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Bistable soliton switching dynamics in a PT -symmetric coupler with saturable nonlinearity
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We investigate the switching dynamics in a PT -symmetric fiber coupler composed of a saturable nonlinear
material as the core. In such a saturable nonlinear medium, bistable solitons may evolve due to the balance
between dispersion and saturable nonlinearity, which we extend in the context of the PT -symmetric coupler. Our
investigations of power-controlled and phase-sensitive switching show richer soliton switching dynamics than
the currently existing conventional counterparts, which may lead to ultrafast and efficient all-optical switching
dynamics at very low power owing to the combined effects of PT symmetry and saturable nonlinearity. In
addition to the input power, the relative phase of the input solitons and saturable coefficient are additional
controlling parameters that efficiently tailor the switching dynamics. Also, we provide a suitable range of system
and pulse parameters that would be helpful for the practical realization of the coupler to use in all-optical
switching devices and photonic circuits. Finally, we develop a variational approach to analytically investigate
the switching dynamics in such PT -symmetric couplers that excellently predicts the numerical findings.
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I. INTRODUCTION

Parity-time (PT ) symmetry, as a concept, got tremen-
dous attention after Bender and Boettcher put forward a
very novel perspective on quantum mechanical Hamiltonians
[1–3]. While experiments were yet to be carried out in the
quantum domain, the optical platforms provided support and
utility of PT -symmetric ideas [4–6]. Following the theoreti-
cal predictions, soon there were experimental realizations of
the optical PT symmetry in a linear coupled waveguide sys-
tem with balanced gain and loss in the two arms of the coupler
[7–9]. This subsequently led to extending the PT -symmetric
theory in other branches of physics quickly [10–19]. Further
progress in understanding the PT symmetry has been ob-
served once the nonlinearity is included in the system. The
interplay between the PT symmetry and the nonlinearity
gave rise to the existence of localized modes [20,21] and
PT -symmetric solitons [22,23].

In the context of couplers, which are mostly utilized as
all-optical switching devices, when nonlinearity is introduced
under the effect of PT symmetry, several authors reported the
existence of the bright, dark, gap, and Bragg solitons, as well
as many other interesting phenomena [23–29]. The operation
of PT -symmetric couplers, especially with the Kerr nonlin-
earity, showed improvement as the critical power of switching
reduces drastically while maintaining high efficiency [30].
However, a conventional coupler with a Kerr nonlinear
medium has a low nonlinear coefficient n2, which requires
high input power for switching. To overcome this hindrance,
non-Kerr saturable nonlinear media, such as semiconductor
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doped glass and organic polymers, have been employed due
to their higher n2 values compared to pure silica [31] and
their relatively low saturable intensities [32,33]. Therefore, for
the PT -symmetric couplers, if saturable nonlinearity (SN) is
introduced, one can expect to achieve advantageous transmis-
sion characteristics over the Kerr one.

Now, one needs to be clear that such media do not sup-
port Kerr solitons; instead, there exist bistable solitons, which
are basically two solitons having the same pulse width, but
different energies and shapes [34]. The switching dynamics
inside conventional saturable nonlinear couplers (SNCs) by
utilizing the bistable solitons have been reported previously
[35–37], and had been found to be better alternatives for
all-optical switching devices [38]. Furthermore, while there
have been several studies demonstrating the existence of sta-
ble fundamental soliton, gap soliton, higher-order solitons,
and nonlinear modes in different PT -symmetric potentials
[39–44], there has not been any study on the existence
of bistable solitons inside a PT -symmetric SNC and their
switching dynamics.

Therefore, in connection with the all-optical switching de-
vices, in this work, we concentrate on the steering dynamics
in a PT -symmetric SNC. We first obtain the exact soliton
solution which can propagate through such a medium and
then observe the transmission characteristics of that pulse
for the PT -symmetric coupler and solve the corresponding
equation considering the combination of device length and
coupling coefficient be half-beat length. The corresponding
theoretical model is described in Sec. II, along with a discus-
sion on the numerical finding of a soliton solution which can
propagate in a saturable nonlinear medium. In Sec. III, we
discuss bistable solitons in the context of a PT -symmetric
coupler with SN followed by its power-controlled switching
dynamics in Sec. IV. The spatiotemporal characteristics of
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FIG. 1. Schematic diagram of a PT -symmetric directional fiber
coupler whose core is made up of a saturable nonlinear medium.

solitons are illustrated in Sec. V. In Sec. VI, we discuss the
phase-controlled dynamics of the solitons. Section VII is ded-
icated to the study of Lagrange’s variational approach [45,46]
to analytically predict the switching dynamics in such a PT -
symmetric coupler. The paper is concluded by Sec. VIII.

II. THEORETICAL FRAMEWORK

A. Model: PT -symmetric fiber coupler with saturable
nonlinearity

We consider a PT -symmetric nonlinear directional cou-
pler with SN (shown in Fig. 1) in which the medium’s
nonlinear response saturates beyond a threshold power. The
optical pulse propagation in such a coupler can be modeled
by a set of coupled-mode nonlinear Schrödinger equa-
tions (NLSEs) of the slowly varying complex-valued electric
field envelopes A1(z, t ) and A2(z, t ) in the two channels
[30,47], which can be written in dimensionless form as

i
∂u

∂ξ
+ 1

2

∂2u

∂τ 2
+ f (|u|2)u + κv = i�u, (1a)

i
∂v

∂ξ
+ 1

2

∂2v

∂τ 2
+ f (|v|2)v + κu = −i�v, (1b)

where u(ξ, τ ) = A1/
√

P0 and v(ξ, τ ) = A2/
√

P0, with P0 be-
ing the peak input power; ξ = z/LD and τ = (t − z/vg)/t0
are respectively the normalized distance and time, with LD =
t2
0 /|β2(ω0)|, and t0, vg, and β2 are the input pulse duration,

group velocity of the pulse, and the group-velocity dispersion
parameter at the carrier frequency ω0. The linear coupling
coefficient (K) and the balanced linear gain/loss coefficient
(G) are rescaled as κ = KLD and � = GLD. Also, in our
model, we adopt the most used mathematical model of the
saturable nonlinear response [35,48], the dimensionless form
of which is represented as

f (|u|2) = |u|2
1 + s|u|2 , (2)

where s = P0/Isat is the dimensionless refractive index satura-
tion parameter (also known as the strength of saturation), with
Isat being the characteristic saturable intensity of the medium.
Note that, when s = 0, Eq. (2) reduces to the well-known Kerr
nonlinearity, and when one increases s the saturation effect of
the refractive index increases accordingly.

The system described by Eq. (1) is a PT -symmetric sys-
tem, whose operational domains are categorized into three
regions: unbroken regime (κ > �), broken regime (κ < �),
and an exceptional point (κ = �). In the unbroken PT -
symmetric regime, it has been observed in previous works
[30,49] that the poor transmission efficiency and unstable
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FIG. 2. (a) Soliton solution inside a saturable nonlinear medium,
obtained for s = 1 considering the single NLSE. (b) Transmission
in the first channel of the conventional (� = 0) and PT -symmetric
(� = 0.06) SNCs with κ = 0.1 and s = 1, where different opera-
tional regions are identified

soliton evolution make a half-beat length (Lc = π/2κ) PT -
symmetric Kerr coupler an inappropriate choice as compared
to two-beat length (Lc = 2π/κ) PT -symmetric Kerr coupler
that shows enhanced switching efficiency. In the case of a
PT -symmetric SNC, however, we consider the device to be
operated in the unbroken PT regime with Lcκ = π/2 equal
to the half-beat length, which provides better switching dy-
namics with a lower critical power than the Kerr counterpart.

B. Soliton evolution and switching dynamics

It is well known that the fundamental Kerr soliton solution,
u = sech (τ ), does not satisfy the NLSE with SN that leads to
unstable and chaotic evolution dynamics [35]. Here, we first
demonstrate the exact soliton solution corresponding to the
single NLSE with SN and use the same soliton solution in
the coupled NLSEs (1a) and (1b) to investigate the switching
dynamics in a PT -symmetric saturable medium accurately.
For this, we start with a single NLSE with SN [35], whose
Ansatz function us takes the following analytical form:

us(ξ, τ ) =
√

ψ (τ )eiβξ , (3)

where β is the nonlinear propagation constant shift. Inserting
this Ansatz function [Eq. (3)] into the single NLSE and solving
the parameters of the Ansatz semi-analytically, we obtain the
intensity profile of the exact soliton solution (|us|2) for the
NLSE with SN with strength s = 1 shown in Fig. 2(a). We
then consider this soliton solution as the seed solution and
solve the set of Eqs. (1a) and (1b) numerically by applying the
symmetrized split-step Fourier method complemented with
the fourth-order Runge-Kutta algorithm. Next, to investigate
the switching dynamics, we calculate the transmission co-
efficient Tj , which represents the fractional output power in
the jth channel after propagation of Lcκ that is equal to the
half-beat length, as

Tj =
∫ ∞
−∞ |u j=1, v j=2(Lc, τ )|2dτ∫ ∞

−∞(|u(Lc, τ )|2 + |v(Lc, τ )|2)dτ
= Pj

P1 + P2
, (4)

where P1 = ∫ ∞
−∞ |u(Lc, τ )|2dτ and P2 = ∫ ∞

−∞ |v(Lc, τ )|2dτ

are the output powers of the transmitted pulse in the output
ports of the two channels. In order to investigate the switching
dynamics, we plot the transmission coefficient T1 [evaluating
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FIG. 3. (a) Relation between critical power Pcr and gain/loss
parameter �. (b) Effect of gain/loss on the switching dynamics of
both conventional (� = 0) and PT -symmetric (� �= 0) SNCs.

Eq. (4)] in the first channel of conventional (blue dashed
curve) and PT -symmetric (red solid line) SNCs for cou-
pling coefficient κ = 0.1 and coupling length Lc = π/2κ =
5π in Fig. 2(b). The various regions of operation for all-
optical switching for the conventional coupler are illustrated
in the same figure, which can also be translated to the PT -
symmetric one. Here, the switching curve shows four basic
regimes: the coupling region (below the lower-branch critical
power Pcr1); the switching region [between Pcr1 and the onset
of the intermediate coupling region (ICR)]; the ICR; and an-
other coupling region above the higher-branch critical power
Pcr2, after which the power remains in the second channel for
any further increase in the input power P0. Thus, for efficient
switching, one must concentrate solely on the range of input
power corresponding to the switching region. Furthermore,
we find that the higher branch of critical power Pcr2 appears to
be too high to be useful for any optical switching. Therefore,
we focus on the lower-branch critical power Pcr1 and denote it
as Pcr for the rest of our work in order to operate the SNC
as an efficient all-optical switching device. Now, with the
introduction of balanced gain/loss, the critical power Pcr is
reduced considerably, and both the switching steepness and
transmission efficiency are enhanced. For further investiga-
tion of how the gain/loss parameter � affects the switching
dynamics, we plot Pcr as a function of � for specific values of
κ = 0.1 and s = 1 in Fig. 3(a). This plot indicates that when �

approaches the singularity (i.e., � = κ = 0.1 in this particular
case), no switching occurs, implying that, regardless of the in-
put power, all of the power remains in the launching channel.
The corresponding transmission is shown in Fig. 3(b) for the
four different values of � = 0, 0.02, 0.04, and 0.06. As we
gradually increase � from 0 to 0.06, we observe a lower criti-
cal power with better transmission efficiency. Hence, based on
these results, we fix the gain/loss value of the PT -symmetric
SNC to be � = 0.05 for further investigations on the switch-
ing dynamics.

III. BISTABLE SOLITON DYNAMICS IN A
PT -SYMMETRIC SATURABLE COUPLER

Before going deeper into the details of soliton switch-
ing dynamics in PT -symmetric SNCs, we first investigate
the properties of bistable solitons and their dynamics, which
occur inherently in saturable nonlinear systems. Previous

FIG. 4. Variation of output pulse energy ε of the coupler as a
function of (a) output pulse width τ0 and (b) propagation constant
shift β of the input seed soliton [Eq. (3)]. (c) The variation of τ0 as a
function of β. Solid red curves in (a)–(c) represent the case with PT
symmetry, whereas dashed blue curves represent the conventional
one. (d) Amplitude u(τ ) of the bistable solitons at the output of
the PT -symmetric SNC corresponding to τ0 = 2 for two energies
ε = 6.22 and ε = 14.65, respectively. The horizontal dashed lines in
(a) and (c) and the vertical dashed lines in (d) indicate that τ0 = 2.

researches have looked into the fundamental properties of
bistable solitons in saturable nonlinear media, where there
exist two solitons with the same pulse width but different
shapes and energies [34,35]. In our work, it is interesting to
investigate how the seed soliton [Eq. (3)], which is inherently
bistable in nature for a specific range of Ansatz parameters,
evolves in the couplers and retains their properties as well as
individual switching characteristics. To investigate the prop-
erties of bistable solitons, we first define the dimensionless
soliton energy ε as

ε =
∫ ∞

−∞
|u(τ )|2dτ. (5)

Next, for a given value of soliton peak amplitude ψ (τ = 0) =
ψ0, we compute the output pulse width τ0 and the propagation
constant shift β [presented in Eq. (3)]. In Fig. 4(a), we plot
the variation of pulse energy ε [Eq. (5)] at the first output
port of the coupler with Lcκ = π/2 as a function of the
output pulse width τ0 by varying the peak amplitude ψ0 of
the input seed soliton. Similarly, we plot the variation of ε

as a function of β [see Fig. 4(b)] and τ0 vs β [see Fig. 4(c)]
for the system parameters κ = 0.1, � = 0.05, and s = 1. The
bistability nature is clearly evident in both the conventional
(dashed blue curves) and PT -symmetric (solid red curves)
SNCs [there exist two values of ε and β at the same τ0 = 2,
as shown by the horizontal dashed line in Figs. 4(a) and
4(c)]. Furthermore, these plots indicate that the addition of a
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FIG. 5. (a),(b) Switching dynamics of bistable solitons in the
PT -symmetric SNC corresponding to the pulse width τ0 = 2 and
two input peak amplitudes ψ0 = 0.47 (dashed curves) and ψ0 = 2.87
(solid curves).

PT -symmetric potential modifies the parameter space of the
soliton in comparison to the conventional SNC. The bistable
solitons inside the PT -symmetric SNC with two different
energies ε = 6.22 and ε = 14.65 corresponding to the pulse
width τ0 = 2 are shown in Fig. 4(d). Here, the higher am-
plitude soliton (solid red curve) corresponds to the higher
input peak amplitude ψ0 = 2.87, while the lower amplitude
soliton (dashed red curve) corresponds to the lower input peak
amplitude ψ0 = 0.47. Thus, by examining Figs. 4(a)–4(d), we
can conclude that the bistable solitons exist in the unbroken
regime of a PT -symmetric SNC in the weak coupling regime.

Next, the switching dynamics of the individual bistable
solitons obtained in Fig. 4(d) are investigated in Figs. 5(a) and
5(b). Here, we observe two independent steering dynamics
for two solitons depending on the soliton amplitude. The
critical power of switching corresponding to the pulse with
ψ0 = 2.87 is lower than that of the pulse with ψ0 = 0.47. This
is because the nonlinear response of the medium becomes
saturated earlier in the case of the pulse with high input peak
amplitude, causing the switching to occur faster than in the
case of the pulse with low input peak amplitude. In the follow-
ing sections, our investigations mainly focus on the switching
dynamics of a single soliton case for a given pulse width,
which have applications in all-optical switching devices and
photonic circuits.

IV. POWER-CONTROLLED SWITCHING DYNAMICS

To discuss the power-controlled switching dynamics, we
assume that in the presence of a coupling coefficient (κ �= 0),
the soliton is always launched into the input port (port 1) of
the first channel, and the second channel is kept empty so that

u(ξ = 0, τ ) = us(ξ = 0, τ ) and v(ξ = 0, τ ) = 0. (6)

With the initial conditions above in Eq. (6), we discuss the
effect of coupling coefficient κ on the switching dynamics for
conventional (� = 0) and PT -symmetric (� = 0.05) SNCs
by setting the saturation to be maximum, s = 1, shown in
Figs. 6(a) and 6(b). For both the SNCs, the lower value of κ

shows lower critical power and better transmission efficiency
across a wider input power range. In our analysis, we find
that the region of the power-controlled stable soliton switch
between two channels of the coupler occurs for relatively
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FIG. 6. Switching dynamics of (a) conventional and (b) PT -
symmetric (� = 0.05) SNCs for different κ with fixed s = 1. Panels
(c) and (d) represent the same as (a) and (b) but for different s with
fixed κ = 0.1.

lower coupling coefficients, beyond which the power remains
in the launching core. This lower coupling coefficient results
in a very low � for the power-controlled stable soliton switch
with a very low critical power, as shown in Fig. 3, which is in-
herent in a half-beat length saturable PT -symmetric coupler
operating in the unbroken regime [�(= 0.05) < κ (= 0.1)].

Next, we study the role of the strength of SN, s, for the
same two couplers in the weaker coupling regime by setting
κ = 0.1, shown in Figs. 6(c) and 6(d). In both the conventional
and the PT -symmetric SNCs, we observe a Kerr couplerlike
behavior for lower saturation strengths, s = 0.1 and s = 0.5.
In contrast, the typical effect of SN in the high input power
domain is observed once the couplers are operated with max-
imum saturation s = 1. In Table I, we provide a list of the
the normalized values of critical powers for the two types of
SNCs, showing the variations of κ and s. We observe that,
when the strength of SN increases gradually, unlike a conven-
tional SNC, the critical power of switching tends to decrease
for a PT -symmetric one. Thus, based on the values of critical

TABLE I. Normalized values of critical power Pcr for different
strengths of saturation and coupling coefficients.

Fixed Varying Pcr,conventional Pcr,PT
parameter parameter (� = 0) (� = 0.05)

κ = 0.1 1.10 0.30
s = 1 κ = 0.11 1.30 0.38

κ = 0.12 1.59 0.47
s = 0.1 0.82 0.37

κ = 0.1 s = 0.5 0.86 0.32
s = 1 1.10 0.30
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FIG. 7. Spatiotemporal evolution of solitons in (a),(b) a conven-
tional SNC (� = 0) and (c),(d) a PT -symmetric SNC (� = 0.05)
with input power P0 = 0.2. The system parameters are taken to be
κ = 0.1 and s = 1.

powers Pcr given in Table I, we can conclude that, for the
weaker coupling region (κ = 0.1) and maximum saturation
strength (s = 1), a PT -symmetric coupler is more efficient
compared to the conventional one.

V. SPATIOTEMPORAL SOLITON DYNAMICS

In this section, we illustrate the spatiotemporal evolution
dynamics of a soliton inside the two cores of the two SNCs. In
Figs. 7(a)–7(d), with the previously chosen values of κ = 0.1,
s = 1, and � = 0.05, we plot the corresponding evolution
dynamics inside the couplers in the linear regime where the
input power is chosen to be P0 = 0.2, lower than the critical
power Pcr = 0.3. One can predict these evolution trends inside
the conventional and PT -symmetric SNCs by following the
switching curves in Fig. 2(b). In this linear regime, the soliton
couples back and forth inside the two channels and eventually
exits from the output port of the first channel. On the other
hand, if a soliton is launched in the nonlinear regime, where
the input power is set to be P0 = 2, higher than Pcr , we
observe that the soliton switches back to the launching core
and remains in there in the case of a conventional SNC [see
Figs. 8(a) and 8(b)]. However, for the case of a PT -symmetric
SNC, we observe that the soliton power comes out of the
second channel as shown in Figs. 8(c) and 8(d). Thus, with
the inclusion of gain/loss in the SNC, the nonlinear switching
takes a different route than the conventional one.

VI. SWITCHING DYNAMICS BY CONTROLLING THE
RELATIVE PHASE

In addition to the power-controlled switching, for the
completeness of the study, we investigate phase-sensitive
switching dynamics as another type of all-optical switching
device in this section. The basic idea of a phase-sensitive
switching is that, by adjusting the input power and the relative
phase of a weaker pulse in the second channel, one can control

FIG. 8. Spatiotemporal evolution of solitons in (a),(b) a con-
ventional SNC and (c),(d) a PT -symmetric SNC with input power
P0 = 2. All the other parameters are the same as in Fig. 7

the steering dynamics of the stronger pulse which is launched
into the first channel [50,51]. Therefore, we consider two
soliton pulses launched into the input ports (port 1 and port
2) of the two channels as

u(ξ = 0, τ ) = us and v(ξ = 0, τ ) = us√
r

eiφ, (7)

where r is the power ratio factor and φ is the relative
phase between the two soliton pulses. For a typical value
r = 4, and considering Eq. (7) as inputs, we show the
effect of coupling coefficient for both conventional and PT -
symmetric SNCs considering the same set of κ as discussed
in the power-controlled case. The PT -symmetric SNC dis-
plays considerably better sharp phase-sensitive switching as
compared to the conventional one, with more than 90% trans-
mittance over certain ranges of φ [see Figs. 9(a) and 9(b)]. We
observe that the lower the coupling coefficient is, the higher
the transmission efficiency is for a certain range of φ. We also
plot the effect of the strength of SN on the phase-controlled
switching dynamics while considering the previous set of s
values as in the power-controlled case. Here, we observe that,
for the conventional SNC, the lower s value (s = 0.1) displays
higher transmission efficiency over certain range of φ [see
Fig. 9(c)], whereas in the PT -symmetric SNC, for the lower
strength of saturation, the transmittance in the first channel is
more than 97% for any φ value [dashed red curve Fig. 9(d)].
Thus, by controlling the phase of the weaker pulse, we can
steer the stronger pulse to come out from the desired channel.
By observing these results, we can conclude again that a
PT -symmetric SNC is better than a conventional SNC for
use as a phase-controlled switching device as well.

VII. VARIATIONAL APPROACH TO STUDY THE
SWITCHING DYNAMICS

To investigate the switching dynamics in such PT -
symmetric couplers analytically, we adopt Lagrange’s vari-
ational technique [45,46]. This technique has proved to be
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FIG. 9. Phase-controlled switching dynamics of (a) conventional
and (b) PT -symmetric (� = 0.05) SNCs for different κ with fixed
s = 1. Panles (c),(d) represent the same as (a),(b) but for different s
with fixed κ = 0.1.

an effective analytical tool for describing pulse dynamics in
both conservative and various dissipative systems [52–58].
The variational method has also been applied to conventional
couplers [59,60] and systems with complex potentials [61,62].
The success of the variational method relies on the proper
choice of the Ansatz function, which in our case yields excel-
lent predictions of the switching dynamics in PT -symmetric
couplers.

To apply the variational method, we first write the coupled-
mode equations [Eqs. (1a) and (1b)] in the form of perturbed
coupled NLSEs,

i∂ξψ1,2 + 1
2∂2

τ ψ1,2 + f (|ψ1,2|2)ψ1,2 + κψ2,1 = iε1,2, (8)

where ψ1(ξ, τ ) = u, ψ2(ξ, τ ) = v, and the nonconservative
terms (gain and loss) are included through the perturbation
terms ε1 = � ψ1 and ε2 = −� ψ2. Now, introducing a
Lagrangian density LD = ∑

j=1,2{ i
2 (ψ∗

j ∂ξψ j − ψ j∂ξψ
∗
j ) −

1
2 |∂τψ j |2 + 1

s (|ψ j |2 − 1
s ln[1 + s|ψ j |2]) − 2Re[iε jψ

∗
j ]} +

2κ Re[ψ∗
1 ψ2] appropriate for Eq. (8) and considering a

simple mathematical form of the Ansätze ψ1,2(ξ, τ ) =
[E1,2(ξ ) η(ξ )/2]1/2sech[η(ξ ) τ ] exp[iφ1,2(ξ )], we obtain a
reduced Lagrangian (L = ∫ ∞

−∞ LD dτ ):

L =
∑
j=1,2

{
−(∂ξφ j )Ej − 1

6
η2Ej + 1

s

(
Ej − 1

2sη
F2

j

)

−2 Re
∫ ∞

−∞
[iε jψ

∗
j ]dτ

}
+ 2κ

√
E1E2 cos �. (9)

Here F j = acosh(1 + sηEj ), � = φ1 − φ2, and the five An-
sätze parameters E1,2 (pulse energy), η (inverse of temporal
pulse width), and φ1,2 (phase) are assumed to evolve with
ξ . The next step is to use Euler-Lagrange equation for each
Ansatz parameter to obtain a set of coupled ordinary dif-

FIG. 10. (a) Critical power vs gain/loss parameter from vari-
ational approach and from numerical data [Fig. 3(a)]. (b) Power-
controlled switching, (c) phase controlled switching, and (d) evolu-
tion of peak intensities in two channels, with respective numerical
data are compared from Figs. 6(b), 9(d), and 8(c,d). Here, P0 =
E1(ξ = 0)/2, |u0|2 = E1 η/2, |v0|2 = E2 η/2, φ = −�. The coupled
equations [Eqs. (10)–(13)] are solved with initial conditions (at ξ =
0): E2 = 10−6, � = 0, η = 1 for (a) and (b) with varying E1; E1 = 2,
E2 = 1/2, η = 1 for (c) with varying �; E1 = 4, E2 = 10−6, � = 0,
η = 1 for (d).

ferential equations (ODEs) describing overall spatiotemporal
soliton dynamics, which results in the following set of coupled
ODEs and one self-consistent equation:

dE1

dξ
= 2κ

√
E1E2 sin � + 2 � E1, (10)

dE2

dξ
= −2κ

√
E1E2 sin � − 2 � E2, (11)

d�

dξ
= 1

s
(G2 − G1) + κ

(E2 − E1)√
E1E2

cos �, (12)

η =3

2

(
F2

1 + F2
2

) − 2sη(E1G1 + E2G2)

s2η2(E1 + E2)
, (13)

where G j = F j/
√

sηEj (2 + sηEj ). This set of equa-
tions [Eqs. (10)–(13)] enable one to get physical insights
into the system. For example, the � term appears in both the
energy equations [Eqs. (10) and (11)] with + and − signs
corresponding to gain and loss, while the coupling and phase
terms (κ sin �) associated with these two equations imply
back and forth energy oscillations between two channels.

We solve the set of coupled equations [Eqs. (10)–(13)]
semianalytically to evaluate the evolution of individual pulse
parameters and investigate the switching dynamics. The re-
sults are summarized by solid curves in Figs. 10(a)–10(d).
Here, the numerical findings (light dashed curves) are well
supported by the variational predictions (solid curves). How-
ever, a slight deviation between these two is observed, which
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can be attributed to the fact that the single NLSE with SN
does not have a closed mathematical form of the Ansatz. For
that reason, we rely on the sech form of the Ansatz for the
variational method.

VIII. CONCLUSION

To conclude, we have investigated the steering and switch-
ing dynamics of bistable solitons in a PT -symmetric coupler
with saturable nonlinearity. One of the objectives of the work
was to investigate if the scheme of optical PT symmetry
enhances the transmission characteristics of the saturable cou-
pler compared to the one with Kerr nonlinearity as well as
the conventional counterparts. We find the answer is affir-
mative. The soliton is found to be stable while propagating
through the coupler. It turns out that both the power and
the phase-controlled mode of switching works well in the
PT -symmetric saturable nonlinear coupler. Also, we adopt
Lagrange’s variational technique to analytically capture the
switching dynamics of such a coupler. The numerical findings

are well supported by the variational predictions. It is antici-
pated that, owing to the huge reduction in the peak power and
rich transmission characteristics, the proposed PT -symmetric
coupler with saturation nonlinearity would be of great util-
ity for many signal processing applications. Apart from that,
there could be a resurgence of research works in this area
considering the promising results reported in this work.
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