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Observation of microcavity fine structure
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We experimentally show that resonance spectra of optical microcavities have a fine structure that resembles the
one observed in atoms. We can identify the polarization-resolved modes in the spectrum and distinguish between
two intrinsic effects that cause fine structure: (1) an optical spin-orbit coupling and (2) nonparaxial propagation
and reflection. The measured effects are intrinsic to cavities and are therefore present in any cavity, in contrast
to accidental effects like astigmatism. The analogy of fine structure with atomic physics is surprisingly fruitful
and gives accurate theoretical predictions which agree which experiments. This analogy can even predict further
splittings like a hyperfine splitting, which in our microcavities is explained by a Bragg effect.
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I. INTRODUCTION

The fine structure in atomic spectra has revealed pertur-
bations to the Hamiltonian which are intrinsic for atoms [1].
The Bohr model in atomic physics predicts groups of de-
generate orbitals, labeled by the principal quantum number
n. This degeneracy is lifted by perturbations such as spin-
orbit coupling and a relativistic correction [2]. We observe a
spectral fine structure in optical microcavities which reveals
similar intrinsic perturbations to the paraxial wave equation.
The paraxial model predicts groups of frequency-degenerate
transverse modes, labeled by the transverse order N [3].
Also their degeneracy is lifted by perturbations which are
intrinsic to microcavities. This analogy gives accurate pre-
dictions [4] that agree with the experiments presented in this
paper.

The microcavity fine structure becomes relevant when the
radius of curvature of the mirror R is small. More specifically,
the fine structure is proportional to λ/R and typically ob-
servable when Fλ/R > 10, where F is the cavity finesse [3].
These intrinsic corrections are always present in optical
cavities and dominate over external, mirror-shape-dependent
effects, such as astigmatism, when λ/R is large enough.

The frequency splittings that have been reported in liter-
ature are typically for cavities with relatively large radii of
curvature, R � λ, where the intrinsic effects are small and
the external effects of astigmatism [5–8] and birefringence [9]
dominate. Intrinsic effects of fine structure have been reported
for microwave cavities [10,11] where λ is large, but its eigen-
modes were not observed. In the optical domain, only some
aspects of the fine structure have been reported in a conference
proceeding [12]. We measure the complete fine structure and
its eigenmodes. We use close to perfect rotational-symmetric
microcavities with very small radii of curvature, where the
intrinsic effects are most clearly distinguishable.

This paper shows how the intrinsic effects of spin-orbit
coupling and nonparaxial propagation and reflection
determine the fine structure. In the experiment, the cavity

length is scanned to obtain resonance spectra of four optical
microcavities with radii of curvature between R =
2.5(5)–17.3(2) μm. The paper presents the full analysis
for the R = 5.8(2) μm cavity and briefly discusses the results
from other cavities. The resonant modes in the spectrum are
first labeled with transverse order N , according to paraxial
theory. A fine structure is observed by zooming in on each N
group. Every mode in the fine structure is further identified
using a polarization-resolved CCD camera. The fine structure
is studied systematically and compared to theory. A third type
of splitting is reported, which we call “hyperfine splitting”
and which is dominantly due to a Bragg effect [13].

The analogy of microcavity fine structure to that of atoms
is surprisingly fruitful and gives new predictions [4] that agree
with experiments. Figure 1 illustrates the perturbations in
both systems. In atoms, spin-orbit coupling couples the orbital
angular momentum � and the spin s of an electron through the
magnetic field. In microcavities, spin-orbit coupling couples
the angular momentum � and circular polarization spin s of
light [14,15]. The optical spin-orbit coupling originates from
a projection of the longitudinal component of the electric
field [16] into an additional small transverse component at the
mirror surface. The relativistic correction in atoms is a quartic
p4 correction to the momentum, which shifts all modes pro-
portional to �2. As a direct analogy, a nonparaxial momentum
correction k4

⊥ is required for microcavities with large opening
angles [11,17], which also shifts all modes proportional to �2.
In addition, the nonparaxial theory contains a r4 correction
from higher-order Taylor expansions of the mirror and wave-
front shape [18].

II. LABELING OF CAVITY EIGENMODES

Paraxial theory predicts resonant cavity lengths that de-
pend only on the longitudinal mode number q, transverse
order N , and Gouy phase χ = arcsin

√
(L + 2LD)/R, where

LD is the modal DBR penetration depth [19]. We experimen-
tally determine the radius of curvature from the transverse
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FIG. 1. Analogy between optical microcavity and atom. (a) Opti-
cal field with spiral wavefront eilφ and circular polarization s between
a flat and curved mirror. (b) Electron wave function with orbital
angular momentum � and electron spin s.

mode spacings between each N group, which are equidistant
in the paraxial theory [19,20]. A more complete (nonparaxial)
description from [4] contains the fine-structure splittings �L̃,

L = λ

2

(
q + N + 1

π
χ + �L̃

)
, (1)

where

�L̃ = 1

2πkR

{
−� s −

[
3

8
− p̃

L

8(R − L)

]
�2 + f (N )

}
. (2)

This equation includes the two corrections: (1) the spin-orbit
coupling, scaling with l s, and (2) the quartic corrections
k4
⊥ and r4, scaling with �2. The quartic corrections shift

the modes by a factor 3�2/8 when using a perfectly spher-
ical mirror. Perturbations to this mirror shape are quantified
by the aspheric correction p̃ defined as zmirror − zsphere =
−p̃ r4

8R3 . The term f (N ) shifts all modes of transverse or-
der N by the same amount and goes unnoticed in the fine
structure.

Our planar and curved distributed Bragg reflectors (DBR)
are produced by Oxford HighQ [21] and have a reflectively of

99.9% (finesse F ≈ 3000). The curved mirror is illuminated
with a HeNe laser (λ = 633 nm). The cavity length is scanned
with piezo-stacks, and the light is transmitted through the
microcavity at resonant cavity lengths. This transmitted light
is detected with a photodiode and a polarization-resolving
CCD camera.

Figure 2(a) shows a typical microcavity transmission spec-
trum for the R = 5.8(2) μm cavity. The peaks are located
at resonant cavity lengths L. We can label them with q and
N according to paraxial theory, which predicts that each
transverse group N consists of 2(N + 1) orthogonal modes.
Figures 2(b)–2(e) zoom in on each N group. This shows that,
in practice, each group typically consists of N + 1 modes.
The dashed lines suggest that all odd (or even) N-groups have
similar mode and fine structures, albeit that larger N groups
contain more modes. The 0-mode for the even N groups is
shifted due to the shape of the mirror (see below).

Figure 3 shows the spectrum and CCD images of the
polarized eigenmodes of the N = 1 and N = 2 groups. The
eigenmodes of the N = 3 and N = 4 groups are shown below
in Fig. 5. The mode labels �A and �B (� > 0) in Fig. 2 and 3
are identified from the CCD images as follows. The angular
momentum � is determined by inspecting the intensity profile
and comparing it to the scalar Laguerre-Gaussian modes [3].
For instance, the N = 2 modes in Figs. 3(f) and 3(h) have a
dark center and one ring, corresponding to � = 2, whereas
Fig. 3(g) has a bright center, corresponding to � = 0. The A/B
labels are determined from the polarization patterns, where
the pattern of the A/B modes resembles circular or hyperbolic
flow lines. The total angular momentum j = l + s (s = −1
for A and s = 1 for B modes) is visible in the rotation symme-
try of the polarization pattern, which remains unchanged after
rotation over an angle π/ j (rotational symmetric at j = 0).

Each of the N + 1 modes is typically twofold degenerate,
because of its polarization degrees of freedom. This degener-
acy can be lifted under certain conditions. Figure 3(a) shows
this so-called “hyperfine” splitting for mode 1A. The modes
are labeled +/− and have orthogonal polarization patterns.

FIG. 2. Cavity transmission spectrum shows fundamental and higher-order transverse modes. (a) Transmission vs cavity length as a
function of the cavity length, where q, N indicate the longitudinal and transverse mode number. [(b)–(e)] Zoom-ins of the groups N = 1
to N = 4 show fine structure. The broad peaks around L = 1300 nm and L = 1600 nm are resonances of planar modes formed next to the
microcavity.
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FIG. 3. Fine-structure splittings of the [(a)–(d)] N = 1 and [(e)–(h)] N = 2 transverse mode groups. The dashed lines in (a) and (e)
correspond to polarization-resolved CCD images [(b)–(d)] and [(f)–(h)], where the order from left to right corresponds to a smaller to larger
cavity length detuning in (a) and (e). Each ellipse shows the local direction and circularity of the polarization.

The CCD images of the modes 1A− and 1A+, shown in
Figs. 3(c) and 3(d), show that their polarization is in the
azimuthal and radial direction, respectively. Figure 3(e) also
shows a hyperfine splitting for the 0 and 2A modes. Fig-
ures 3(g) and 3(h) show the modes with the mostly radial
polarization direction, which correspond to the left peaks
in the hyperfine splitting of the 0 and the 2A modes in
Fig. 3(e).

Figure 4 shows the measured spin-orbit splitting �LSO

between the �A and �B modes. The green points correspond
to the R = 5.8(2) μm cavity presented in Figs. 2 and 3,
while the other points are measured for three other cavi-
ties. All spin-orbit splittings scale linearly with the angular
momentum �.

FIG. 4. Observed mode splitting due to spin-orbit coupling for
four different cavities. The lines show the theoretically predicted
value with uncertainty for each radius of curvature.

III. COMPARISON WITH THEORETICAL PREDICTIONS

Figure 4 also shows the theoretical prediction of spin-orbit
coupling �LSO based on the measured radius of curvature R.
The figure shows that the measured splittings follow the the-
ory well for all four cavities, showing that spin-orbit coupling
in these cavities dominates over external perturbations. It also
shows the inverse proportionality with R of the fine-structure
splittings.

Theory predicts that a quartic perturbation shifts both �A
and �B modes by the same amount, such that their resonant
cavity lengths decrease proportional to �2. The data in Fig. 2
agree reasonably well with this prediction. To quantify this
effect, we look at the average position of the �A and �B
modes, given by �AB, and compare it with (� + 2)AB. From
Eq. (2) we find that such splittings are �Lquartic,th/(λ/2) =
3(� + 1)/(4πkR). Theory predicts for N = � + 2 = 2, 3, 4
that �Lquartic,th = 1.31(5) nm, 2.62(9) nm, and 3.9(1) nm. The
measured splittings are �Lquartic = 0.93(5) nm, 4.17(7) nm,
and 6.3(1) nm. The measured values have the same sign and
order of magnitude as the theoretical values but differ because
of an aspheric correction p̃ L

8(R−L) = 0.11(1), − 0.20(1), and
−0.23(1). The decreasing value for p̃ suggests that the cavity
is flatter for compact (low-N) modes and steeper for larger
(high-N) modes. This agrees with the “bathtub” shape which
was observed in AFM measurements [20].

The hyperfine splitting of the 1A modes in Fig. 3(a) can
be explained by the Bragg effect. It occurs because the DBRs
have an angle-dependent penetration depth, which is opposite
for radial (1A+) and azimuthal (1A−) polarized light [13,22].
The measured distance of 0.12(2) nm between the 1A+ and
1A− modes can be explained by a small wavelength detuning
from the stopband center of the DBR. The hyperfine splitting
of 0.15(2) nm of the 0 and 2A modes in Fig. 3(a) can also
be explained by the Bragg effect. The 0 and 2A modes mix
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FIG. 5. Fine-structure splittings of the [(a)–(f)] N = 3 and [(g)–(i)] N = 4 transverse mode groups. The dashed lines in (a) and (g)
correspond to the polarization resolved CCD images [(b)–(f)] and [(h)–(l)], where the order from left to right corresponds to a smaller to
larger cavity length detuning in (a) and (g) and where (e) and (f) are two images of the 1A+ and 1A− mode whose hyperfine splitting is not
resolvable in the spectrum in (a). Each ellipse shows the local direction and circularity of the polarization.

due to astigmatism, such that the mode profiles become more
radially and azimuthally polarized. The mixing ratio of the
0 and 2A modes is almost the same, which explain why the
hyperfine splitting is also almost the same (see Appendix B).

IV. ASTIGMATIC CORRECTION

The fine structure is modified when the mirror shape is
nonideal, i.e., does not have a perfect spherical shape. Up to
first order in the Taylor expansion, this nonideal mirror shape
can be described with two dimensionless parameters: p̃ for the
aspheric correction and X for the astigmatic correction. In this
section we investigate the influence of astigmatism on the fine
structure.

We model the combined effect of both the astigmatic
and aspheric corrections with a (N + 1) × (N + 1) coupling
matrix. The diagonal elements of this matrix are given
by Eq. (2). The off-diagonal elements contain the relative
astigmatism X , defined as X = 4kRηastig tan(χ ) with ηastig =
(Rmax − Rmin)/(2R), where Rmax and Rmin are the radii of
curvature along the long and short axes of the mirror and R =
(Rmax + Rmin)/2. This dimensionless parameter X is unity
when the astigmatic and intrinsic effects on the fine struc-
ture are approximately equally strong. If X is small, |X | < 1,
the matrix is close to diagonal, and the eigenmodes are like
lA/B modes. On the other hand, if X is large, |X | � 1, the
off-diagonal elements are large and the lA/B modes strongly
couple to each other. The newly formed eigenmodes then
obtain a strong Hermite-Gaussian character, as one would
expect for a cavity with large astigmatism. More aspects of
this model are described in Ref. [4] The explicit model for the
N = 4 group is shown in Appendix A.

Figure 5 shows the polarization-resolved CCD images of
the N = 3 and N = 4 modes for the R = 5.8(2) μm cav-
ity. The 0 and 2A modes in Figs. 5(k) and 5(l) show a
clear astigmatic coupling. The other modes are more diffi-
cult to identify, because some modes have an opening angle
larger than the numerical aperture of the imaging lens (NA =
0.5), like in Figs. 5(b) and 5(h), or are mixed with planar
modes causing a bright center, like in Figs. 5(b)–5(d) and

Figs. 5(h)–5(j). However, these modes seem relatively unin-
fluenced by the astigmatic correction.

The observed fine-structure spectrum of the N = 4 mode
is used to find the parameters p̃ and X . Figures 6(a)
and 6(b) show the calculated eigenvalues and its corre-
sponding eigenmodes. The horizontal dashed lines show the
measured eigenvalue, to which the model is fitted. This fit
yields an aspheric correction p̃ L

8(R−L) = −0.22(2) and relative
astigmatism X = 0.7(2), which corresponds to an absolute
astigmatism of ηastig = 0.6(2)%. Note that the fitted value of
p̃ L

8(R−L) = −0.22(2), obtained from the full spectrum with

astigmatism, is in close agreement with the value p̃ L
8(R−L) =

−0.23(1) found in Sec. III, from only the 2A/B and 4A/B
modes and only considering the aspheric correction. Also the
calculated eigenmodes in Figs. 6(c)–6(g) correspond well to
the measured eigenmodes in Figs. 5(h)–5(l). From the calcu-
lated eigenmodes, we also find that the mode in Fig. 5(k) is
“mostly 2A” and the mode in Fig. 5(l) is “mostly 0,” meaning
that the eigenmodes are dominated by 0 and 2A modes (see
Appendix B).

V. CONCLUSION

In conclusion, we have observed fine structures in the
resonance spectra of microcavities. This fine structure is ex-
plained by two intrinsic perturbations. First, the spin-orbit
coupling causes a frequency splitting between the �A and �B
modes that scales with �. Second, the quartic terms k4

⊥ and
r4 shift both �A and �B by the same amount that scales with
�2. A parameter p̃ was introduced to quantify the aspheric
shape of the mirror. Furthermore, a hyperfine splitting was
observed in the 1A + /1A− mode, which could be explained
by the polarization dependence of the penetration depth in the
DBR. Measurements on other cavities with different radii of
curvature showed that the fine-structure splittings scale with
λ/R. We used a model to calculate the influence of aspheric
and astigmatic corrections on the fine structure and found a
modest relative astigmatism X = 0.7(2) [ηastig = 0.6(2)%],
which indicates that the intrinsic effects dominate over the
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FIG. 6. Simulation of the combined effects of astigmatic and aspheric corrections on resonance frequencies and mode profiles. [(a), (b)]
Frequency shifts as a function of the (a) astigmatic correction X and (b) aspheric correction p̃ around the fitted values (vertical lines) deduced
from the measured frequencies (horizontal dashed lines) of the N = 4 modes in the R = 5.8(2) μm cavity. [(c)–(g)] Mode profiles in order of
frequency at the vertical lines in (a) and (b); mode in (c) has lowest frequency.

external effects. The analogy with fine structure in atomic
physics helps us to understand the full spectrum and even
some aspects of the hyperfine structure.

As an outlook, we note that the observation and analysis
of the (micro)cavity fine structure introduces a technique that
may have an impact in different areas. First, it can serve as
a tool to measure the theoretical predictions for nonparaxial
optical vector fields [4,13,23]. Second, it can be used for
imaging [24], enabling the analysis of mirror shapes with
sub-nanometer precision, using shape parameters like p̃, X
and higher-order terms [4]. And, finally, it affects the efforts
to increase light-matter interaction in optical cavities [25,26].
The strength of light-matter interaction is given by the Purcell
factor, which is usually written as the ratio of the quality
factor over the mode volume Fp ∼ Qλ3/V . This can equally
be written as the ratio of the Finesse F over the mode area
A, Fp ∼ Fλ2/A. As the mode area scales like A ∼ λ

√
LR one

can also write the Purcell factor as Fp ∼ Fλ/
√

RL > Fλ/R.
Our earlier statement that fine-structure effects are typically
observable when Fλ/R > 10 means that these effects are
unavoidable in open cavities with a large Purcell factor. More-
over, if λ/R is large enough, the intrinsic contributions tend to

dominate over external effects, and the spin-orbit coupling,
quartic term, and Bragg effect are essential to fully describe
the microcavity modes.
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APPENDIX A: COUPLING MATRIX FOR ASTIGMATIC
AND ASPHERIC CORRECTIONS

The fine-structure splitting is determined by the eigenval-
ues of a (N + 1) × (N + 1) matrix, with a basis of the lA, lB,
and 0 eigenmodes. Here we present the explicit matrix used
to calculate the eigenfrequencies and eigenmodes in Sec. IV.
More details and other coupling matrices can be found in
Ref. [4].

For N = 4, we choose the basis (4B, 2B, 0, 2A, 4A). The
coupling matrix is given by

8πkR�L̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−40 + 8p̃L
R−L 2X 0 0 0

2X −14 + 2 p̃L
R−L

√
6X 0 0

0
√

6X 0
√

6X 0

0 0
√

6X 2 + 2 p̃L
R−L 2X

0 0 0 2X −8 + 8p̃L
R−L

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A1)

The diagonal elements contain the rotational symmetric
components, being the nonparaxial perturbations and the
aspheric correction. The off-diagonal elements contain the
relative astigmatism X . The resonant frequencies 8πkR�L̃ are
found by diagonalizing the matrix. In the case of zero astig-
matism, the matrix is already diagonal, and its eigenvalues
directly follow from Eq. (2).

For small values of X , the modes are relatively uncoupled,
and only modes that are close in frequency are influenced by
astigmatic coupling, which is the case for the 0 and 2A modes
for the N = 4 group, corresponding to the third and fourth
row and column of the matrix in Eq. (A1). The mixed modes
in Figs. 6(f) and 6(g) can approximately be written as a super-
position of the 0 and 2A modes, |ψ〉 = α|2A〉 + β|0〉, where

|α|2 + |β|2 = 1. The calculated parameters are α = 0.84 and
β = 0.54 for the mode that is “mostly 2A” in Fig. 6(f) and
α = −0.54 and β = 0.84 for the mode that is “mostly 0” in
Fig. 6(g).

In Sec. III we noted that p̃ varied with the mode number N .
The parameter is p̃ L

8(R−L) = 0.11 for the N = 2 group, while

p̃ L
8(R−L) = −0.22 for the N = 4 group. This change affects the

mixed character of some modes. Figure 6(b) shows an avoided
crossing for the 0 and 2A modes (red and purple lines) around
p̃ L

8(R−L) ≈ −0.1. In case of the N = 2 group, the parameter

p̃ L
8(R−L) is on the positive side of the avoided crossing, hence

the 0 mode has a smaller eigenfrequency then the 2A mode.
In case of the N = 4 group, the parameter is on the negative
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FIG. 7. Calculated modes of the N = 2 group: [(a)–(c)] modes
of the “+” group; [(d)–(f)] modes of the “−” group. From left to
right the 2B, 0, and 2A modes in order of increasing resonance
frequencies. The red lines indicate the polarization profile.

side, and the 0 mode has a larger eigenfrequency then the 2A
mode. This switch of the 0 and 2A modes is also measured in
the spectra of the N = 2 and N = 4 groups in Fig. 2.

APPENDIX B: HYPERFINE SPLITTING

A hyperfine splitting of 0.12(2) nm was observed for the 1A
modes in Fig. 3(a), and a hyperfine splitting of 0.15(2) nm was
observed for the 0 and 2A modes in Fig. 3(e). The 1A hyperfine
splitting was theoretically expected in a rotational symmetric
system, but not the 0 and 2A hyperfine splitting. The 0 and
2A hyperfine splitting indicates that rotational symmetric is
broken. In this Appendix, we estimate the contribution of
astigmatism to this hyperfine splitting. We consider two mech-
anisms by which astigmatism can cause hyperfine splitting:
(1) the Bragg effect and (2) shape birefringence. We find that
the Bragg effect, in combination with mode mixing, is the
dominant cause of hyperfine splitting for the 0 and 2A modes.

1. Bragg effect

The Bragg effect originates from a difference between the
penetration depth of radial and azimuthal polarization. The
observed hyperfine splitting of the 1A mode shows a clear
distinction between the radial polarization for the mode 1A+
and azimuthal polarization for the mode 1A−. We observed a
hyperfine splitting of 0.12(2) nm for the 1A+ and 1A− modes,
which we fully attribute to the Bragg effect.

At first sight, one would expect that other modes are
not affected by the Bragg effect, because their polarization
patterns contain equal amounts of radial and azimuthal polar-
ization, and rotational symmetry averages out the penetration
depths. However, astigmatism breaks rotational symmetry, as
the mixed eigenmodes for the N = 2 group in Figs. 3(g)
and 3(h) show. These figures show only one of the “+” or “−”
peaks in the hyperfine splitting. Figure 7 shows the calculated
mode profiles of all the N = 2 modes, based on the parameters
p̃ L

8(R−L) = 0.11 and X = 0.7, with the “+” modes in the top
row and the “−” modes in the bottom row. In case of a perfect
rotational symmetric cavity, the modes in each column are

frequency degenerate. However, the right two columns show
differences in their polarization profiles, which causes the
hyperfine splitting. Figures 7(b) and 7(f) show modes which
have the most intensity in the radial polarization direction, and
Figs. 7(c) and 7(e) show modes which have the most intensity
in the azimuthal polarization direction. This modified inten-
sity distribution causes the Bragg effect for the modes other
than 1A.

We will now calculate the hyperfine splitting of these
mode relative to the hyperfine splitting of the 1A mode of
the N = 1 group. The modes are written as mixed modes of
the form |ψ2A±〉 = α|2A〉 ± β|0〉 and |ψ0±〉 = α′|2A〉 ± β ′|0〉
with |α|2 + |β|2 = 1, |α′|2 + |β ′|2 = 1. The ± correspond to
the top and bottom rows in Fig. 7. We then calculate the per-
turbation of the Bragg effect HBragg [4] of the 0 and 2A modes,
relative to the 1A modes: 〈0|HBragg|2A〉 = √

2〈1A|HBragg|1A〉
and 〈0|HBragg|0〉 = 〈2A|HBragg|2A〉 = 0. Thus, the hyperfine
splitting of the “mostly 2A” and “mostly 0” modes can be
expressed as �ν̃theory = 2

√
2αβ�ν̃1A.

The calculated values of α and β, based on the astigma-
tism of ηastig = 0.6(2)% and the measured aspheric correction
of p̃ L

8(R−L) = 0.11(1) for the N = 2 group, are α = 0.97(2)
and β = 0.24(6) for the mode which is “mostly 2A” and
α = 0.24(6) and β = 0.97(2) for the mode which is “mostly
0.” The calculated hyperfine splitting for both the “mostly
2A” and “mostly 0” mode relative to the 1A mode is thus
�ν̃theory/�ν̃1A = 0.6(2). Using the measured hyperfine split-
ting of 0.12 nm for the 1A + /−, we thus expect that the
hyperfine splitting of the 0 and 2A modes is �Ltheory =
0.07(3) nm. The measured value of the hyperfine splitting is
�Lmeasured = 0.15(2) nm. The Bragg effect can thus partially
explain the hyperfine splitting.

2. Shape birefringence

The ellipsoidal mirror shape can also cause birefringence
between modes polarized along the long and short axes. This
effect is a perturbation on the spin-orbit coupling, where the
transverse field components in the cavity are projected on the
curved mirror, but by a different amount for the two axes
of the ellipsoid [4]. This shape birefringence was observed
before in the hyperfine splitting of the fundamental mode
(N = 0) [7,24]. The effect on modes with � 
= 0 is more sub-
tle, and the proper perturbation that contributes to this effect

FIG. 8. Measured 2B modes for the N = 2 group in a R =
17.1 μm cavity: (a) 2B+ mode, (b) 2B− mode. Each ellipse shows
the local direction and circularity of the polarization.
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is (see also [4])

HSB = ηastig

πkR
(x̂x − ŷy)(∂xx̂ + ∂yŷ). (B1)

Calculating the coupling between the + and − modes gives

�νSB = 2αβ〈0 ± |HSB

2π
|2A±〉 = ∓2αβ

ηastig

4πkR
. (B2)

For ηastig = 0.6(2)% and p̃ L
8(R−L) = 0.11(1), the calculated

hyperfine splitting is 0.0012(6) nm, and therefore we can
safely neglect it. Hence, we conclude that the hyperfine split-
ting for the R = 5.8(2) μm cavity is caused by the combined
action of astigmatism and a Bragg effect and that shape bire-
fringence plays a negligible role.

3. Large astigmatism

The effect of shape birefringence can become more impor-
tant in the case of large astigmatism. Figure 8 shows the 2B
modes for a different R = 17.1(2) μm cavity with a large rel-
ative astigmatism X ≈ 14, which corresponds to ηastig ≈ 5%.
For this cavity, we observed a hyperfine splitting of 0.22(3)
nm between the 2B+ and 2B− modes. The polarization pro-
files of the eigenmodes show that most intensity is in the
horizontal polarization direction for the mode 2B+ in Fig. 8(a)
and in the vertical polarization direction for the mode 2B−
in Fig. 8(b). The Bragg effect should average out, since the
modes contain equal amounts of radial as azimuthal polariza-
tion. The shape birefringence is a more plausible cause for the
observed splitting since this acts on the horizontal or vertical
polarization.
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