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Effect of symmetry breaking on bound states in the continuum in waveguide arrays
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We developed the theoretical framework based on the coupled-mode theory which describes spectral and
scattering properties of the photonic analog of an extended Fano-Anderson model—a waveguide array with two
additional side-coupled waveguides. The structure supports a rich spectrum of eigenmodes, including bound
state in the continuum (BIC) and other bound and leaky modes, which can be classified according to the relation
between the self-coupling coefficients and eigenvalues. We focus on the structures with broken vertical symmetry
with their band structures revealing interesting phenomena, such as exceptional points and level repulsion, and
offer a lossless platform for PT -symmetry phase transition. We interpreted the resonant features in the scattering
spectra through a generalized Weierstrass factorization. The resonance related with quasi-BIC arises from the
interference between two leaky modes: one of them representing a continuum spectrum and the other (quasi-BIC)
discrete state. The reflectance near the resonance can be rewritten into the form of the Fano formula where the
shape parameter f can be expressed in terms of the poles associated with the two modes. Our approach provides
a flexible framework which allows to interpret and to engineer the resonant properties of more complex systems.
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I. INTRODUCTION

The bound state in the continuum (BIC) was proposed at
first in quantum mechanics [1] as a special solution of the
Schrödinger equation in which positive discrete energies re-
main localized within the continuous spectrum. The discovery
has never been implemented in quantum system, however,
much later the nonradiating states have been experimentally
observed in electromagnetic, acoustic, and water waves [2–4].
As a general wave phenomenon, BICs arise due to several
distinct mechanisms and exist in a wide range of material
platforms. In this paper, we focus on so-called symmetry-
protected BICs where a bound state of one symmetry class
completely decouples from the continuous spectrum of an-
other symmetry class. BICs belong to the broad group of
exceptional resonant effects the origin of which can be traced
back to the properties of poles and zeros of the underlying
scattering matrix. Specifically, the BIC was identified as the
limiting case of general Hermitian scatterer when the pole and
zero of Hermitian system coalesce on the real axis with mutual
coherent destruction [5].

The ideal BIC represents a resonance with zero leakage and
zero linewidth, however, in practice BICs manifest themselves
as “quasi-BICs” leaky modes whose Q factors are limited by
material and geometrical parameters. BIC relates fundamen-
tally to the Fano resonance which manifests itself as a sharp
asymmetric profile of the transmission or the absorption lines
and appears in the systems characterized by a certain dis-
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crete energy state that interacts with the continuum spectrum
through an interference effect [6].

The resonant coupling and interaction between a discrete
state and a continuum spectrum can occur in the so-called
Fano-Anderson model [7]. The bistable wave transmission
and the effect of nonlinearity on Fano resonance was de-
scribed in the model that can be regarded as the nonlinear
generalization of the Fano-Anderson system [8]. The forma-
tion of the surface Fano state of in a semi-infinite waveguide
array with one side-coupled waveguide was observed experi-
mentally in Ref. [9].

In this paper we employ a theoretical model described
in our recent paper [10] to investigate the properties of
the coupled waveguide system consisting of an infinite
one-dimensional array of identical and regularly spaced
single-mode optical waveguides with two additional waveg-
uides above and below the central waveguide of the array
(Fig. 1). We note that a similar structure consisting of a dis-
crete linear chain, which in addition to Fano defects contains
one δ-like defect which gives rise to the Fano-Feshbach reso-
nance, was considered in Ref. [11]. Our model represents an
extension of a photonic implementation of the Fano-Anderson
model and generalization of a famous finite configuration in
which an optical symmetry-protected BIC was confirmed ex-
perimentally [12]. Surprisingly, a comprehensive theoretical
understanding of the system has not yet been presented.

The paper is organized as follows. In Sec. II we de-
scribe our model and systematically explore its spectral
properties considering the structures with the preserved and
broken vertical symmetry. In Sec. III we present the ampli-
tude transmittance t and reflectance r of the Bloch waves
and demonstrate the effect of the symmetry breaking on the
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J. PETRÁČEK AND V. KUZMIAK PHYSICAL REVIEW A 105, 063505 (2022)

FIG. 1. A coupled-waveguide system consisting of a one-
dimensional array and two additional waveguides above and below
the array.

reflectance spectra. In Sec. IV we interpret the observed
spectral features in terms of the poles and zeros of the scat-
tering matrix by using the Weierstrass factorization theorem.
Section V is devoted to the resonance associated with the
quasi-BIC mode; we show that the relevant part of the spec-
trum can be rewritten into the form of the Fano formula.

II. MODEL

We use the standard approach based on the coupled mode
theory (CMT) [13–15]. The total field in the structure is
expressed through superposition of modal fields in the in-
dividual waveguides with slowly varying amplitudes ψm(z)
(m ∈ Z) on the mth waveguide in the array and ϕ∓1(z) on
the upper and lower additional waveguide. The dependence of
fields on time t and the z axis is assumed to be of the form
[ϕ−1(z) ψm(z) ϕ1(z)] exp(iωt − iβz), where β is a suitably
chosen reference propagation constant. The evolution of the
modal amplitudes is described within CMT by a set of coupled
equations,

iψ ′
m = C(ψm−1 + ψm+1), m �= 0, (1)

iψ ′
0 = δ0ψ0 + C(ψ−1 + ψ1) + C1ϕ−1 + C2ϕ1, (2)

iϕ′
−1 = δ−1ϕ−1 + C1ψ0, (3)

iϕ′
1 = δ1ϕ1 + C2ψ0, (4)

where the prime stands for the derivative with respect to z, C
is the coupling coefficient in the array, C1,2 are the coupling
coefficients between the upper and lower additional waveg-
uide and the 0th waveguide in the array, and δ0 and δ∓1 are
self-coupling coefficients in the 0th waveguide in the array
and in the upper and lower additional waveguides, respec-
tively. The self-coupling coefficients may include the effect of
nearest neighbors due to the geometry as well as the possible
external perturbations of the 0th waveguide and the additional
waveguides. Note that self-coupling coefficients associated
with the other waveguides in the array (m �= 0) do not appear
explicitly in Eq. (1) due to the periodicity, the coefficients are
the same and their effect is implicitly included in the value of
the reference propagation constant β [14]. In the following we
assume that δ0, δ∓1 ∈ R and C,C1,2 > 0.

We seek the stationary solutions of Eqs. (1)–(4) in the
form [ϕ−1(z)ψm(z)ϕ1(z)] ∝ exp(−iεz), where ε stands for
the change in the propagation constant and corresponds to
the energy in the quantum theory. The unperturbed array
described by Eq. (1) supports propagation of the Bloch waves
ψm = A exp(−ikxam − iεz), where kx is the Bloch

FIG. 2. Solution of the dispersion equation (5) for the periodic
array. Solid lines display the dependence of the energy ε on the real
and imaginary parts of the Bloch wave-number kx; the gray area
indicates the continuum. The dashed horizontal lines indicate energy
levels of the bound states in the composed structure with parameters
C1 = C2 = C and δ−1 = δ1 = δ0 = 0.

wave-number and a is the period of the lattice with the
well-known dispersion relation,

ε = 2C cos(kxa), (5)

(see, e.g., Ref. [16]). The corresponding band structure includ-
ing positions of the states in the band gap [i.e., solutions of
Eq. (5) with complex kx] is shown in Fig. 2 and shows that
the periodic array supports the continuum of extended states
in the band −2C < ε < 2C.

The composed structure exhibits rich modal behavior; the
spectrum was classified in Ref. [10], here we summarize the
main features and present additional details regarding the nu-
merical procedure. The eigenmodes corresponding to the
solutions of Eqs. (1)–(4) are assumed to be in the form

ψm = Ae−ikxa|m|−iεz, (6)

ϕ±1 = B±1e−iεz. (7)

Let us first consider the case when ε = δ1 or ε = δ−1. It
follows from Eqs. (1)–(4) that the nonzero solution is not
supported unless the structure possesses the vertical symmetry
δ−1 = δ1 when one obtains a bound state,

ε = δ−1 = δ1 (8)

C1B−1 = −C2B1, A = 0. (9)

The eigenvalue ε, see Eq. (8), is doubly degenerate, and
the eigenfunction is vertically antisymmetric in sense of
Eq. (9). The mode is the symmetry-protected BIC provided
−2C < δ±1 < 2C.

Now let us turn to the case when ε �= δ1 and ε �= δ−1. We
substitute Eqs. (6) and (7) into Eqs. (2)–(4) and after a few
steps of algebra obtain the eigenvalue equation,

2C sin(kxa) + iμ = 0, (10)

where

μ = δ0 + C2
1

ε − δ−1
+ C2

2

ε − δ1
. (11)
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None of the solutions of Eq. (10) is a true BIC as the deriva-
tion assumes A �= 0, however, for the vertically asymmetric
structures (δ−1 �= δ1), one of them may represent a quasi-BIC
as will be shown below.

It is advantageous to rewrite Eq. (10) into the form

4C2 sin2(kxa) = −μ2. (12)

Now we use Eq. (5) and express the left-hand side of Eq. (12)
in terms of the energy ε. The resulting equation can be cast
in the form of a sixth-order polynomial in ε, and its roots
are equal to mode energies. When applicable, the solution
given in Eq. (8) is also included as a double root; however,
the root itself is not a solution of Eq. (12). The corresponding
wave-numbers kxa can be determined by solving of Eq. (5),
which in general provides 12 solutions (two for each eigen-
value ε) such that −π < Re(kxa) � π , whereas six of them
satisfy Eq. (10). As will be discussed in Sec. IV, the solutions
p ≡ kxa of Eq. (10) coincide with the poles of the S-matrix,
the remaining six values, z ≡ kxa, coincide with the zeros
of the S-matrix. The energy eigenvalues are either real or
occur in complex conjugate pairs ε, ε′ = ε∗ with pole pairs p,
p′ = −p∗. This property can be explained as a consequence of
the time-reversal symmetry [17]. The modes with complex en-
ergies satisfy either outgoing, 0 < Re(p) � π (conventional
definition of leaky modes), or ingoing boundary conditions,
−π < Re(p′) < 0, and these conditions manifest themselves
in energy eigenvalues as Im(ε) < 0 and Im(ε′) > 0, respec-
tively. The latter statement follows from Eqs. (5) and (10).

As an example we consider the spectrum of vertically sym-
metric structures δ−1 = δ1 that are defined by the parameters
δ∓1 = δ0 = 0. In this degenerate case, Eq. (10) yields only
four roots, which can be expressed analytically as

ε = ±
√

2C2 ± 2
√

C4 + C4
av, (13)

where all combinations of the signs are allowed and
C2

av = (C2
1 + C2

2 )/2. The corresponding modes exhibit vertical
symmetry,

C2B−1 = C1B1. (14)

Consequently, the structures for arbitrary C1,2 support three
bound modes with real energies, their levels being depicted in
Fig. 2 for the case of C1 = C2 = C. Two of them, denoted as
B1 and B2, are given by Eq. (13) and stay localized outside
the continuum with the corresponding poles Re(kxa) = 0 and
Re(kxa) = π . The remaining confined mode is a doubly de-
generate BIC with zero energy, see Eq. (8), which formally
coincides with the poles kxa = ±π/2. In addition, Eq. (13)
provides a pair of eigenvalues with pure imaginary energies,
the corresponding states are denoted as L, L′ [10], whereas
their energy and pole pairs satisfy the symmetries described
above.

The structures with broken vertical symmetry, δ1 �= δ−1,
cannot support BIC, instead we observe a new mode pair
(qBIC, qBIC′) initially with complex energies with one of
them being a quasi-BIC leaky mode (qBIC). The full spec-
trum of modes is shown in Fig. 3, the modes are labeled
according to their asymptotics when δ±1 → 0. We note that
an arbitrary choice of the structural parameters may lead to a

FIG. 3. Modes of structures with broken vertical symmetry
δ = −δ−1 = δ1. (a) and (b) Dependencies of the asymmetry strength
δ on the real part of the Bloch wave-number kx; (c) the real and
imaginary parts of the energy ε vs the asymmetry strength δ, the
dashed lines indicate the states with Im(ε) > 0, and the gray areas
indicate the continuum in the plane Im(ε) = 0. Parameters (a) C1 =
C2 = 0.6C; (b) and (c) C1/C = 0.2, C2/C = 0.6; δ0 = 0.

complicated behavior. We found that the parameter δ0 does not
affect qualitatively the features associated with the excitation
of a quasi-BIC. Moreover, the difference between δ1 and δ−1

rather than actual values of the parameters crucially affects the
behavior of the modes. Therefore, in the following, we focus
on the structures that are defined as δ ≡ δ1 = −δ−1 and δ0 = 0
where the strength of the asymmetry between δ1 and δ−1 is
expressed in terms of the parameter δ. Figures 3(a) and 3(b)
demonstrate behavior of poles kxa with increasing δ, we dis-
play only symmetric part of the spectra 0 � Re(kxa) � π , i.e.,
the modes B1, B2, qBIC, and L, the remaining poles for qBIC′

and L′ are placed symmetrically with respect to Re(kxa) = 0.
Figure 3(c) shows behavior of all six complex eigenvalues ε.
We observe two bound modes (B1 and B2) with real energies
outside the continuum, the related poles have Re(kxa) = 0 and
Re(kxa) = π , and modes L and L′ which now exhibit general
complex energy.

Let us first consider the structures with small levels of
asymmetry strength δ. Lifting the degeneracy of BIC leads to
appearance of the qBIC leaky mode Im(ε) < 0 and the qBIC′

mode, representing states with Im(ε) > 0; both the modes be-
come BIC in the limit δ → 0 where they coalesce [Fig. 3(c)].
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The evolution of the corresponding poles starts from their
initial positions at kxa = ±π/2 [Figs. 3(a) and 3(b)]. For the
structures with identical coupling coefficients, C1 = C2, the
real components Re(kxa) of the poles of qBIC, L modes are
the same and equal π/2 until a critical value of parameter
δ is achieved [Fig. 3(a)]. Likewise, Re(kxa) = −π/2 applies
to the poles of qBIC′ and L′ modes below the same critical
value, The critical value corresponds to the first type of the
exceptional point (EP) described in Ref. [10].

In the case when C1 �= C2 the attraction between qBIC and
L modes disappears as well as the EP and instead, the splitting
of Re(kxa) associated with the (qBIC, L) and (qBIC′, L′) pairs
occurs at δ = 0 [Fig. 3(b)]. With increasing δ the modes reach
the second type of the EP at which the energies of L, L′,
qBIC, and qBIC′ modes become real and correspond to the
bound states outside the continuum.

III. TRANSMITTANCE AND REFLECTANCE

To complete the description of the states supported by
the structure we also calculated the effect of the additional
waveguides on scattering of the Bloch waves propagating in
the array. Instead of Eq. (6), the field amplitudes in the array
are now expressed through the amplitude transmittance t and
reflectance r as

ψm = e−ikxam−iεz + reikxam−iεz, m � 0, (15)

ψm = te−ikxam−iεz, m � 0. (16)

whereas Eq. (7) for amplitudes in the additional waveguides
reamins valid. After substituting Eqs. (7), (15), and (16) into
Eqs. (2)–(4) one obtains

(δ−1 − ε)B−1 + C1t = 0 (17)

(δ1 − ε)B1 + C2t = 0, (18)

and the final result,

t = r + 1 = 2C sin(kxa)

2C sin(kxa) + iμ
, (19)

according to which the solutions of the dispersion equa-
tion (10) are linked to the poles of t and r.

To demonstrate elementary properties of Eq. (19) we
present in Fig. 4 reflectance spectra R = |r|2 for vertically
symmetric, δ∓1 = 0, (dashed line) and asymmetric, δ−1 �= δ1,
(solid line) structures.

(1) The reflectance reaches maximum R = 1 at the
continuum band edges due to vanishing group velocity. In-
deed, according to Eq. (19) sin(kxa) = 0 when kxa = 0 or
kxa = ±π .

(2) To interpret the other peaks R = 1 in the continuum,
we consider isolated additional waveguides. Each of them
supports one localized state possessing ε = δ±1. For the com-
posed structure, the transmission vanishes at these energies
due to the vanishing denominators in the second or third
term in Eq. (11) and, thus, |μ| → ∞ in Eq. (19). According
to Eqs. (17) and (18) we, in general, observe two different
resonances: (i) ε = δ−1 with B−1 �= 0 and B1 = 0 and (ii)
ε = δ1 with B1 �= 0 and B−1 = 0. In other words, for asym-
metric structures and |δ| < 2C we always observe two peaks

FIG. 4. The reflectance R vs the Bloch wave-number kx; dashed
line: system with the symmetry δ = 0; solid line: system with the
broken symmetry δ/C = 0.3. The coupling coefficients C1 and C2

are indicated in the boxes δ0 = 0.

at kxa = arccos[δ∓1/(2C)]. At each resonance, the field in one
of the attached waveguides is not excited as demonstrated in
Fig. 5 (see solid lines only), whereas for symmetric structures
[Fig. 5 (dashed lines)], the two resonances coalesce into single
one with both additional waveguides being excited.

FIG. 5. Field amplitudes B±1 for the parameters in Fig. 4: (a) and
(b) C1 = C2 = 0.6C; (c) and (d) C1 = 0.2C, C1 = 0.6C; dashed lines:
system with the symmetry δ = 0; solid lines: system with the broken
symmetry δ/C = 0.3.
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(3) The positions of the peaks R = 1 do not depend on
the coupling coefficients C1,2. On the other hand, C1,2 have
profound influence on the shape of the resonances: decreasing
of C1/C and C2/C (weaker coupling) leads to narrower peaks
in R, whereas asymmetry in C1,2 strongly affects asymmet-
ric behavior of the two resonances for δ > 0, cf. Figs. 4(a)
and 4(b); Figs. 5(a)–5(d). Moreover, the position of global
minima R = 0 which occurs at δ > 0, strongly depends on
both asymmetries, in C1,2 and δ∓1 with the corresponding
energy for δ0 = 0 given by the relation,

ε = C2
1 − C2

2

C2
1 + C2

2

δ. (20)

In the next section we show that the described features can
be interpreted in terms of excitation of various modes of the
system.

It is worth noting that Eq. (20) describes also approxi-
mately the real part of the energy eigenvalue Re(ε) for qBIC,
which captures the behavior of qBIC for small δ in Figs. 3(a)
and 3(b) as well as with Figs. 5(a) and 5(c) in Ref. [10]. For
the imaginary part of the eigenvalue we obtained

Im(ε) ≈ − 8C2
1C2

2(
C2

1 + C2
2

)3 δ2. (21)

Both results follow from the perturbation analysis of Eqs. (1)–
(4). Equation (21) predicts that the decay rate, which is
proportional to −Im(ε), increases quadratically with the
asymmetry strength δ. This is in accord with the behavior of
qBIC observed in Figs. 5(b) and 5(d) in Ref. [10] as well as
nicely agrees with the trend observed in Fig. 4 in Ref. [12].

IV. MODAL EXPANSION OF SCATTERING SPECTRA

We start with the S-matrix that for our structure has the
form

Ŝ =
(

r t
t r

)
. (22)

Eigenvectors of Ŝ have even and odd symmetries [17] with
corresponding eigenvalues Se = r + t and So = r − t . In com-
parison with Ref. [17], we do not reverse the sign of So.
Conversely, if we know the eigenvalues, we can determine the
reflection and transmission coefficients as

r = Se + So

2
, t = Se − So

2
. (23)

It follows from Eq. (19) that for our structure So = −1 and

Se = 2C sin(kxa) − iμ

2C sin(kxa) + iμ
. (24)

The dependence Se(q), q ≡ kxa, can be expressed using the
Weierstrass factorization theorem [17,18] as

Se(q) = AeiBq
∏

n

q − zn

q − pn
, (25)

FIG. 6. The reflectance R vs the Bloch wave-number kx (solid
line) for the system with the parameters C1 = 0.5C, C2 = C, δ =
−δ−1 = δ1 = 0.8C, and δ0 = 0. The shaded areas present contribu-
tions of various modes in the expansion given by Eq. (25).

where zn and pn are zeros and poles of Se(q) and

A = Se(0)
∏

n

pn

zn
, (26)

iB = S′
e(0)

Se(0)
+

∑
n

(
1

zn
− 1

pn

)
. (27)

The time-reversal symmetry of the physical systems requires
that the number of poles and zeros should be equal [17,18],
and this property was used in the formulation of Eq. (25). It
follows from Eq. (24) that the poles pn correspond to modes
of the structure, cf. Eq. (10), whereas the zeros zn correspond
to solutions of Eq. (10) in which the sign of the term iμ is
the opposite. Thus, both poles and zeros can be found simul-
taneously by solving Eq. (12). For each pole pn there is a zero
p∗

n which yields the relation zn = p∗
n. The knowledge of the

pole-zero pairs is sufficient to restore the diagonal component
of the scattering matrix Se(q) through Eq. (25) and the spectra
r and t through Eq. (23).

To evaluate the contributions of various modes to the scat-
tering spectra we repeat the same procedure with a single
selected mode (pole-zero pair) used in the expansion given by
Eq. (25). The results are demonstrated in Fig. 6. To enhance
visibility of the main features we choose an asymmetric struc-
ture such as in Fig. 4(b) (solid line) with increased values of
δ and C1,2 that lead to a significant overlap among various
peaks. Figure 6 displays the reflectance R as a function of
the Bloch wave-number kx; the extended range of kx was
chosen with the aim to present the effect of the resonances
with Re(pn) outside of the physical interval 0 � kxa � π . The
solid curve displayed is calculated by using the exact formula
given by Eq. (19), however, the same dependence is obtained
by using Eqs. (25) and (23) provided that a sufficient number
of the pole-zero pairs is taken into account; here we used all
pairs fulfilling the condition −6π < Re(pn) � 6π . This rela-
tively wide range of Re(pn) is consistent with our definition of
the structural parameters. For structures exhibiting narrower
peaks (such as in Fig. 4) the required range of Re(pn) can be
considerably reduced.

The evaluation of the A and B deserves an additional com-
ment: It can be shown that by using Eqs. (26) and (27) one
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obtains |A| = 1 and B ∈ R. A and B depend on the number
of pole-zero pairs used in the expansion (25), therefore, the
dependence Se(q) comforms to the values Se(0) and S′

e(0)
in Eqs. (26) and (27). However, the evaluation requires the
knowledge of universal values of A and B which are inde-
pendent of the Se(0), S′

e(0) and of the number of pole-zero
pairs. To determine such values we consider the structure
which does not support any resonance, i.e., q is far from each
resonance and has vanishing reflectance r = 0. No resonance
implies absence of the pole and, therefore, Eq. (25) yields
Se(q) = A exp(iBq). Consequently, one obtains A = 1 and
B = 0. This result was numerically verified.

The shaded areas in Fig. 6 present the contributions of
various modes in the expansion given by Eq. (25) to the total
spectra. The individual peaks have Lorentzian profile and the
total spectrum appears as a result of their interference [17,18].
Obviously, all spectral features correspond to the individual
modes: B1 and B2 are responsible for peaks at band edges
whereas L and qBIC for the peaks in the continuum. We note
that even the modes L′ and qBIC′ may affect the spectra (in
particular, the values of R in proximity of the local minima)
in the physical range of 0 � kxa � π , provided the overlap is
sufficiently large. As the most interesting feature appears to
be the destructive interference mainly between L and qBIC
modes (or L′ and qBIC′) leading to global minima R = 0.

V. FANO RESONANCE

Figure 6 indicates that the asymmetric Fano shape associ-
ated with the qBIC mode arises due to the superposition of
modes L and qBIC. In this section we confirm this statement
by direct calculation. First, we will describe a part of spectrum
near an arbitrary resonance defined with a selected pole-zero
pair ps, zs = p∗

s , and later we choose a specific case of the
qBIC mode. Likewise in Ref. [17], we rewrite Eq. (25) into
the form

Se(q) = eiϕ(q) q − p∗
s

q − ps
, (28)

where the phase ϕ(q) describes the effect of other modes
on the spectrum. The selected resonance corresponds to the
discrete state in the Fano theory whereas ϕ(q) can be regarded
as the slowly varying phase shift of the continuum. Next, we
introduce the normalized “frequency” detuning,

	 = q − Re(ps)

Im(ps)
, (29)

and calculate the reflectance R = |r|2. We substitute Eq. (28)
into Eq. (23) where we also use So = −1 to obtain

R = 1

2
Re

[
1 − eiϕ 	 + i

	 − i

]
= [	 sin(ϕ/2) + cos(ϕ/2)]2

	2 + 1
.

(30)

The last expression leads to the following formula:

R =
(

1

1 + f 2

)
(	 + f )2

	2 + 1
, (31)

which is identical with the famous relation for the Fano reso-
nance [6] in the form that is normalized to maximum 1—see

the prefactor 1/(1 + f 2) and where the Fano parameter f
reads as

f = cot(ϕ/2). (32)

The Fano formula on the right-hand side of Eq. (31) applies
also for the transmittance T = 1 − R provided we change the
Fano parameter as f → −1/ f .

The result can be further simplified when we assume that
the continuum is formed only by one resonance with pole
pc, and the related phase shift ϕ is assumed to be con-
stant within the range of the selected narrow resonance qs,
ϕ(q) ≈ ϕ[Re(qs)]. Under these assumptions, it follows from

FIG. 7. The reflectance R vs the Bloch wave-number kx . Pa-
rameters (a) and (b) C1/C = 0.2, C2/C = 0.6, δ/C = 0.3. (c) and
(d) C1 = C2 = 0.6C, δ/C = 0.15. δ0 = 0. “Exact” (solid lines) in
(a)–(d): exact calculation through Eq. (19). The shaded areas in
(a) and (c): individual contributions of L and qBIC modes in Eq. (25).
“′L-qBIC′” (dashed lines) in (b) and (d): L and qBIC modes used in
Eq. (25) simultaneously. Fano (dashed-dot lines) in (b) and (d): Fano
formula Eq. (31).
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comparison of Eqs. (28) and (25) that

eiϕ ≈ Re(ps) − p∗
c

Re(ps) − pc
. (33)

Consequently, we obtain from Eq. (32),

f ≈ Re(ps) − Re(pc)

Im(pc)
. (34)

Figure 7 demonstrates the effect of the L mode on the
spectra near the qBIC mode, therefore, we choose in the calcu-
lation ps as the qBIC mode and pc as the L mode. At first, we
consider structures with C1 �= C2: Fig. 7(a) shows the contri-
butions of the interacting modes L and qBIC to the total spec-
tra, whereas Fig. 7(b) shows that for the selected structural
parameters, it is sufficient to take into account only the inter-
action of the L and the qBIC modes. The effect of all other
modes is marginal—see the curves labeled as Exact and L-
qBIC. Furthermore, we observe that the Fano formula Eq. (31)
for which Eq. (34) provides f = 3.2 describes quite well the
asymmetric shape of the spectra near the chosen qBIC reso-
nance kxa ∼ 0.55, whereas outside this region, the description
is not valid as our assumption f = const is not satisfied.

Similar behavior was observed in structures with C1 = C2:
In Fig. 7(c) the contributions of the interacting modes L and
qBIC to the total spectra are depicted. The former ones appear
at the same positions of Re(kxa) = π/2 due to the selected
asymmetry strength δ below its branching value—see also
Fig. 3(a). Figure 7(d) demonstrates that it is sufficient to
take into account only the interaction of L and qBIC modes
and that the resulting dip in R arises due their destructive
interference—see the curves labeled as Exact and L-qBIC.
We note that Eq. (34) provides f = 0, consequently, the Fano
formula Eq. (31) describes a symmetric dip, its shape agrees
reasonably well with the reference profile only in the close
proximity of the resonance.

VI. CONCLUSION

In conclusion, we studied systematically spectral and
scattering properties of a photonic analog of an extended
Fano-Anderson tight-binding model. The complex eigenval-
ues reveal interesting phenomena, such as exceptional points
and level repulsion, and offer an interesting alternative where
the PT -symmetry phase transition occurs without gain and
loss. We establish the conditions under which the structure
supports the symmetry-protected BIC. In the case of the bro-
ken vertical symmetry the BIC couples to the continuum,
turns into the quasi-BIC leaky mode, and manifests itself
as a generally asymmetric Fano resonance in the scattering
spectra. The key spectral features can be interpreted in terms
of system eigenmodes through a generalized Weierstrass fac-
torization theorem. In particular, we found that the Fano
resonance arises from the interference between two leaky
modes, one of them being the quasi-BIC. The reflectance (or
transmittance) can be rewritten into the form of the Fano for-
mula where the shape parameter f can be expressed in terms
of the poles belonging to the quasi-BIC and the other leaky
mode. Our paper provides the theoretical framework which
describes transformation of the symmetry-protected BIC into
a leaky mode and allows to interpret the resonant properties of
the more complex systems, whereas through the engineering
of zeros of the transmission matrix, it enables to investigate
their nontrivial topological properties and may prove to be
useful in various fields of optics as well as in cold matter and
quantum confined systems.
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