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Saddle-point exciton signature on high-order harmonic generation
in two-dimensional hexagonal nanostructures
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The disclosure of basic nonlinear optical properties of graphene-like nanostructures with correlated electron-
hole nonlinear dynamics over a wide range of frequencies and pump field intensities is of great importance
for both graphene fundamental physics and for the expected novel applications of two-dimensional (2D)
hexagonal nanostructures in extreme nonlinear optics. In the current paper, the nonlinear interaction of 2D
hexagonal nanostructures with the bichromatic infrared driving field taking into account the many-body Coulomb
interaction is investigated. Numerical investigation in the scope of the Bloch equations within the Houston basis
that take into account e–e and e–h interactions in the Hartree-Fock approximation reveals significant excitonic
effects in the high-harmonic generation process in 2D hexagonal nanostructures such as graphene and silicene.
It is shown that, due to the correlated electron-hole nonlinear dynamics around the van Hove singularity, spectral
caustics in the high-harmonic generation spectrum are induced near the saddle-point excitonic resonances.
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I. INTRODUCTION

Many of the optoelectronic properties of graphene [1] and
its analog silicene [2–4] can be understood within a nonin-
teracting free charged-carrier picture. The most pronounced
feature of these nanostructures is the characteristic linear
dispersion relation of massless Dirac fermions [5] and the
anomalous integer quantum Hall effect [6]. The measured
optical conductivity up to the visible region is close to the
value of e2/4h̄ [7] predicted within the free-particle (FP)
theory [8]. On the other hand, since the screening length
diverges at the charge neutrality point [1], one can expect
the significant influence of the many-body electronic interac-
tions on the properties of hexagonal nanostructures. Indeed,
depending on the substrate material, many-body electronic
interactions lead to a departure from the linear dispersion rela-
tion [9–11] and to the fractional quantum Hall effect [12,13].
In graphene, the ratio of the Coulomb potential energy to the
kinetic one, that is the Wigner-Seitz radius, is independent
of density. The latter is defined as rs = e2/(h̄vF ε), where ε

is the background lattice dielectric constant of the system
and vF is the Fermi velocity. For intrinsic graphene rs ≈ 2.4
and since rs is also the “effective fine-structure constant” for
graphene [9], this should result in considerable changes in
graphene’s properties, including the opening of an energy
gap [14–16]. Experimental evidence for such phenomena is
absent. This discrepancy is resolved if one takes into ac-
count the screening stemming from the valence electrons,
which is almost 4 for intrinsic graphene [17]. The substrate-
induced screening further suppresses Coulomb interaction,
making graphene a weakly interacting system. For exam-
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ple, the substrate SiO2 reduces the Wigner-Seitz radius to
rs ≈ 0.5. At first glance this is a small value, however, the
electron-electron interaction can also significantly modify the
linear optical response of graphene-like materials due to ex-
citonic effects [18–26]. These effects are significant near the
Van Hove singularity (VHS) [27] point in the Brillouin zone
(BZ), giving rise to a pronounced peak in the optical absorp-
tion. Both the position and shape of this peak evidence the
role of strong Coulomb interactions [18–21]. Instead of sim-
ple free-free transitions, electron-hole-correlated transitions
take place. These are revealed in the absorption spectrum of
graphene in the ultraviolet range. Note that, for silicene, the
excitonic resonance is expected in the visible range of the
spectrum.

The significance of the many-body Coulomb interaction
has also been shown for ultrafast many-particle kinet-
ics [28–30] and for the perturbative nonlinear optics in
graphene [31–34]. With the further increase of the pump-wave
intensity, one can enter into the extreme nonlinear optical
regime [35], where high-order harmonics generation (HHG)
takes place. The HHG until the last decade was the preroga-
tive of atomic systems. But with the advent of graphene and
other novel nanostructures, it became clear that HHG can be
much more efficient in these materials. There were several
investigations devoted to the HHG phenomenon in the mono-
layer [36–44], bilayer [45–47], and gapped graphene [48,49]
nanostructures with the pump wave of linear polarization.
Since the observation of the HHG enhancement by the ellip-
tically polarized light in graphene by Yoshikawa et al. [50],
the polarization and optical anisotropy effects of HHG in
graphene attracted much interest [51–58] as it is distinct from
the HHG in gases where HHG is significantly suppressed with
an increase of the ellipticity of a pump wave [59]. After suc-
cessful adoption of three-step semiclassical model developed
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for atomic HHG [60] to gapped nanostructures [61,62], there
were attempts to extend this model to graphene [44,57,58,63].
In the three-step semiclassical model, at the first step for the
gapped system, there is a localization of the excited electron-
hole wave packet in the BZ around the minimum band gap
at the instant of tunneling. For graphene, due to the vanish-
ing band gap depending on the intensity, polarization, and
frequency of the pump wave different scenarios can occur.
In particular, instead of the tunneling ionization or excitation
the resonant one photon and multiphoton excitation of the
Fermi-Dirac sea can take place [37], or the first step can
be initiated by nondiabatic crossing [44] of the valence-band
electron trajectories through the Dirac points, where the tran-
sition dipole moment is singular. For graphene, as well as for
other nanostructures, one should also relax the condition for
recombination [57,58]. Due to the wave-packet spreading an
annihilation at a relative electron-hole distance comparable to
lattice spacing, the so-called imperfect recollision can take
place [64]. With these modifications, one can explain the
enhancement of the HHG yield in the elliptically polarized
laser fields [57] or in two-color laser fields at orthogonal
polarizations [58].

Compared with the gaseous system there is also one im-
portant factor that can significantly modify the three-step
semiclassical model. As shown in Ref. [65], at VHS spec-
tral caustics are induced resulting in a strong amplification
of the HHG signal. On the other hand, in graphene-like
nanostructures near VHS the many-body Coulomb interac-
tion is expected to be significant. Hence, it is of interest
to clear up the signature of the electron-electron interaction
on the extreme nonlinear optical response of graphene-like
nanostructures in the situation when the charged carriers are
accelerated up to the M saddle point in the BZ. The impor-
tance of the Coulomb interaction for HHG in graphene was
previously predicted by the authors of Ref. [43]. The later
study was conducted near the Dirac points where excitonic
effects are weak.

In the present work, we investigate the influence of saddle-
point excitons on the HHG process in a two-dimensional (2D)
hexagonal nanostructure. The electron-electron Coulomb in-
teraction is taken into account in the scope of the Hartree-Fock
(HF) approximation applicable to the full BZ. This ansatz
leads to a closed set of integrodifferential Bloch equations for
the single-particle density matrix in the Houston basis. The
carrier-carrier and carrier-phonon scatterings are taken into
account phenomenologically with the relaxation term. As
reference nanostructures, we consider graphene and silicene.
For the latter, we neglect the small gap due to the spin-orbit
coupling, which is irrelevant for the current study.

The paper is organized as follows. In Sec. II the model and
the basic equations are formulated. In Sec. III, we present the
main results. Finally, conclusions are given in Sec. IV.

II. MODEL AND A CLOSED SET OF
INTEGRODIFFERENTIAL EQUATIONS

We consider the interaction of a strong laser field, bichro-
matic or monochromatic, with a two-dimensional hexagonal
nanostructure such as graphene and silicene. The electric field

strength of the considering wave field can be written as

E(t ) = f (t )E0[ê cos (ω0t ) + ê′ε cos (ω′
0t − ϕ)], (1)

where f (t ) = sin2(πt/τ ) is the sin-squared envelope func-
tion, τ is the pulse duration, ê and ê′ are unit polarization
vectors in the plane of the 2D nanostructure (XY ), ω0 and
ω′

0 are currier frequencies, E0 is the amplitude, and ε and ϕ

are the relative amplitude and phase of the two waves, respec-
tively. We take an eight-cycle fundamental laser field. In the
HF approximation we reduce the electron-electron Coulomb
interaction into the mean-field Hamiltonian [43]. As a result,
we obtain a closed set of equations for the interband polar-
ization P (k, t ) = P ′(k, t ) + iP ′′(k, t ) and for the distribution
functions Nc/v (k, t ) of the conduction or valence bands. Then,
one can obtain semiconductor Bloch equations in the HF
approximation. We will consider the latter of these in the
Houston basis, i.e., the crystal momentum k is transformed
into a frame moving with the vector potential k0 = k − A,
where A = − ∫ t

0 E(t ′)dt ′ is the vector potential and E is the
laser electric field strength. For compactness of equations,
atomic units are used throughout the paper unless otherwise
indicated. On the HF level for an undoped system in equi-
librium, the initial conditions P (k, 0) = 0, Nc(k, 0) = 0, and
Nv (k, 0) = 1 are assumed, neglecting thermal occupations. In
this case the equation for Nv (k, t ) is superficial. Thus, the
Bloch equations with damping (�) within the Houston basis
read

∂tNc(k0, t ) = −2Im{[E(t )Dtr (k0 + A)

+
c(k0 + A, t ;P,Nc )]P∗(k0, t )}, (2)

∂tP (k0, t ) = −i[Eeh(k0 + A) − i�]P (k0, t )

+ i[E(t )Dtr (k0 + A) + 
c(k0 + A, t ;P,Nc )]

× [1 − 2Nc(k0, t )], (3)

where

Eeh(k) = 2E (k) − �c(k, t ;P,Nc ) (4)

is the electron-hole energy defined via the band energy

E (k) = γ0| f (k)|, (5)

and many-body Coulomb interaction energy

�c(k, t ;P,Nc ) = 2

(2π )2

∫
BZ

dk′V2D(k − k′)

× { fc(k, k′)Nc(k′) + fs(k, k′)P ′′(k′, t )}.
(6)

In Eq. (5) γ0 is the transfer energy of the nearest-neighbor
hopping and the structure function is

f (k) = ei
aky√

3 + 2e−i
aky
2
√

3 cos

(
akx

2

)
, (7)

where a is the lattice spacing. In Eq. (6)

fc(k, k′) = cos[arg f (k′) − arg f (k)],

fs(k, k′) = sin[arg f (k′) − arg f (k)].
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The electron-electron interaction potential is modlled by the
screened Coulomb potential [29]

V2D(q) = 2π

εεq|q| , (8)

which accounts for the substrate-induced screening in the 2D
nanostructure (ε) and the screening stemming from valence
electrons (εq). In Eqs. (2) and (3) the interband transitions are
defined via the transition dipole moment

Dtr (k) = − a

2| f (k)|2 sin

(√
3

2
aky

)
sin

(
akx

2

)̂
x

+ a

2
√

3| f (k)|2
[

cos (akx ) − cos

(√
3

2
aky

)

× cos

(
akx

2

)]̂
y, (9)

and the light-matter coupling via the internal dipole field of
all generated electron-hole excitations


c(k, t ;P,Nc ) = 1

(2π )2

∫
BZ

dk′V2D(k − k′)

× {P ′(k′, t ) + i fc(k, k′)P ′′(k′)

− i fs(k, k′)Nc(k′, t )}. (10)

The electromagnetic response in the 2D hexagonal nanostruc-
ture is determined by an intraband ja(t ) and interband je(t )
contributions, which are given by

ja(t ) = − 4

(2π )2

∫
B̃Z

dk0[vc(k0 + A)Nc(k0, t )], (11)

je(t ) = − 4

(2π )2

∫
B̃Z

dk0Re[v∗
tr (k0 + A)P (k0, t )], (12)

respectively, where the band velocity is defined by vc(k) =
∂E (k)/∂k, and vtr (k) = 2iE (k)Dtr (k) is the transition matrix
element for velocity. The Brillouin zone is also shifted to
B̃Z = BZ − A.

The obtained Eqs. (2) and (3) formulate a closed set of in-
tegrodifferential equations. We will solve these equations nu-
merically. It is more convenient to make the integration of
these equations in the reduced BZ, which contains equivalent
k points of the first BZ, cf. Fig. 1. The sampling k points
are distributed homogeneously in the reduced BZ accord-
ing to the Monkhorst and Pack mesh. For the convergence
of the results we take 500 × 500 k points running parallel
to the reciprocal lattice vectors: b1 = (

√
3kb/2,−kb/2) and

b2 = (
√

3kb/2, kb/2), where kb = 4π/
√

3a. In the reduced
BZ the low-energy excitations are centered around the two
points K (kb/

√
3, 0) and K ′(2kb/

√
3, 0). The saddle point is

M(
√

3kb/2, 0). The time integration is performed with the
standard fourth-order Runge-Kutta algorithm. For sufficiently
large 2D sample, when generated fields are considerably
smaller than the pump field |E(g)| � |E|, the generated elec-
tric field far from the hexagonal layer is proportional to
the surface current: E(g)(t ) = −2π [je(t ) + ja(t )]/c [43]. For
graphene/or silicene on a substrate with a refractive index of
ns, it is also necessary to take into account the reflection of the
incident wave [8] and rescale the driving and the generated

FIG. 1. The hexagonal first BZ (solid red line) of the reciprocal
lattice with high-symmetry points. The dotted blue rhombus formed
by the reciprocal lattice vectors is a reduction of the second BZ and
contains the same vectors of the first BZ.

fields by a factor of 2/(1 + ns). The HHG spectral intensity
is calculated from the fast Fourier transform of the generated
field E(g)(ω). For the substrate-induced screening, we take
ε = 2.5 that is close to the value of a graphene layer on a SiO2

substrate (ns � 2). The screening induced by nanostructure
valence electrons is calculated within the Lindhard approxi-
mation of the dielectric function εq.

III. RESULTS

The Coulomb contribution Eq. (6) in Eq. (3) describes the
renormalization of the single-particle energy E (k) due to the
repulsive electron-electron interaction. Note that, in the HF
level, we neglected the exchange interaction, which is much
smaller compared to the direct Coulomb term [66]. Since we
consider an undoped system, the exchange-correlation energy
can also be neglected [67]. Note that the Coulomb-induced
constant self-energy was absorbed into the definition of the
single-particle energy. At that, we will fix the tight-binding
parameter γ0 to obtain a good description of high energies
near VHS without loss of accuracy around the K point. The
Coulomb contribution Eq. (10) in Eq. (2) accounts for the
electron-hole attraction. This term gives rise to the so-called
saddle-point exciton [18–21] near the VHS of hexagonal BZ.
To validate our theory within the limit of linear optics we first
calculate the conductivity for graphene (γ0 � 0.1 a.u. and a =
4.64 a.u.) and for silicene (γ0 = 0.04 a.u. and a = 7.28 a.u.).
We assume the linearly polarized (ê = {1, 0}, ε = 0) laser
with field strength E (t ) = f (t )E0 cos(ωt ). The conductivity
can be expressed as a function of the Fourier transform of the
current density j(t ) = ja(t ) + je(t ) and the field strength

σ (ω) = jx(ω)

E (ω)
. (13)

In Fig. 2 we plot the FP and excitonic absorption spectrum
via the real part of the conduction σ (ω) versus laser field
frequency normalized to a universal one σ0 = e2/4h̄. From
this figure we see the characteristic redshifting in the excitonic
absorption spectrum with respect to the VHS peak expected in
the scope of the FP picture. We also see the asymmetric shape
that arises from the overlap with the free-particle transition.
Due to the ultrashort nature of the driving pulse, the maximum
value and the widths of the peaks are somewhat different than
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FIG. 2. Free-particle and excitonic absorption spectrum via the
real part of the conduction σ (ω) normalized to universal one σ0 for
(a) graphene and (b) for silicene. We take an eight-cycle laser field
with the amplitude E0 = 10−5 a.u. and the relaxation rate is taken
to be � = 5 × 10−4 a.u.. The excitonic absorption spectrum is red-
shifted with respect to the VHS peak expected in the scope of the
free-particle picture.

in the case of the monochromatic wave [8]. The significant
changes in the absorption line shape and peak position near
the saddle point can be explained by the electron-hole interac-
tion [18]. The saddle-point excitonic resonances (SPER) were
extensively investigated theoretically [68–72]. The changes
in the absorption line shape can be understood from the
band energy near the M point. Near the saddle point kM =
(
√

3kb/2, 0) the band energy can be expanded as

E (kM + δk) = γ0 + δk2
x

2mx
+ δk2

y

2my
, (14)

where mx = −2/(γ0a2) and my = 2/(3γ0a2). That is, along
the K–M direction (x) the effective mass is negative, while
along the �–M direction (y) the effective mass is posi-
tive. In Fig. 3, we show the band structure and directions
with effective masses of opposite signs. From the attractive
electron-hole interaction the development of quasi-discrete
excitonic states lying below the saddle-point singularity takes
place, as is schematically shown in Fig. 3. The exciton binding
energy is the energy difference from the SPER to the VHS
calculated in the FP model. In our model, from Fig. 2, we find
binding energies of about 500 meV and 250 meV for graphene
and silicene, respectively. For graphene the obtained value is
close to the experimental one [18,20]. Although the electron-
hole interaction is attractive, the negative mass is equivalent
to repulsion and in the perpendicular direction these excitonic
states do not lie below a true gap. They consequently couple to
the continuum formed by the band descending from the saddle
point. By this reason the overall absorption line shape can be
interpreted in terms of a Fano interference [72–74] effect.

K

M

K’

m y
>0

m x
<0

S
P

E
R

Γ

FIG. 3. The band structure of hexagonal nanostructure. The va-
lence and conduction bands cross at the K and K ′ points. Near the
saddle point M we show SPER and the band dispersion along the
K–M and �–M directions with effective masses of opposite signs.

Another feature of the excitonic resonance is the k-space
redistribution [21] of the oscillator strength, which is defined
by the interband polarization P (k, t ). The excitonic states are
defined from Eq. (3) when the pump field and relaxation rate
are set to zero:

i∂tP (k, t ) = Eeh(k)P (k, t ) − 
c(k, t ;P, 0). (15)

This is the Bethe-Salpeter equation. For the excitonic states,
the solution P (k, t ) becomes more delocalized (localized) in
the k space (r space) compared with the free-particle states.
This effect along with the coupling of excitonic states with the
continuum increases absorption below the SPER frequencies,
cp. Fig. 2. These effects can strongly affect the interband
current Eq. (12) also in the strong-field interaction regime.
Hence, it is of interest to clear up the signature of SPER on
the extreme nonlinear optical response of the system when
the generated harmonics’ frequencies are near those reso-
nances. In the HHG process the frequency of the emitted
harmonic is defined by the electron-hole Eeh(k0 + A) energy
which includes the kinetic energy acquired in the laser field,
band gap, and also Coulomb interaction energy. That is, prior
to electron-hole annihilation their trajectories in the k space
should be close to the saddle point M.

Thus, to enhance excitonic effects there are two possibil-
ities: to excite the system with the photon of energy near
2γ0 [63] or when the photon energy is much smaller than
γ0 to accelerate the electron-hole pair created near the Dirac
points up to the energies γ0. In the later case, the trajectory
in the k space should pass close to the M point along the
positive mass direction. The trajectory in the k space is the
Lissajous diagram of the corresponding vector potential A.
In the case of linear polarization, this is impossible. In the
case of circular or elliptic polarization, the trajectory in the k
space can be close to the M point but being far from the Dirac
point, which is the source of electron-hole pairs [44]. For
elliptic or circular polarization, the initial electron-hole pairs
can be produced by a resonant one photon and/or multiphoton
excitation of the Fermi-Dirac sea. However, for elliptic, and
especially for circular polarization of the pump wave, there is
a shortage of reencountering electron-hole trajectories, which
is necessary for the high-probability annihilation. For modest
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ellipticity ε � 0.3, the efficiency of the moderately high har-
monics, where the intraband current Eq. (11) is significant,
can be enhanced [50]. However, for the interband current,
where SPER is expected, we need fields with ε � 1 since
in the �–M direction we expect constructive interference of
many trajectories [65], cp. Fig. 9. Thus, one should choose a
more sophisticated polarization of the driving waves. This can
be achieved via a bichromatic driving field that is composed of
the superposition of a fundamental pulse of linear polarization
and its harmonic at the orthogonal polarization. In the case
of the second harmonic, one may have an “infinity” sign-like
figure in the k space that, at the sufficient intensity, can pass
through both the K and M points. In this case, it will approach
the point M in the direction �–M. Indeed, this intuitive picture
is validated with the numerical simulations: with the midin-
frared pump pulses, we can see the fingerprint of the SPER on
the high harmonics.

The wave-particle interaction will be characterized by the
dimensionless parameter χ0 = eE0a/h̄ω0, which represents
the work of the wave electric field E0 on a lattice spacing
in the units of photon energy h̄ω0. The parameter is written
here in general units for clarity. The total intensity of the laser
beam expressed by χ0, taking into account the reflectivity of
the substrate, can be estimated as

Iχ0 = χ2
0 (1 + ε2)(1 + ns)2

× [h̄ω0/eV]2 × [Å/a]2 × 3.3 × 1012 W cm−2. (16)

The amplitude (A0) of the vector potential can be expressed in
terms of the interaction parameter and reciprocal lattice spac-
ing kb as A0 = χ0kb(

√
3/4π ). Thus, with an increase in χ0

we can approach the point M and thereby excite saddle-point
excitons. The parameter χ0 is varied up to 2 and frequency up
to 0.2 eV/h̄. Hence, the maximal intensity 1.57 TW/cm2 im-
pending on graphene is below the damage threshold [50]. For
silicene, due to larger lattice spacing, the maximal intensity is
almost 2.5 times smaller. In this paper, we consider a two-band
model formed from only π orbitals. As a result, we neglect
transitions in σ and between π -σ orbitals. These orbitals are
separated from π orbitals by a large energy gap of ∼3γ0.
Hence, we should restrict the pump wave field strength by the
condition eE0a � 3γ0, which is equivalent to χ0 � 3γ0/h̄ω0.

First, we consider a bichromatic laser field with ω′
0 = 2ω0,

ê = {1, 0}, ê′ = {0, 1}, ϕ = 0, and ε = 1. At these parameters
the vector potential corresponding to the field Eq. (1) draws
a ∞-like shape. In Figs. 4(a) and 5(a) the absolute value
of the interband polarization |P (k)| is shown at the middle
of the interaction time (t = τ/2) for graphene and silicene,
respectively. It is clearly seen that the excitation patterns in
the Fermi-Dirac sea follow the Lissajous diagram of the vector
potential. At that, the surrounding of the M point is excited in
the �–M direction and we expect the strong influence of this
fact on the HHG spectra. One can also consider the bichro-
matic crossed fields when the polarizations are interchanged.
In this case, we will have a vector potential drawing eight-like
shapes. As a result, the excitations of M+ and M− saddle
points will take place. These cases are shown in Figs. 4(b)
and 5(b).

In Fig. 6, the HHG spectra in logarithmic scale with
ω + 2ω frequency mixing for graphene and silicene in the

FIG. 4. The density plot of the absolute value of the interband
polarization (in arbitrary units) at the middle of interaction time
(t = τ/2) in bichromatic laser field for (a) ê = {1, 0}, ê′ = {0, 1} and
(b) for ê = {0, 1}, ê′ = {1, 0} as a function of scaled dimensionless
momentum components (kx/kb, ky/kb). The fundamental frequency is
ω0 = 0.1 eV/h̄, ω′

0 = 2ω0, ε = 1, ϕ = 0, and the interaction parame-
ter is χ0 = 1.7. The first BZ (solid red hexagon) with high symmetry
points and reduced BZ (dotted blue rhomb) are also shown.

strong-field regime is presented. We also plotted the HHG
spectra obtained in the scope of the FP model. As is seen
from this figure, the intensity of high harmonics are enhanced
near the frequencies close to SPER. For graphene, this is
4–5.0 eV and for silicene 1.5–2.0 eV. The plateau peak is
red-shifted compared with the free-particle case. For the be-
ginning of the spectrum where the intraband current Eq. (11)
is dominant, the differences with the free carrier picture are
not so noticeable. We also need a time-frequency analysis of
the high-harmonic spectrum for mapping the harmonics near
saddle-point excitonic resonances with the Lissajous diagram
of the vector potential. To this end, for graphene we perform
the Morlet transform (σ = 4π ) of the interband part of the
surface current Eq. (12)

J(t, ω) =
√

ω

σ

∫ τ

0
dt ′je(t ′)eiω(t ′−t )e− ω2

2σ2 (t ′−t )2

. (17)

The spectrogram, in a time interval where the waves’ am-
plitudes are considerable, is shown in Fig. 7 along with
the Lissajous diagram of the vector potential. The laser
parameters correspond to Fig. 6(a). The numbers over the
spectrogram indicate the spectral caustics near the SPER.
These caustics take place with the period 0.5T starting at
t ≈ 3.75T . The corresponding points are shown on the Lis-
sajous diagram of the vector potential. As is clear from this
mapping and also from Figs. 4 and 5, the spectral caustics
near SPER originate when the electron-hole pair move in k
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FIG. 5. The same as in Fig. 4, but for silicene.

space along the �–M direction. Note that in this direction
the band velocity vx( 2π

a , ky) = ∂E (k)/∂kx = 0 irrespective of
ky, the discrete states in the ky direction further flatten the
band near the saddle point making vy � 0. That is, near the
�–M direction the relative semiclassical velocity between
the electron and the hole vanishes, leading to a significant
enhancement in their annihilation rate [65]. To clarify the
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FIG. 6. The HHG spectra in logarithmic scale for (a) graphene
and for (b) silicene in the strong-field regime in the bichromatic
driving field. The fundamental frequency is ω0 = 0.1 eV/h̄ and the
interaction parameter is χ0 = 1.7. The relaxation time is taken to be
�−1 = 2π/ω0 � 40 fs.

FIG. 7. The spectrogram (color box in arbitrary units) of the
HHG process via the wavelet transform of the interband part of the
surface current for graphene. The lower panel shows the Lissajous
diagram of the vector potential. The laser parameters correspond to
Fig. 6(a). The numbers over the spectrogram and Lissajous diagram
indicate the spectral caustics near the SPER.

SPER signature in HHG spectra further, in particular with
respect to the polarization of driving waves, we also make nu-
merical calculations for the elliptical polarization of the laser
field ω′

0 = ω0, ê = {1, 0}, ê′ = {0, 1}, ϕ = π/2, ε = 0.32,
and for the parallel linear polarizations of the bichromatic
laser field ω′

0 = 2ω0, ê = ê′ = {1, 0}, ϕ = 0, and ε = 1. The
results are shown in Fig. 8. For all three cases, we take the
same intensity of 0.3 TW/cm2. As is seen from this figure,
in the case of parallel linear polarization there is no enhance-
ment near the SPER. In the case of elliptic polarization, we
have an enhancement in comparison to linear polarization.
However, the orthogonal polarization case is preferable. For
a qualitative understanding of this result, we also made a
semiclassical trajectory analysis taking into account the actual
excitation of the Fermi-Dirac sea, cp. Fig. 4. For the set of
k0 points in the region Eeh(k0) � 3 eV we integrated the
equation re(t ′, t ) = ∫ t

t ′ {vc[k0 + A(t ′′)]} dt ′′ and calculated the
electron-hole distance ρ(t ′, t ) = |re − rh| = 2|re|. We kept
only those trajectories for which at t > t ′ there is a local
minimum of the electron-hole distance ρm(t ′, t ) < 2a, i.e., we
have at least an imperfect collision [64]. Then we fixed the
time and the corresponding energies Eeh[k0 + A(t )]. In Fig. 9,
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FIG. 8. The HHG spectra in logarithmic scale for graphene in the
strong-field regime for various polarizations of driving waves. The
relaxation time is taken to be �−1 = 2π/ω0 � 40 fs. The fundamen-
tal frequency is ω0 = 0.1 eV/h̄. The intensities Eq. (16) for all cases
are equal. The interaction parameter for the orthogonal and parallel
polarization cases is χ0 = 1.7.
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FIG. 9. Colliding trajectories. (a) The electron-hole distance as a
function of time for the trajectories which collide in the time interval
corresponding to the caustic 2 indicated in Fig. 7. The colored tra-
jectory and colored box show the energies acquired by carriers along
the trajectory. (b) The same as in (a) but for the elliptical polarization
of the driving wave with the parameters corresponding to Fig. 8.

we plot the colliding trajectories that in the semiclassical
picture contribute to the caustic 2 indicated in Fig. 7 for the
orthogonal and elliptic polarization cases. As is seen from
Fig. 9(a), in the orthogonal polarization case the spectrum is
dictated by the constructive interference of many trajectories,
while in the case of elliptic polarization, Fig. 9(b), there is a
shortage of reencountering electron-hole trajectories.

The fingerprint of the saddle-point excitons is preserved
also for the higher intensity of laser pulses. This is seen in
Fig. 10, where we plot the intensity of HHG as a function
of the interaction parameter and harmonic’s photon energy
for graphene and silicene. For comparison we also plotted
the results obtained in the scope of FP model [Figs. 10(a)
and 10(c)]. Comparing the FP with HF approximation results
we see that in the first case the slight enhancement of HHG in-
tensity takes place near VHS 2γ0, while in the second case the
sharp enhancement for the wide rang of intensities takes place
close to the saddle-point excitonic resonances. For graphene,
this is 4–5.0 eV and for silicene 1.5–2.0 eV. This tendency

FIG. 10. The intensity of HHG as a function of the interaction
parameter and harmonic’s photon energy for (a), (b) graphene and
(c), (d) silicene in the strong-field regime in the bichromatic driving
field: ω0 = 0.1 eV/h̄, ω′

0 = 2ω0, ê = {1, 0}, ê′ = {0, 1}, ϕ = 0, and
ε = 1. The relaxation time is taken to be �−1 = 40 fs.

FIG. 11. The intensity of HHG as a function of the fundamental
frequency and the order of harmonics for (a) graphene and (b) sil-
icene in the strong-field regime in the bichromatic driving field:
ω′

0 = 2ω0, ê = {1, 0}, ê′ = {0, 1}, ϕ = 0, and ε = 1 The interac-
tion parameter is χ0 = 1.7 and the relaxation time is taken to be
�−1 = 40 fs. The gray straight lines in both cases are the saddle-point
excitonic resonant photon energy.

is also preserved for other frequencies of the driving field. In
Fig. 11, the intensity of HHG as a function of the fundamental
frequency and the order of harmonics for graphene and sil-
icene in the bichromatic driving field is shown. On the same
figure, we also plot the saddle-point excitonic resonant photon
energy: the harmonic order for every driving fundamental fre-
quency. As is seen, the sharp enhancement takes place along
the excitonic resonances.

IV. CONCLUSION

We presented the microscopic theory of nonlinear interac-
tion of a monolayer graphene or silicene with a strong infrared
laser field near the VHS. We numerically solved the Bloch
equations within the Houston basis that takes into account
the many-body Coulomb interaction in the HF approximation.
As reference nanostructures, we considered graphene and sil-
icene. The obtained results show that saddle-point excitonic
resonances have a significant impact on the HHG process in
hexagonal 2D nanostructures. We showed that. in the bichro-
matic driving pulses that is composed of the fundamental
wave of linear polarization and its second harmonic at the
orthogonal polarization, one can effectively initiate spectral
caustics in the HHG spectrum. In particular, we showed that
the plateau of the HHG spectrum has a peak near the har-
monics close to SPER and is red-shifted from the VHS of the
free-particle picture. The results of the current investigation
are not only of theoretical and academic importance, but also
will have significant implications for the rapidly developing
area of modern extreme nonlinear optics of nanostructures.
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