)
− K ′

m(κ ρ)

Km(κ ρ)

]

− m2 k2

κ6 ρ2

ω2
p

c2
= 0. (C6)

Using notations introduced in Eqs. (5) and (6), after some
algebra, one may find

ω2
p

ω2
m

=
(Im − Km)2 − m2 k2 ω2

p

κ6 ρ2 c2

I2
m − Im Km

, (C7)

which indicates the exact frequency for the cylinder.
On the other hand, in a quasistatic limit, if one lets c → ∞,

the above equation simplifies to[
κo εi

I ′
m(κi ρ)

Im(κi ρ)
− κi εo

K ′
m(κo ρ)

Km(κo ρ)

]

×
[
κo

I ′
m(κi ρ)

Im(κi ρ)
− κi

K ′
m(κo ρ)

Km(κo ρ)

]
= 0, (C8)

which implies at least one of the brackets to be zero. The
second bracket is never zero considering the Wronskian for
modified Bessel functions (see below). Hence,

κ ε
I ′
m(κ ρ)

Im(κ ρ)
− κ

K ′
m(κ ρ)

Km(κ ρ)
= 0 (C9)

and

ε = Im(κ ρ)

I ′
m(κ ρ)

K ′
m(κ ρ)

Km(κ ρ)
. (C10)

This relation could also be obtained by letting c → ∞ as in
Eq. (B10). Using the relation ω2

p/ω
2 = 1 − ε, we may write

ω2
p

ω2
m

= 1 − Im(κ ρ)

I ′
m(κ ρ)

K ′
m(κ ρ)

Km(κ ρ)

= I ′
m(κ ρ) Km(κ ρ) − Im(κ ρ) K ′

m(κ ρ)

I ′
m(κ ρ) Km(κ ρ)

= W{Im(κ ρ), Km(κ ρ)}
I ′
m(κ ρ) Km(κ ρ)

, (C11)

where W{Im(κ ρ), Km(κ ρ)} denotes the so-called Wronskian.
Using Ref. [46]

W{Im(z), Km(z)} = 1

z
,

one may write

ω2
p

ω2
m

= 1

κ ρ I ′
m(κ ρ) Km(κ ρ)

, (C12)
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which is the same as the cylindrical limit frequency given in
Eq. (3.10) in Ref. [48]. In the following section, we obtain this
relation independently by considering the retarded potential
and solving Laplace equation on the boundary of a solid
cylinder.

APPENDIX D: QUASISTATIC LIMIT

Laplace equation in cylindrical coordinate (ρ, ϕ, z) is
given by

∇2� = 1

b2

{
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂ϕ2
+ ∂2

∂z2

}
�. (D1)

Letting �(ρ, ϕ, z) = R(ρ)	(ϕ)Z (z) gives

d2Z

dz2
− k2Z = 0,

d2	

dϕ2
+ m2	 = 0,

d2R

dρ2
+ 1

ρ

dR

dρ
+

(
k2 − m2

ρ2

)
R = 0, (D2)

and replacing k with ik gives

d2Z

dz2
+ k2Z = 0,

d2	

dϕ2
+ m2	 = 0,

d2R

dρ2
+ 1

ρ

dR

dρ
−

(
k2 + m2

ρ2

)
R = 0. (D3)

Considering the Dirichlet and Neumann boundary conditions,
one may define

�(r, t ) = 	(ρ0 − ρ)�i(r, t ) + 	(ρ − ρ0)�o(r, t ), (D4)

where

�i(r, t ) =
∞∑

m=−∞
eimϕ

∫ ∞

−∞
Cmk (t )Im(|k|ρ)Km(|k|ρ0)

× eikz dk, ρ � ρ0, (D5)

and

�o(r, t ) =
∞∑

m=−∞
eimϕ

∫ ∞

−∞
Cmk (t )Im(|k|ρ0)Km(|k|ρ)

× eikz dk, ρ0 � ρ. (D6)

Hence, the Laplacian becomes

∇2�(r, t ) = δ(ρ − ρ0)

b2

(
∂�o

∂ρ
− ∂�i

∂ρ

)

+ 	(ρ0 − ρ)∇2�i(r, t )

+ 	(ρ − ρ0)∇2�o(r, t ). (D7)

Since we are only interested on the surface and since the
Laplacian vanishes inside and outside, then

∇2�(r, t ) = δ(ρ − ρ0)

b2

(
∂�o

∂ρ
− ∂�i

∂ρ

)
. (D8)

Using (7), we have

∂�o

∂ρ
− ∂�i

∂ρ
=

∞∑
m=−∞

eimϕ

∫ ∞

−∞
|k| Cmk (t )

×W{Im(|k|ρ), Km(|k|ρ)}eikz dk

= −
∞∑

m=−∞
eimϕ

∫ ∞

−∞
ρ−1 Cmk (t )eikz dk, (D9)

and using Wronskian identity gives

W{Im(|k|ρ), Km(|k|ρ)} = − 1

|k|ρ . (D10)

Using relation hρ∇2� = −4πδ(ρ − ρ0)σ, we get

σ = 1

4πbρ0

∞∑
m=−∞

eimϕ

∫ ∞

−∞
Cmk (t )eikz dk, (D11)

so therefore

σ̈ = 1

4πbρ0

∞∑
m=−∞

eimϕ

∫ ∞

−∞
C̈mk (t )eikz dk. (D12)

On the other hand,

σ̈ = − ω2
p

4πb

∞∑
m=−∞

eimϕ

∫ ∞

−∞
|k|Cmk (t )I ′

m(|k|ρ0)

× Km(|k|ρ0)eikz dk. (D13)

Putting (D12) and (D13) equal and using the orthogonality
in m and ϕ and also q and z, we get equation of motion and
frequency as shown in Eq. (8).

APPENDIX E: TOTAL ENERGY OF
CYLINDRICAL CHARGES

Potential energy is given by

V = 1

2

∫ π

−π

∫ ∞

−∞
σ �i|ρ=ρ0

hzhϕ dzdϕ,

and then

V = bρ0ω
2
p

8π

∞∑
m,m′

∫ π

−π

ei(m−m′ )ϕ dϕ

×
∫ ∞

−∞

{∫ ∞

−∞

∫ ∞

−∞
|k| Cmk (t )

ω2
mk

Cm′k′ (t )

× I ′
m(|k|ρ0)Im′ (|k′|ρ0)Km(|k|ρ0)Km′ (|k′|ρ0)

× ei(k−k′ )z dk dk′
}

dz, (E1)

as we replaced real-valued potential with its complex conju-
gate. Considering the orthogonality relations∫ π

−π

ei(m−m′ )ϕdϕ = 2π δmm′ , (E2)

and ∫ ∞

−∞
ei(k−k′ )z dz = 2πδ(k − k′), (E3)
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where δmm′ denotes the Kronecker delta functions and δ(k −
k′) is the Dirac delta function, it follows that (E1) can be
written as

V = πbρ0ω
2
p

2

∞∑
m=−∞

∫ ∞

−∞

|k|
ω2

mk

∣∣Cmk (t )
∣∣2

× Im(|k|ρ0)I ′
m(|k|ρ0)[Km(|k|ρ0)]2 dk, (E4)

or, using (8),

V = πb

2

∞∑
m=−∞

∫ ∞

−∞
|Cmk (t )|2Im(|k|ρ0)Km(|k|ρ0) dk.

(E5)

Similar calculations give kinetic energy as

T = πbρ0ω
2
p

2

∞∑
m=−∞

∫ ∞

−∞

|k|
ω4

km

|Ċmk (t )|2Im(|k|ρ0)I ′
m(|k|ρ0)

× [Km(|k|ρ0)]2 dk. (E6)

Following symmetry relations for modified Bessel func-
tions [47], Eq. (5.7.10), page 110,{

Im(z) = I−m(z); for m ∈ Z,

kν (z) = k−ν (z); for ν ∈ R,
(E7)

where for integers ν = n, kn(z) = lim
ν→n

kν (z), then

kn(z) = lim
ν→n

kν (z)

= lim−ν→n
k−ν (z)

(E7)= lim−ν→n
kν (z)

lim
ν→−n

kν (z) = k−n(z), (E8)

and hence kn(z) = k−n(z) for n ∈ Z.

APPENDIX F: ON THE COMPLEX AMPLITUDES

Recalling the inside scalar potential relation as

�i(r, t ) =
∞∑

m=−∞
eimϕ

∫ ∞

−∞
Cmk (t )Im(|k|ρ)Km(|k|ρ0)eikz dk,

(F1)

the conjugate of the potential is hence given by

�i(r, t ) =
∞∑

m=−∞
e−imϕ

∫ ∞

−∞
Cmk (t )Im(|k|ρ)Km(|k|ρ0)

× e−ikz dk, (F2)

and by letting m → −m and k → −k, we have

�i(r, t ) =
∞∑

m=−∞
eimϕ

∫ ∞

−∞
C−m−k (t )I−m(|k|ρ)

× K−m(|k|ρ0)eikz dk. (F3)

Using symmetry relations for modified Bessel functions given
in (E7) [47], we have

�i(r, t ) =
∞∑

m=−∞
eimϕ

∫ ∞

−∞
C−m−k (t )Im(|k|ρ)Km(|k|ρ0)eikz dk,

(F4)

and since potential is real valued, then �i(r, t ) = �i(r, t ),
which implies

Cmk (t ) = C−m−k (t ) (F5)

for all m and k. The complex coefficients Cmk (t ) could be
written as

Cmk (t ) = γmk

ωmk
cmk, (F6)

where cmk are some complex function (of time) pro-
portional to e−iωmkt in which symmetric (in m and
k) coefficients γmk would be determined later. One
could write

Cmk (t ) = 1

2
[Cmk (t ) + Cmk (t )]

(F5)= 1

2
[Cmk (t ) + C−m−k (t )]

= γmk

2ωmk
(cmk + c−m−k )

= γmk

2ωmk
(cmk + c∗

−m−k ), (F7)

and note that according to (8), since ωmk = ω−m−k , we could
factor it out. Its time derivative gives

Ċmk (t ) = −iγmk c∗
mk ; (F8)

similarly,

Ċmk (t ) = 1

2
[Ċmk (t ) + Ċmk (t )]

= 1

2

[
Ċmk (t ) + Ċ−m−k (t )

]
(F8)= γmk

2

( − ic∗
mk + ic−m−k

)

= iγmk

2
(cmk − c∗

−m−k ). (F9)
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