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Combination of dissipative and dispersive coupling in the cavity optomechanical systems
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An analysis is given for the Fabry-Perot cavity having a combination of dissipative and dispersive optome-
chanical coupling. It is established that the combined coupling leads to optical rigidity. At the same time, this
rigidity appears in systems with the combined coupling on the resonant pump, which is not typical for pure
dispersive and dissipative couplings. A proposal is made to use this system to detect small signal forces with
better sensitivity than the standard quantum limit. It is also demonstrated that this optomechanical system can
create ponderomotive squeezing with controllable parameters over a wider range than ponderomotive squeezing
using dispersive coupling.
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I. INTRODUCTION

Optomechanics is studying the fundamental sensitivity
limitations in measuring the position of test mass. This sen-
sitivity can be very high. For example, a relative mechanical
displacement detected can be smaller than the size of a proton.
This feature is widely used in gravitational wave detectors
[1–6], in magnetometers [7,8], and in torque sensors [9–11].

The fundamental limitation is provided by the quantum
noise. In a conventional scheme of a resonantly pumped
Fabry-Perot (FP) cavity with a movable end mirror (the test
mass), the phase of light, reflected from the cavity, contains in-
formation on the position of the test mass. The limit sensitivity
is restricted by the well-known standard quantum limit (SQL)
[12,13], which is an interplay between phase fluctuations of
incident light (the measurement of error) and the Lebedev’
fluctuation light pressure force (backaction).

The SQL has been investigated in many systems ranging
from macroscopic kilometer-size gravitational wave detectors
[14] to microcavities [15,16]. Detecting classical force acting
on a test mass in optomechanical systems is an example of
measurements restricted by the SQL. It can be surpassed by
applying a variational measurement [14,17,18], squeezed light
input [19–25], optomechanical speed measurement [26,27], or
optical spring [28,29]. The SQL can be also be avoided using
coherent quantum noise cancellation [30–32].

There are two types of optomechanic coupling, namely,
dispersive and dissipative coupling. In dispersive coupling,
displacing the mirror changes the normal cavity frequency,
whereas in dissipative coupling displacing the test mass
brings about a change in the input mirror transmittance, alter-
ing, thereby, the cavity relaxation rate. Dissipative coupling
was proposed theoretically [33] and confirmed experimen-
tally [9,34–36] about a decade ago. This phenomenon
has been investigated in numerous optomechanical systems,
including the FP interferometer [9,34–36], the Michelson-
Sagnac interferometer [37–42], and ring resonators [43,44].
It has been demonstrated that an optomechanical trans-
ducer based on dissipative coupling allows realizing a

quantum speed meter which, in turn, helps to avoid the
SQL [40].

The natural question is to what extent the combination
of dispersive and dissipative coupling can improve the sen-
sitivity of an optomechanical system to detect the signal of
the displaced test mass. It is known that squeezing output
quadratures is dramatically different for purely dispersive and
dissipative coupling [9,37–40,42]. Seemingly, their combi-
nation does not look promising, but this conclusion is not
correct.

In this paper we analyze a FP cavity featuring a combina-
tion of these different types of coupling and demonstrate that
the SQL can be surpassed. The physical reason is the optical
rigidity formed by the combination of both dispersive and
dissipative coupling. We also demonstrate that this combined
coupling gives the possibility to obtain ponderomotive-
frequency-dependent squeezing with controllable parameters
over a wider range compared with ponderomotive squeezing
using dispersive coupling. Such frequency-dependent squeez-
ing can be used in laser gravitational wave antennas.

II. MODEL

We consider one-dimensional FP cavity. Its optical mode
with the eigenfrequency ω0 is pumped using resonant light
(the pump frequency ωp = ω0). The optical mode is coupled
with the mechanical system represented by the free mass m.
The eigenfrequency ω of the cavity and the relaxation rate γ

of the optical mode depend on the test mass displacement y.
Signal Fs acts on the free mass, changing its position.

For the description of this system, we use the input-output
formalism (see Chap. 7 in Ref. [45]). The Hamiltonian of the
system can be expressed as

Ĥ = h̄ω0(1 + ξ ŷ)â†
c âc + p̂2

2m
+ Ĥγ + ĤT − Fsŷ, (2.1a)

ĤT =
∫ ∞

0
h̄ω b̂†

ωb̂ω

dω

2π
, (2.1b)
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Ĥγ = −ih̄
√

γ

∫ ∞

0
(b̂ωâ†

c − âcb̂†
ω )

dω

2π
, (2.1c)

γ = γ0(1 + ηŷ),
√

γ � √
γ0

(
1 + η

2
ŷ

)
. (2.1d)

Here p̂ is the momentum of the test mass, âc and â†
c are

annihilation and creation operators describing the intracavity
optical field, ĤT is the Hamiltonian of the electromagnetic
field outside the cavity (thermal bath and pump), Ĥγ describes
coupling between intracavity and extracavity optical fields,1

and ξ and η are the coefficients of dispersive and dissipative
coupling, respectively.

From the Hamiltonian Eqs. (2.1) we obtain a set of quan-
tum stochastic differential Eqs. (A1) describing the time
evolution of the optomechanical system. A detailed solution
of these equations is presented in Appendix A. Here we ana-
lyze the solutions obtained.

When solving the equations, we used the approximation of
slow amplitudes Eq. (A2). Below we express these amplitudes
as large constant amplitudes (denoted by capital letters) plus
small amplitudes (denoted by the same letters in lowercase) to
describe the noise and signal components:

âc = A0 + â0, âin = A + â, âout = A1 + â1, (2.2)

where âin and âout are the input and output fields, respectively.
Here and below we assume that the input wave is in a

coherent state, so operator â describes the vacuum fluctuation
wave having the following commutator and correlator:

[â(t ), â†(t ′)] = δ(t − t ′), 〈â(t )â†(t ′)〉 = δ(t − t ′). (2.3)

Since we are interested in the spectral characteristics of
small fluctuations, we proceed to the Fourier representation.
The Fourier transform can be defined as follows:

â(t ) =
∫ ∞

−∞
a(�) e−i�t d�

2π
, (2.4)

and similarly for other values denoting the Fourier transform
by the same letter without a hat. One can derive the analog
of Eq. (2.3) for the Fourier transform of the input fluctuation
operators:

[a(�), a†(�′)] = 2π δ(� − �′), (2.5)

〈a(�)a†(�′)〉 = 2π δ(� − �′). (2.6)

Because the radiation pressure in the optical cavities pro-
duces ponderomotive squeezing, we find it convenient to think
about the fields not in terms of the single-photon modes,
whose annihilation operators are a(�), but rather in terms of
the correlated two-photon modes whose field amplitudes are

aa = a(�) + a†(−�)√
2

, aφ = a(�) − a†(−�)

i
√

2
. (2.7)

1The Hamiltonian of coupling Ĥγ is an approximation we need to
get a Markov quantum stochastic process.

We can easily obtain the phase and amplitude quadratures
of the output and internal fields from Eqs. (A11) as follows:

a1a =
γ0

2 + i�
γ0

2 − i�
aa − i�ηA

γ0

2 − i�

√
2y�, (2.8a)

a1φ =
γ0

2 + i�
γ0

2 − i�
aφ − 2ω0ξA

γ0

2 − i�

√
2y�, (2.8b)

a0a =
√

γ0
γ0

2 − i�
aa −

√
γ0ηA√

2
(

γ0

2 − i�
)y�, (2.8c)

a0φ =
√

γ0
γ0

2 − i�
aφ − 2ω0ξA√

γ0
(

γ0

2 − i�
)√

2y�, (2.8d)

y� = − F�

m�2
+ 2

√
2h̄ω0ξA√
γ0m�2

a0a

+
√

γ0ηh̄A√
2m�2

(
2√
γ0

aφ − a0φ

)
. (2.8e)

Here y� and F� are the Fourier transforms of the displacement
y and the signal Fs, respectively.

From Eqs. (2.8) we see that the amplitude quadrature of the
output field provides information about the speed of the probe
mass −i�y�, which corresponds to the dissipative coupling.
In contrast, the phase quadrature provides information about
the displacement of the probe mass, which is typical for the
dispersive coupling.

Let us substitute Eqs. (2.8c) and (2.8d) into the equation for
the spectrum of the displacement y Eq. (2.8e):

(K − m�2)y� = F� + Ffl, (2.9a)

Ffl = −2
√

2h̄ω0ξA
γ0

2 − i�
aa − i

√
2h̄�ηA

γ0

2 − i�
aφ, (2.9b)

K (�) = −4h̄ω0ξηA2

γ0

2 − i�
� κ − i�δ, (2.9c)

κ = −8h̄ω0ξηA2

γ0
, δ = 16h̄ω0ξηA2

γ 2
0

. (2.9d)

Here Ffl is the fluctuation backaction force, and K (�) is the
optical rigidity which is associated with both dissipative and
dispersive coupling (K ∼ ξη). Note that this rigidity appears
at the resonance pump. Recall, in cases of pure dispersive [46]
or pure dissipative [41] coupling, optical rigidity is possible
only in the detuned pump.

We expand rigidity Eq. (2.9c) into the Taylor series over i�
keeping only the two first terms [below we assume γ0 	 �

Eq. (4.2)]. This optical rigidity is unstable. If κ is positive
then the mechanical viscosity δ introduced is negative and
vice versa. The rigidity κ is positive when ξη < 0. When
κ is positive, the probe mass effectively acts as a harmonic
oscillator which is affected by the signal Fs and the fluctuation
backaction force.

In Ref. [42] we considered a similar system with com-
bined coupling, but without a cavity, the main difference of
which, as compared with the cavity case, is the possibility
to measure quadratures in two output ports, whereas in the
cavity case, considered here, we have only one output port.
In spite of this restriction we found for the cavity case the
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FIG. 1. Michelson-Sagnac interferometer as a generalized mirror
(GM) of the FP cavity. Combined coupling takes place when the
beam splitter is movable but the mirror M (xm—const) is fixed.

best combination of quadratures of the output field in order
to measure the signal force with sensitivity better than that of
the SQL. Optical rigidity also appeared in systems without a
cavity, but it did not depend on frequency, unlike the system
under consideration. This is due to the fact that the field in the
cavity is not set instantly, but with some delay, and the optical
rigidity is set with a delay. Because of this, the optical rigidity
in a system with a cavity depends on the frequency.

III. EXAMPLES OF REALIZATIONS OF COMBINED
COUPLING

For a realization of the combination of dissipative and
dispersive couplings we use the Michelson-Sagnac interfer-
ometer (MSI) as one of the mirrors in the FP cavity (see
Fig. 1). The MSI consists of the 50/50 beam splitter (BS) and
three completely reflecting mirrors. This interferometer can be
considered as a generalized mirror having amplitude transmit-
tance T and reflectivity R depending on the displacements zm

of the mirror M and yBS of the BS. So input-output relations
have the following forms (see notation on Fig. 1):

A1 = BT + e−ik
√

2yAR, (3.1a)

B1 = AT − eik
√

2yBR, (3.1b)

R = cos k(2zm +
√

2y), (3.1c)

T = sin k(2zm +
√

2y), (3.1d)

where A and B are amplitudes of coherent monochromatic
fields, and k = ω

c is the wave vector.
A detailed analysis of the MSI is given in Refs. [37–42].

We assume that the waves passing through the BS acquire a
phase shift equal to π

2 , and the phases of the waves reflected
from the BS are determined only by the displacement of
the BS itself. We also assume that the spectral frequencies
�, characterizing the displacements of the BS and the mov-
ing mirror M, are small enough: �tin 
 1, where tin is the
round-trip time of light between the BS and the mirror M.
This means that the circulating fields change phase almost
instantly at small displacements of the BS and the mirror M.
The amplitude transmittance T and the reflectivity R of the
generalized mirror depend only on positions zm and y.

Below we can designate displacement as

y ⇒ y0 + y, zm ⇒ z0 + z, (3.2)

where z0 and y0 are the mean constants (to be chosen) and z
and y are small variables.

Below we consider only the situation of a movable beam
splitter and the mirror M is fixed (that is z = 0). Then we can
expand R and T (3.1) into the following series:

R � R0 − T0 k
√

2 y,

T � T0 + R0 k
√

2 y, (3.3a)

R0 = cos k(2z0 +
√

2 y0),

T0 = sin k(2z0 +
√

2y0), (3.3b)

For simplicity we put y0 = 0 below, and then only z0 defines
T0 and R0.

The the MSI is a part of the FP cavity. The field B1 prop-
agates to the end mirror (we consider that it is completely
reflecting), reflects, and comes back to the beam splitter. In
the stationary mode, the operation fields B and B1 have the
following coupling:

B = B1ei2kL, (3.4)

where L is the distance between the beam splitter and the end
mirror.

Let us substitute Eq. (3.4) in Eqs. (3.1):

A1 = B1ei2kLT + e−ik
√

2yAR, (3.5a)

B1 = AT − eik
√

2yB1ei2kLR. (3.5b)

The internal field’s power I0 is given by the ratio

I0 = T 2I

1 + R2 + 2R cos 2k
(
L + y√

2

) , (3.6)

where I is the input field power.
This power achieves a maximum of e2ik(L+y/

√
2) = −1

(here and below we assume that R > 0). We can find the
resonant frequency from the following equation:

wr = ω0

1 + y√
2L

� ω0

(
1 − y√

2L

)
. (3.7)

Here ω0 is the resonant frequency by y = 0.
Now let us find the half bandwidths of the cavity γ0. Let

us assume that the wave vector k in Eq. (3.6) is equal to
(ωr + γ )/c (ωr 	 γ ) so that I0 = I0max/2. Then we get the
following relation for γ :

γ = 2(1 − R)

τ
√

R
� T 2

τ
� T 2

0

τ

(
1 + 2

√
2k0R0

T0

)
. (3.8)

Here we consider that T0 
 1.
Let us compare Eqs. (3.7) and (3.8) with Eqs. (2.1). We see

that coefficients of dispersive (ξ ) and dissipative (η) coupling
for the system described above have the following forms:

γ0 = T 2
0

τ
, ξ = − 1√

2L
, η = 2

√
2k0

T0
. (3.9)

In Table I we list parameters of the system described above,
which can be used in a laboratory experiment, for example,
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TABLE I. Parameters of the optomechanical system.

Parameter Value

Medium amplitude transmittance of MSI T0 0.01
Probe mass m 50 g
Pump frequency ω0/2π 300 THz
Pump power I0 42 mW
Cavity length L 1 m
Cavity half bandwidth γ0 15 000 s−1

Coefficient of the dissipative coupling η 1.78 × 109 m−1

Coefficient of the dispersive coupling ξ −0.71 m−1

for the creation of a frequency-dependent squeezed vacuum to
inject it into the dark port of laser gravitational wave detectors
(LIGO, Virgo)—see some details in Sec. V below.

Another example of realizing combined coupling is given
in Ref. [39]. The authors describe an optical-mechanical sys-
tem similar to the one presented above, but the test mass is
a partially transmitting mirror, M, and the beam splitter is
immobile (see Fig. 1). For this case the input-output relations
can be written as follows:

A1 = iBT + AR�, (3.10a)

B1 = iAT + BR�, (3.10b)

T = eikl+rM sin 2kδl, (3.10c)

R� = eikl+ (rM cos 2kδl − itM), (3.10d)

R� = eikl+ (rM cos 2kδl + itM). (3.10e)

Here rM and tM are the amplitude reflectivity and transmit-
tance of the mirror, l+ and δl are the sum and the difference
of the lengths of the MSI arms, respectively. We consider that
δl = z0 + z, where z0 is a constant and z is a small displace-
ment, kz 
 1.

Now we can find the coefficients of dispersive ξ1 and
dissipative η1 coupling for this optomechanical system by
conducting the analysis presented above. They are as follows:

γ1 = r2
MT 2

1

τ
, ξ1 = −T1tMrM

L
, η1 = 4k0

T1
. (3.11)

Here we assume that |T1| = | sin 2kz0| 
 1 and we find the
resonant frequency ω0 from eik(2L+l+ )+iφ0 = 1, where φ0 =
arctan(tM/rM).

These examples show that we can choose coupling coeffi-
cients ξ and η within some bounds.

IV. DETECTING SIGNAL FORCE

We consider an optomechanical system with a combination
of both couplings ξ and η as a signal force detector, assuming
that ξ and η can be varied arbitrary. Let us find the sensitivity
of this measurement.

We assume that quadratures of the output field, Eqs. (2.8a)
and (2.8b), are processed optimally for this purpose. Let us

substitute (2.9) in equations of quadratures Eqs. (2.8a) and
(2.8b):

a1a =
(
x2

0 − x2
)
aa − Pmx2aφ − ix2

√
2Pm fs(

x2
0 − x2

) − ixδm
, (4.1a)

a1φ =
(
x2

0 − x2
)
aφ + QmD2aa − xD

√
2Qm fs(

x2
0 − x2

) − ixδm
, (4.1b)

Pm = 8h̄η2A2

mγ 2
0

, Qm = 32h̄ξ 2A2

mγ 2
0

, (4.1c)

δm = δ

mγ0
= D

√
PmQm, x = �

γ0
, x0 = �0

γ0
,

�0 =
√

κ

m
, fs = F�√

2h̄m�2
, D = ω0

γ0
. (4.1d)

Here fs is the signal force normalized to the SQL, κ and δ

are given by Eq. (2.9d), �0 is the resonant frequency which
appears due to the optical rigidity Eq. (2.9d), and D is the
quality factor of the optical cavity. Here and below we assume
that ξη = −|ξη| and

�, �0 
 γ0, or x, x0 
 1. (4.2)

Recall, in the case of pure dissipative coupling, the phase
quadrature increases (due to backaction), whereas the am-
plitude quadrature does not change. In contrast, in the case
of pure dissipative coupling, the situation is the opposite—
the amplitude quadrature increases and the phase one doe
not change. For a combination of dispersive and dissipative
coupling, the situation is more complicated [the denominators
in Eqs. (4.1) contain both dissipative Pm and dispersive Qm

coefficients]; however, the numerator a1a in Eq. (4.1a) demon-
strates the dependence on aφ with the dissipative coefficient
Pm, and the numerator a1φ in Eq. (4.1b) depends on aa with
the dispersive coefficient Qm.

It follows from Eqs. (4.1) that both quadratures are suitable
for detecting the signal force. We use the homodyne detection
for the measurement of quadratures as follows:

a1θ = a1a cos θ + a1φ sin θ, (4.3)

where θ is a homodyne angle. Let the input field be in the
coherent state. This means that single-sided power spectral
densities (PSD) of quadratures aa and aφ are equal: Sa(�) =
Sφ (�) = 1 [14]. Then the noise PSD recalculated to fs can be
easily derived from Eqs. (4.1):

S f = Sa1 + Sφ1, (4.4a)

Sa1 =
(
x2

0 − x2 + QmD2 tan θ
)2

2x2(x2Pm + D2Qm tan2 θ )
, (4.4b)

Sφ1 =
[(

x2
0 − x2

)
tan θ − Pmx2

]2

2x2(x2Pm + D2Qm tan2 θ )
. (4.4c)

Here the SQL sensitivity corresponds to S f = 1. When θ = 0
we measure the amplitude quadrature, and when θ = π

2 we
measure the phase quadrature.

Let us fix x = xc and find tan θ at which Eqs. (4.4) takes an
extreme value. There are two tan θ angles and they have the
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following forms:

tan θ1 = −x2
0 − x2

c

QmD2
, tan θ2 = Pmx2

c

x2
0 − x2

c

. (4.5)

Choosing these homodyne angles we completely cancel the
noise determined by one of the quadratures, namely, Sx=xc

a1 = 0
at θ = θ1 and Sx=xc

φ1 = 0 at θ = θ2.
Let us consider a special case: xc = x0. Then tan θ1 = 0 and

tan θ2 = ±∞. This means that we measure the quadrature of
the amplitude or the phase. In these measurements PSDs have
the following forms:

S f |θ=0 = 1

2

⎧⎨
⎩Pm +

[( x0
x

)2 − 1
]2

Pm

⎫⎬
⎭, (4.6a)

S f |θ= π
2 = 1

2x2

[
QmD2 +

(
x2

0 − x2
)2

QmD2

]
. (4.6b)

In the resonance case � = �0,

S f (�0)|θ=0 = Pm

2
= x2

0g, g =
√

Pm

QmD2
, (4.7a)

S f (�0)|θ=π/2 = D2Qm

2x2
0

= 1

g
. (4.7b)

Here we rewrite the PSD using Eqs. (4.1c) and (4.1d); g
is a ratio between coefficients of optomechanical couplings
(optomechanical ratio).

The relations Eqs. (4.7) show that at a small optomechani-
cal ratio of g 
 1/

√
x0 we have the inequality S f (�0)|θ=0 


S f (�0)|θ=π/2 and in order to surpass the SQL near the res-
onant frequency we have to detect the amplitude quadrature
(i.e., θ = 0).

In the opposite case of a large optomechanical ratio of
g 	 1/

√
x0 we have the inverse inequality S f (�0)|θ=0 


S f (�0)|θ=π/2 and to surpass the SQL one has to detect the
phase quadrature (i.e., θ = π/2).

Recall that S f (�0)|θ=0 and S f (�0)|θ=π/2 are extremes of
one function. The maximum (minimim) depends on the ratio
g. However, for the special case of g = 1/x0 they become
equal to each other (the maximum and the minimum coin-
cide):

S f (�0)|θ=0 = S f (�0)|θ=π/2 = x0, at g = 1

x0
. (4.8)

Thus, when g = 1/x0 we get the same sensitivity near the res-
onant frequency for any quadrature detection. Usually x0 
 1
(the case of the nonresolved sideband); hence, the SQL can be
surpassed.

The minimum PSD is achieved at the resonant frequency
and it is defined by Eqs. (4.7). This minimum PSD is realized
inside a narrow bandwidth :



�0
� Smin

f . (4.9)

Here  is defined as S f (�0 ± /2) � 2Smin
f . The relation

Eq. (4.9) corresponds to the known Cramer-Rao bound
[47–49].

In Fig. 2 we depict graphs of the amplitude spectral den-
sities

√
S f (�) of noise recalculated to fs by the homodyne

FIG. 2. Graphs of amplitude spectral densities
√

Sf (�) plotted
for the homodyne detection having different homodyne angles and
ratio g and fixed dimensionless frequency x0 = 0.05. The graphs in
panel (a) are obtained for g = 0.1. The graphs in panel (b) corre-
spond to condition Eq. (4.8) g = 1/x0 = 20. The graphs in panel
(c) are plotted for the case g = 400 	 1/x0. Also the graphs in
panels (a) and (c) show the optimal PSD obtained at the optimal
frequency-dependent homodyne angle (see Appendix B).

detection with different homodyne angles and ratio g and with
fixed dimensionless frequency x0 = 0.05 and pump power (so
|ξη| = 1). The main parameters (test mass, optical power) are
taken from Table I with varying coupling ξ and η. The plots
are given for preliminary chosen fixed homodyne angles. For
methodical purposes in Figs. 2(a) and 2(c) we also show the
optimal PSD by the optimal frequency-dependent homodyne
angle (see Appendix B).

The graphs in Fig. 2(a) are obtained for g = 0.1. Varying
the homodyne angle one can surpass the SQL at frequencies
close to mechanical resonance. At mechanical resonance the
sensitivity attains the minimum but in narrow bandwidth.
The SQL can be surpassed when the frequency differs from
the resonance one by about 50%, but the sensitivity will drop
slightly and the bandwidth will be wider when compared to
the case of mechanical resonance.

The graphs in Fig. 2(b) correspond to condition (4.8) g =
1/x0 = 20. The SQL can be surpassed within a relatively
wider bandwidth (about 50% of center frequency). Variation
of the homodyne angle practically does not influence the
sensitivity.
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The graphs in Fig. 2(c) describe the case g = 400 	 1/x0.
Variation of the homodyne angle allows surpassing the SQL
inside the bandwidths close to the mechanical resonance. It is
similar to the case shown in Fig. 2(a).

Above we assumed that ξ and η can be varied arbitrary.
But usually these coefficients are constant in certain systems.
For example, the Fabry-Perot cavity with the MSI with the
movable BS has fixed ξ and η [see Eq. (3.9)], and the ratio
g = T0 
 1.

If only the partially transmitting mirror M is movable in
the MSI, then coefficients Eq. (3.11) are constant too, and g =
rM/tM. In this case we can get an optomechanical system with
a large coefficient g if rM 	 tM.

V. PONDEROMOTIVE SQUEEZING

We would like to pay attention to the fact that com-
bined optomechanical coupling can also be used to produce
a pondermotive squeezed light. In turn, varying the ratio g
Eq. (4.7a) between dispersive and dissipative coupling pro-
vides for a possibility to control output squeezing. The output
quadrature Eq. (4.3) measured by the homodyne detector can
be derived from Eqs. (4.1):

a1θ =
(
x2

0 − x2
)

cos θ + 2x2
0

g sin θ(
x2

0 − x2
) − 2ixx2

0

aa

+
(
x2

0 − x2
)

sin θ − 2x2
0x2gcos θ(

x2
0 − x2

) − 2ixx2
0

aφ. (5.1)

In the case of the mechanical resonance � = �0, this equa-
tion can be written as follows:

aθ |x=x0 = i

gx0
sin θ aa − ix0gcos θaφ. (5.2)

Obviously, in order to measure squeezing for small g 

1/x0 one has to choose sin θ = 0 and to measure the amplitude
output quadrature. In contrast, to measuring squeezing for
large g 	 1/x0, one has to choose cos θ = 0 and to measure
the phase output quadrature [see Eqs. (B1) in Appendix B]:

Sa(�0) = x2
0g2 (sin θ = 0), (5.3a)

Sφ (�0) = 1

g2x2
0

(cos θ = 0), (5.3b)

where Sa and Sφ are single-sided PSDs of output amplitude
and phase quadratures, respectively, and we assume that con-
dition Eq. (4.2) is valid. Such squeezing near the resonant
frequency �0 is not observed in the case of dispersion cou-
pling.

In case Eq. (4.8) g = 1/x0, the output light is practically
coherent and it is required to pay attention to scale on the
vertical axis of the plots in Fig. 3(b).

Specifically, in the case of low frequencies � 
 �0 (x 

x0), we get frequency-independent squeezing:

� 
 �0, g 
 1: Scomb
θ � g2

4
, (5.4)

where Scomb
θ is a single-sided PSD of the output quadrature

Eq. (4.3) at the optimal homodyne angle in the case of com-
bined coupling (see details in Appendix B).

FIG. 3. Graphs of single-sided PSDs of different quadratures by
different parameters g and the fixed resonant frequency x0 = 0.05.
The graphs in panel (a) are constructed for g = 0.2 
 1/x0. The
graphs in panel (b) are constructed for g = 1/x0 = 20, and here
we get an almost coherent state of the electromagnetic field (pay
attention to scale on vertical axis). The graphs in panel (c) relate to
the case g = 2000 	 1/x0.

It is similar to what we obtained in the case of the dis-
persive coupling with a nonresonant pump (� = ωp − ω0 is
detuning) [46]:

� 
 �0,
�

γ0

 1: Sdisper

θ � �2

γ 2
0

, (5.5)

where Sdisper
θ is a single-sided PSD of the output quadrature

Eq. (4.3) at the optimal homodyne angle for dispersive cou-
pling. The PSDs [Eqs. (5.4) and (5.5)] are equal to each other
when g

2 = �
γ0

and practically do not depend on the frequency.
In the general case we can adjust the maximum squeezing

at the preliminary chosen dimensionless frequency xc (near
x0) by varying the homodyne angle θ at a fixed ratio g (see
details of calculations in Appendix B). If compared with the
dispersive case the main advantage of combined coupling
deals with the possibility to vary the degree of squeezing and
its bandwidth by choosing xc (i.e., the homodyne angle).

Shown in Fig. 3 are the plots of single-sided PSDs (B2c)
obtained for the output light for the normalized mechanical
frequency x0 = 0.05 when xc = 0.5x0 or xc = 1.5x0 and dif-
ferent ratios g. For g = 1/x0 [Fig. 3(b)], the output state is
practically coherent at � = �0 but out of resonance in the
case of squeezing. But the farther g is from 1/x0, the stronger
the squeezing becomes near x0. For small g 
 1/x0 we get
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the amplitude quadrature squeezed near the resonance, and
for large g 	 1/x0 we get the phase quadrature. It is possible
to get less strong squeezing but in a wider frequency band at
other frequencies. This can be done measuring a quadrature
a1θ other than the amplitude and the phase.

The combined coupling provides the possibility to pro-
duce frequency-dependent squeezing, which is often needed
in precision optomechanical experiments. For example, in
gravitational wave detectors injection of such squeezed light
into the dark port allows one to increase sensitivity.

VI. DISCUSSION AND CONCLUSION

We analyzed the optomechanical system, featuring the
combination of dispersive and dissipative coupling, and
showed that the main properties of combined coupling deal
with the optical rigidity Eqs. (2.9), which appears as a result
of both kinds of coupling. At the same time, this rigidity
manifests in systems having combined coupling on the res-
onant pump, which is not typical for pure dispersive [46] or
dissipative [40] coupling types.

To realize the combination of dissipative and dispersive
coupling we used the MSI as an input mirror in the FP cavity
(see Fig. 1). We considered two different modes of operation
of the MSI with a movable beam splitter and an immobile
completely reflecting mirror M and vice versa with a movable
partially transmitting mirror M and a fixed beam splitter. The
coefficients of the dispersive ξ and the dissipative η coupling
for these schemes were obtained. In further analysis, we as-
sumed that ξ and η can be varied arbitrarily.

We considered an optomechanical system with a combina-
tion of both couplings as a signal force detector. Homodyne
detection of an output field can have a sensitivity better than
that of the SQL near the resonant frequency �0, which is
defined by the optical rigidity Eq. (2.9d). The analysis shows
that it is most effective to measure the amplitude or phase
quadrature [the choice of the quadrature depends on the ratio
g as compared with 1/x0 Eq. (4.8)]. If g < 1/x0, it is better
to measure the amplitude quadrature, and if g > 1/x0, it is
better to measure the phase quadrature. At g = 1/x0, we get
the same sensitivity near the resonant frequency for measuring
any quadrature. In this case the PSD recalculated to force
the SQL Eq. (4.8) is smaller than unity (i.e., the SQL can be
surpassed) if x0 = �0/γ0 
 1.

The physical reason is related to the correlation between
the measurement noise and the fluctuation backaction. This
correlation occurs due to the combination of both optome-
chanical couplings. Indeed, the fluctuation backaction force
Eq. (2.9b) depends on the phase quadrature (dissipative cou-
pling) and on the amplitude quadrature (dispersive coupling),
and the measurement noise is determined by the amplitude or
phase quadrature [first terms in Eqs. (2.8a) and (2.8b)]. Part
of the total noise is completely compensated at the resonant
frequency [see Eqs. (4.1)]. The remaining noise recalculated
to fs is proportional to

√
Pm or

√
D2Qm/x0, depending on

which quadrature we measure. The SQL is surpassed if this
noise is small.

We would like to point out that variation of ratio g between
dispersive and dissipative coupling and choice of homodyne
angle provides the possibility to control output poderomotive

squeezing. Varying the homodyne angle we can obtain con-
stant squeezing at frequencies much smaller than the resonant
frequency �0, or large squeezing in the finite bandwidth (the
larger the squeezing, the more narrow the bandwidth) near the
resonant frequency. The ponderomotive squeezing induced by
combined coupling has a wider range of varying squeezing pa-
rameters as compared with ponderomotive squeezing caused
by dispersive coupling.

The combined coupling looks promising to be used in
gravitational wave antennas for the creation of frequency-
dependent squeezing with controllable parameters. The main
obstacle is thermal mechanical noise. It is the subject of our
future research.

ACKNOWLEDGMENTS

The authors are grateful to Haixing Miao for fruitful dis-
cussion and advice. They are grateful for support provided
by the Russian Foundation for Basic Research (Grant No.
19-29-11003), the Interdisciplinary Scientific and Educational
School of M.V. Lomonosov Moscow State University “Fun-
damental and Applied Space Research,” and for TAPIR GIFT
MSU Support from the California Institute of Technology.

APPENDIX A: INTRACAVITY AND OUTSIDE FIELDS

From the Hamiltonian Eqs. (2.1) we obtain the following
set of equations describing the time evolution of the optome-
chanical system:

˙̂ac = −iω0(1 + ξ ŷ)âc − √
γ

∫ ∞

0
b̂ω

dω

2π
, (A1a)

˙̂bω = −iωb̂ω + √
γ âc,

¨̂y = − h̄ω0ξ

m
â†

c âc + Fs

m
− i

√
γ0ηh̄

2m

∫ ∞

0
(b̂ωâ†

c − âcb̂†
ω )

dω

2π
.

(A1b)

We present the annihilation operators of the input and intra-
cavity optical field through slow amplitudes as

âc(t ) ⇒ âc(t )e−iω0t , b̂ω(t ) ⇒ b̂ω(t )e−iωt . (A2)

The differential equations for these slow amplitudes have
the following forms:

˙̂ac = −iω0ξ ŷâc − √
γ

∫ ∞

0
b̂ωei(ω0−ω)t dω

2π
, (A3a)

˙̂bω = √
γ âcei(ω−ω0 )t . (A3b)

The solution for b̂ω can be written in two ways, in terms of
initial conditions at time t > t0 (input) or in terms of final
conditions t < t1 (output):

b̂ω(t ) = b̂ω(t0) + √
γ

∫ t

t0

âc(t ′)e−i(ω0−ω)t ′
dt ′, (A4a)

b̂ω(t ) = b̂ω(t1) − √
γ

∫ t1

t
âc(t ′)e−i(ω0−ω)t ′

dt ′. (A4b)

Let us substitute the resulting expressions in Eqs. (A3) and
represent the frequency ω as the sum ω = ω0 + �, where ω0

is the frequency of the light wave, and � is the frequency of
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the signal force Fs. It is several orders of magnitude less than
the frequency of the electromagnetic wave ω0 � 1015 Hz, so
in Eqs. (A3), instead of integrating from −ω0, we formally
integrate from −∞:

˙̂ac = −iω0ξ ŷâc + √
γ âin − γ

2
âc, (A5a)

˙̂ac = −iω0ξ ŷâc − √
γ âout + γ

2
âc, (A5b)

âin = −
∫ ∞

−∞
b̂ω(t0)e−i�t d�

2π
, (A5c)

âout =
∫ ∞

−∞
b̂ω(t1)e−i�t d�

2π
. (A5d)

The minus sign in Eq. (A5c) is a phase convention: left-going
fields are negative, and right-going fields are positive.

This expression shows how the input and output fields are
related:

âin + âout = √
γ âc. (A6)

The equation of motion in this case will have the following
form:

¨̂y = − h̄ω0ξ

m
â†

c âc + Fs

m
− i

√
γ0ηh̄

2m
(âinâ†

c − âcâ†
in ). (A7)

Let us express slow amplitudes as large constant am-
plitudes (denoted by capital letters) plus small amplitudes
(denoted by the same letters in lowercase) to describe the
noise and signal components:

âc = A0 + â0, âin = A + â, âout = A1 + â1. (A8)

Let us apply the Fourier transform to Eqs. (A5). The
Fourier transform can be defined as follows:

â(t ) =
∫ ∞

−∞
a(�) e−i�t d�

2π
, (A9)

and similarly for other values denoting the Fourier transform
by the same letter without a hat.

We assume that in Eq. (A8) the expected values exceed
the fluctuation parts of the operators. So we make use of
the method of successive approximation to derive a set of
equations describing the system. We select A0 = A∗

0 and find
the following in the zero-order approximation:

A1 = A, A0 = 2√
γ0

A. (A10)

One can find equations for the fluctuation part of the field
and the displacement of the test mass in the first-order approx-
imation. In the spectral representation they have the following
form:

a0(�) =
√

γ0
γ0

2 − i�
a(�)

−
( √

γ0ηA

2
(

γ0

2 − i�
) + 2iω0ξA√

γ0
(

γ0

2 − i�
))

y�, (A11a)

a1(�) =
γ0

2 + i�
γ0

2 − i�
a(�)

−
(

i�ηA
γ0

2 − i�
+ i2ω0ξA

γ0

2 − i�

)
y�, (A11b)

y� = − F�

m�2
+ h̄ω0ξ

m�2
A0[a0(�) + a†

0(−�)]

+ i
√

γ0ηh̄

2m�2
{A[a†

0(−�) − a0(�)]

+ A0[a(�) − a†(−�)]}. (A11c)

Here y� and F� are Fourier transforms of the displacement y
and the signal Fs, respectively.

APPENDIX B: THE ANALYSIS OF THE PONDERMOTIVE
SQUEEZING

From Eq. (5.1) one can calculate the single-sided PSD
assuming coherent input light as follows:.

Sθ =
(
x2

0 − x2
)2 + 4x4

0

(
sin2 θ

g2 + x4g2 cos2 θ
)

(
x2

0 − x2
)2 + 4x2x4

0

+
4x2

0

(
x2

0 − x2
)

sin θ cos θ
(

1
g − x2g

)
(
x2

0 − x2
)2 + 4x2x4

0

= W + U cos 2θ + V sin 2θ(
x2

0 − x2
)2 + 4x2x4

0

(B1a)

W = (
x2

0 − x2
)2 + 2x4

0

g2
+ 2x4x4

0g2, (B1b)

U = 2x2
0

[
x4x2

0g2 − x2
0

g2

]
, (B1c)

V = 2x2
0

(
x2

0 − x2
)[1

g
− x2g

]
. (B1d)

The minimum of Sθ at x = xc takes place at the homodyne
angle θ defined as

cos 2θ = − Uc√
U 2

c + V 2
c

, sin 2θ = − Vc√
U 2

c + V 2
c

, (B2a)

Uc = U |x=xc , Vc = V |x=xc . (B2b)

and it is equal to

Sxc
θ (x) =

W − UUc+VVc√
U 2

c +V 2
c(

x2
0 − x2

)2 + 4x2x4
0

. (B2c)

In the particular case x 
 x0, we have

W � x4
0

(
1 + 2

g2

)
, U � −2x4

0

g2
, V � 2x4

0

g
, (B3a)

Sx
x0
θ � 1 + 2

g2
− 2

g2
cos 2θ + 2

g
sin 2θ �

�
√

1 + g2 − 1√
1 + g2 + 1

= g2

4
− g4

8
+ . . . (B3b)

063506-8



COMBINATION OF DISSIPATIVE AND DISPERSIVE … PHYSICAL REVIEW A 105, 063506 (2022)

[1] (LVC Collaboration), Prospects for observing and localizing
gravitational-wave transients with Advanced LIGO and Ad-
vanced Virgo, Living Rev. Relativ. 23, 3 (2020).

[2] J. Aasi et al. (LIGO Scientific Collaboration), Advanced LIGO,
Classical Quantum Gravity 32, 074001 (2015).

[3] D. Martynov et al., Sensitivity of the Advanced LIGO detectors
at the beginning of gravitational wave astronomy, Phys. Rev. D
93, 112004 (2016).

[4] F Acernese et al., Advanced Virgo: a 2nd generation interfero-
metric gravitational wave detector, Classical Quantum Gravity
32, 024001 (2015).

[5] K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C.
Bogan, J. Degallaix, C. Graf, S. Hild, and J. Hough, GEO 600
and the GEO-HF upgrade program: successes and challenges,
Classical Quantum Gravity 33, 075009 (2016).

[6] Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa,
T. Sekiguchi, D. Tatsumi, and H. Yamamoto, Interferometer
design of the KAGRA gravitational wave detector, Phys. Rev.
D 88, 043007 (2013).

[7] S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim,
G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-
Dunlop, Cavity Optomechanical Magnetometer, Phys. Rev.
Lett. 108, 120801 (2012).

[8] B.-B. Li, J. Bílek, U. Hoff, L. Madsen, S. Forstner, V. Prakash,
C. Schafermeier, T. Gehring, W. Bowen, and U. Andersen,
Quantum enhanced optomechanical magnetometry, Optica 5,
850 (2018).

[9] M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar,
M. R. Freeman, J. P. Davis, and P. E. Barclay, Dissipative
and Dispersive Optomechanics in a Nanocavity Torque Sensor,
Phys. Rev. X 4, 021052 (2014).

[10] P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis,
Approaching the standard quantum limit of mechanical torque
sensing, Nat. Commun. 7, 13165 (2016).

[11] J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, and T. Li, Ultrasensi-
tive torque detection with an optically levitated nanorotor, Nat.
Nanotechnol. 15, 89 (2020).

[12] V. B. Braginsky, Classic and quantum limits for detection of
weak force on acting on macroscopic oscillator, Sov. Phys.
JETP 26, 831 (1968).

[13] V. B. Braginsky and F. Ya. Khalili, Quantum Measurement
(Cambridge University, Cambridge, England, 1992).

[14] H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P.
Vyatchanin, Conversion of conventional gravitational-wave in-
terferometers into QND interferometers by modifying input
and/or output optics, Phys. Rev. D 65, 022002 (2001).

[15] T. Kippenberg and K. Vahala, Cavity optomechanics: Back
action at the mesoscale, Science 321, 1172 (2008).

[16] J. M. Dobrindt and T. J. Kippenberg, Theoretical Analysis of
Mechanical Displacement Measurement Using a Multiple Cav-
ity Mode Transducer, Phys. Rev. Lett. 104, 033901 (2010).

[17] S. P. Vyatchanin and A. B. Matsko, Quantum limit of force
measurement, Sov. Phys. JETP 77, 218 (1993).

[18] S. Vyatchanin and E. Zubova, Quantum variation measurement
of force, Phys. Lett. A 201, 269 (1995).

[19] LIGO Scientific Collaboration, A gravitational wave observa-
tory operating beyond the quantum shot-noise limit, Nat. Phys.
7, 962 (2011).

[20] LIGO Scientific Collaboration and Virgo Collaboration, En-
hanced sensitivity of the LIGO gravitational wave detector

by using squeezed states of light, Nat. Photonics 7, 613
(2013).

[21] V. Tse et al., Quantum-Enhanced Advanced LIGO Detectors in
the Era of Gravitational-Wave Astronomy, Phys. Rev. Lett. 123,
231107 (2019).

[22] F. Acernese et al. (Virgo Collaboration), Increasing the As-
trophysical Reach of the Advanced Virgo Detector via the
Application of Squeezed Vacuum States of Light, Phys. Rev.
Lett. 123, 231108 (2019).

[23] M. Yap et al., Broadband reduction of quantum radiation pres-
sure noise via squeezed light injection, Nat. Photonics 14, 19
(2020).

[24] H. Yu et al., Quantum correlations between the light and
kilogram-mass mirrors of LIGO, Nature (London) 583, 43
(2020).

[25] J. Cripe et al., Measurement of quantum back action in the
audio band at room temperature, Nature (London) 568, 364
(2019).

[26] V. B. Braginsky and F. Ya. Khalili, Gravitational wave antenna
with QND speed meter, Phys. Lett. A 147, 251 (1990).

[27] V. B. Braginsky, M. L. Gorodetsky, F. Y. Khalili, and K. S.
Thorne, Dual-resonator speed meter for a free test mass, Phys.
Rev. D 61, 044002 (2000).

[28] V. B. Braginsky and F. Ya. Khalili, Low noise rigidity in quan-
tum measurements, Phys. Lett. A 257, 241 (1999).

[29] F. Ya. Khalili, Frequency-dependent rigidity in large-scale in-
terferometric gravitational-wave detectors, Phys. Lett. A 288,
251 (2001).

[30] M. Tsang and C. M. Caves, Coherent Quantum-Noise Cancella-
tion for Optomechanical Sensors, Phys. Rev. Lett. 105, 123601
(2010).

[31] E. Polzik and K. Hammerer, Trajectories without quantum un-
certainties, Ann. Phys. 527, A15 (2015).

[32] C. B. Møller, R. Thomas, G. Vasilakis, E. Zeuthen, Y.
Tsaturyan, M. Balabas, K. Jensen, A. Schliesser, K. Hammerer,
and E. Polzik, Quantum back-action-evading measurement of
motion in a negative mass reference frame, Nature (London)
547, 191 (2017).

[33] F. Elste and S. M. Girvin, and A. A. Clerk, Quantum Noise
Interference and Backaction Cooling in Cavity Nanomechanics,
Phys. Rev. Lett. 102, 207209 (2009).

[34] M. Li, W. H. P. Pernice, and H. X. Tang, Reactive Cavity
Optical Force on Microdisk-Coupled Nanomechanical Beam
Waveguides, Phys. Rev. Lett. 103, 223901 (2009).

[35] T. Weiss, C. Bruder, and A. Nunnenkamp, Strong-coupling
effects in dissipatively coupled optomechanical systems, New
J. Phys. 15, 045017 (2013).

[36] A. Hryciw, M. Wu, B. Khanaliloo, and P. Barclay, Tuning of
nanocavity optomechanical coupling using a near-field fiber
probe, Optica 2, 491 (2015).

[37] A. Xuereb, R. Schnabel, and K. Hammerer, Dissipative Op-
tomechanics in a Michelson-Sagnac Interferometer, Phys. Rev.
Lett. 107, 213604 (2011).

[38] S. P. Tarabrin, H. Kaufer, F. Y. Khalili, R. Schnabel, and K.
Hammerer, Anomalous dynamic backaction in interferometers,
Phys. Rev. A 88, 023809 (2013).

[39] A. Sawadsky, H. Kaufer, R. M. Nia, S. P. Tarabrin, F. Y. Khalili,
K. Hammerer, and R. Schnabel, Observation of Generalized
Optomechanical Coupling and Cooling on Cavity Resonance,
Phys. Rev. Lett. 114, 043601 (2015).

063506-9

https://doi.org/10.1007/s41114-020-00026-9
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1103/PhysRevD.93.112004
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/33/7/075009
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.1103/PhysRevLett.108.120801
https://doi.org/10.1364/OPTICA.5.000850
https://doi.org/10.1103/PhysRevX.4.021052
https://doi.org/10.1038/ncomms13165
https://doi.org/10.1038/s41565-019-0605-9
https://doi.org/10.1103/PhysRevD.65.022002
https://doi.org/10.1126/science.1156032
https://doi.org/10.1103/PhysRevLett.104.033901
https://doi.org/10.1016/0375-9601(95)00280-G
https://doi.org/10.1038/nphys2083
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1103/PhysRevLett.123.231107
https://doi.org/10.1103/PhysRevLett.123.231108
https://doi.org/10.1038/s41566-019-0527-y
https://doi.org/10.1038/s41586-020-2420-8
https://doi.org/10.1038/s41586-019-1051-4
https://doi.org/10.1016/0375-9601(90)90442-Q
https://doi.org/10.1103/PhysRevD.61.044002
https://doi.org/10.1016/S0375-9601(99)00337-0
https://doi.org/10.1016/S0375-9601(01)00550-3
https://doi.org/10.1103/PhysRevLett.105.123601
https://doi.org/10.1002/andp.201400099
https://doi.org/10.1038/nature22980
https://doi.org/10.1103/PhysRevLett.102.207209
https://doi.org/10.1103/PhysRevLett.103.223901
https://doi.org/10.1088/1367-2630/15/4/045017
https://doi.org/10.1364/OPTICA.2.000491
https://doi.org/10.1103/PhysRevLett.107.213604
https://doi.org/10.1103/PhysRevA.88.023809
https://doi.org/10.1103/PhysRevLett.114.043601


ALEXANDR KARPENKO AND SERGEY P. VYATCHANIN PHYSICAL REVIEW A 105, 063506 (2022)

[40] S. P. Vyatchanin and A. B. Matsko, Quantum speed me-
ter based on dissipative coupling, Phys. Rev. A 93, 063817
(2016).

[41] A. Nazmiev and S. Vyatchhanin, Stable optical rigidity based
on dissipative coupling, J. Phys. B: At., Mol. Opt. Phys. 52,
155401 (2019).

[42] A. Karpenko and S. P. Vyatchanin, Dissipative coupling,
dispersive coupling, and their combination in cavityless
optomechanical systems, Phys. Rev. A 102, 023513
(2020).

[43] S. Huang and G. S. Agarwal, Reactive-coupling-induced
normal mode splittings in microdisk resonators coupled to
waveguides, Phys. Rev. A 81, 053810 (2010).

[44] S. Huang and G. S. Agarwal, Reactive coupling can beat the
motional quantum limit of nanowaveguides coupled to a mi-
crodisk resonator, Phys. Rev. A 82, 033811 (2010).

[45] D. Walls and G. Milburn, Quantum Optics (Springer-Verlag,
Berlin, 2008).

[46] T. Corbitt, Y. Chen, F. Khalili, D. Ottoway, S. Vyatchanin,
S. Whitcomb, and N. Mavalvala, Squeezed-state source using
radiation-pressure-induced rigidity, Phys. Rev. A 73, 023801
(2006).

[47] J. Mizuno, Comparison of optical configurations for laser-
interferometric gravitational-wave detectors, Ph.D. thesis, Han-
nover University, 1995.

[48] J. Mizuno, K. Strain, P. Nelson, J. Chen, R. Schilling, A.
Rüdiger, W. Winkler, and K. Danzmann, Resonant sideband
extraction: a new configuration for interferometric gravitational
wave detectors, Phys. Lett. A 175, 273 (1993).

[49] H. Miao, R. X. Adhikari, Y. Ma, B. Pang, and Y. Chen, Towards
the Fundamental Quantum Limit of Linear Measurements of
Classical Signals, Phys. Rev. Lett. 119, 050801 (2017).

063506-10

https://doi.org/10.1103/PhysRevA.93.063817
https://doi.org/10.1088/1361-6455/ab1ecb
https://doi.org/10.1103/PhysRevA.102.023513
https://doi.org/10.1103/PhysRevA.81.053810
https://doi.org/10.1103/PhysRevA.82.033811
https://doi.org/10.1103/PhysRevA.73.023801
https://doi.org/10.1016/0375-9601(93)90620-F
https://doi.org/10.1103/PhysRevLett.119.050801

