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Two emitters coupled to a bath with Kerr-like nonlinearity: Exponential decay, fractional
populations, and Rabi oscillations
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We consider two noninteracting two-level emitters that are coupled weakly to a one-dimensional nonlinear
waveguide. Due to the Kerr-like nonlinearity, the waveguide considered supports—in addition to the scattering
continuum—a two-body bound state. As such, the waveguide models a bath with nontrivial mode structure.
Solving the time-dependent Schrödinger equation, the radiation dynamics of the two emitters, initially prepared
in their excited states, is presented. Changing the emitter frequency such that the two-emitter energy is in
resonance with one of the two-body bound states, radiation dynamics ranging from exponential decay to
fractional populations to Rabi oscillations is observed. Along with the detuning, the dependence on the separation
of the two emitters is investigated. Approximate reduced Hilbert-space formulations, which result in effective
emitter separation and momentum dependent interactions, elucidate the underlying physical mechanisms and
provide an avenue to showcase the features that would be absent if the one-dimensional waveguide did not
contain a nonlinearity. Our theoretical findings apply to a number of experimental platforms and the predictions
can be tested with state-of-the-art technology. In addition, the weak-coupling Schrödinger equation based results
provide critical guidance for the development of master equation approaches.
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I. INTRODUCTION

Since it is hard to fully isolate quantum systems in realistic
experimental settings, the quantum-mechanical treatment of a
system coupled to a bath is important from a practical point
of view [1]. Taking a somewhat philosophical viewpoint, one
may furthermore argue that truly isolated quantum systems
never exist since any quantum system is part of a larger
universe, i.e., embedded into an environment [2]. In addi-
tion, any measurement on the system involves, according to
measurement theory, interactions between the system and the
environment or bath [3–5].

The fact that systems are interacting with or can be made
to interact with the environment that they are embedded into
provides a wealth of opportunities. For example, bath engi-
neering can be used to control the dynamics of the system,
thereby providing an alternative approach to the preparation
of prespecified target states [6–14]. The idea is quite simple.
As an example, imagine two noninteracting few-level emitters
that are both coupled to a bath. Even though the emitters are
not interacting, the action of the bath on the emitters can be
interpreted as an effective interaction between the emitters.
The effective emitter-emitter interaction can be adjusted, by
modifying the mode structure of the bath, such that the emit-
ters are driven into a quasistationary state.

In most cases, the full quantum-mechanical treatment of
the dynamics of the entire system, i.e., the system and the
environment, is extremely challenging due to the tremen-
dously large Hilbert space. To make progress, a range of

approaches has been pursued [15]. In the weak-coupling limit,
perturbative and master equation approaches have been de-
veloped [16,17]. The strong-coupling limit can in some cases
also be tackled perturbatively [18–24]. The present paper
does not make any of these approximations and instead an-
alyzes the dynamics of the emitter-waveguide system using
the time-dependent Schrödinger equation, working—as, e.g.,
Refs. [25–31]—with the essentially full Hilbert space; the
Hilbert-space truncation made (i.e., dropping of two-photon
scattering states) leaves the dynamics essentially unchanged
for the parameter combinations investigated. To make the cal-
culations feasible, we restrict ourselves to a one-dimensional
bath with a nontrivial but still relatively simple mode struc-
ture. Losses to the “outside world” are neglected entirely,
i.e., the emitter-bath system is treated as a closed system (the
waveguide is assumed to be lossless).

For concreteness, our paper focuses on a photonic lattice
with lattice spacing a, nearest-neighbor tunneling J , and on-
site interaction U [31,32]. The two two-level emitters are
assumed to be located at or coupled to specific lattice sites
[see Fig. 1(a)]. When both emitters are coupled to the same
lattice site, the spacing x vanishes; when both emitters are
coupled to adjacent lattice sites, x is equal to a; and so on. This
model Hamiltonian was introduced in Ref. [31]. While our
paper builds on the theory framework introduced in Ref. [31],
the emphasis of our paper is distinct. Specifically, our paper
complements Ref. [31] in that we focus on the physics near
the bottom or the top of the band as opposed to on the physics
in the middle of the band, i.e., we consider a different range
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FIG. 1. Illustration of system under study. (a) Schematic of the
system Hamiltonian. Each blue box represents a cavity. The tun-
nel coupling between neighboring cavities, which are separated by
a, is shown by the lines labeled by J . The on-site interaction U
characterizes the effective photon-photon interaction; the U term of
the Hamiltonian Ĥ , Eq. (2), only plays a role for Nexc � 2. Two
two-level emitters with energy levels |g〉 j and |e〉 j ( j = 1 or 2) are
coupled to cavities n1 and n2 (n1 and n2 are fixed, n1 − n2 = x/a)
with strength g. The black line illustrates a two-photon bound state
that is supported by the cavity array. The physics explored in this
paper occurs in the regime where the size of the two-photon bound
state is comparable to the emitter separation x. (b) Illustration of the
system-bath Hamiltonian Ĥsb, Eq. (4), in the emitter Hilbert space.
Going from |e〉1|e〉2|vac〉 to |g〉1|g〉2|K〉 requires two single-photon
processes of strength g. (c) Illustration of the effective Hamiltonian
Ĥ adia, Eq. (28), in the emitter Hilbert space. The adiabatic elimi-
nation introduces an effective two-photon coupling between states
|e〉1|e〉2|vac〉 and |g〉1|g〉2|K〉. This paper monitors the change of the
population of the state |e〉1|e〉2|vac〉 with time.

of detuning δ/J , where δ/J is defined with respect to the
bottom of the two-photon bound-state band for negative U and
with respect to the top of the two-photon bound-state band for
positive U [33]:

δ = 2h̄ωe − 2h̄ωc − sgn(U )
√

U 2 + 16J2. (1)

Here, h̄ωe is the transition energy of the emitter and 2h̄ωc +
sgn(U )

√
U 2 + 16J2 is the bottom of the band for negative U

and the top of the band for positive U (h̄ωc is the energy in
the middle of the single-photon energy band; see Fig. 2 for
an illustration). We initialize the emitters in their excited state
|e〉1|e〉2 and the waveguide in the vacuum state |vac〉 at time
t = 0. Working in the subspace of two excitations, we study
the radiation dynamics. Throughout, we refer to the bath as
the photon bath. We emphasize, however, that the formalism
applies also to a phonon bath and baths consisting of other
quasiparticles. The Hamiltonian considered conserves the to-
tal number of excitations (see, e.g., Refs. [16,25,26,31,34]),
which is defined as the sum of the number of emitter excita-
tions and the number of photons. Key objectives of our paper
are to unravel the dependence of the radiation dynamics on
the emitter separation x and the detuning δ.

Our main results can be summarized as follows.
(i) The radiation dynamics depends strongly on the emitter

separation, detuning, and strength of the nonlinearity.
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FIG. 2. Two-photon eigenspectrum as a function of the scaled
center-of-mass wave number Ka/π . Note that the energy is shifted
such that the bottom of the two-photon bound-state band sits at zero.
(a) The gray-shaded energy band corresponds to the two-photon
scattering continuum, Eq. (9). The thick blue solid line shows the
energy EK,b of the two-photon bound state for U/J = −1. While the
gray band and thick blue solid line appear to coincide for K = 0 on
the scale shown, we note that the bottom of the two-photon scattering
continuum at K = 0 lies (−4 + √

17)J ≈ 0.123J above the K = 0
two-photon bound-state energy. This separation is sufficiently large
for the two-photon scattering continuum to play a negligible role in
the system dynamics considered in this paper. The thin dashed line
shows the energy of the state |e, e, vac〉 for δ/J = 0.0431. (b) Blow-
up of panel (a), focusing on the region around the bottom of the band.
The blue solid and blue dashed lines are the same as in panel (a). The
horizontal green solid and magenta dotted lines show the energy of
the state |e, e, vac〉 for δ/J = 0.0011 and 0.0001, respectively. The
labels “(A),” “(B),” and “(C)” refer to the three scenarios introduced
in the second to last paragraph of Sec. II A.

(ii) Focusing on parameter combinations where the single-
photon contributions can be eliminated adiabatically (this
implies moderate x/a, not too large |U |/J , and detuning δ

such that the system is on resonance with the two-photon band
or just slightly off resonance), we observe radiation dynamics
ranging from exponential decay to fractional population to
Rabi oscillations.

(iii) As discussed in Ref. [31], the Markov approximation
provides a faithful description of the exponential decay of the
initial state; our semianalytic expression for the decay con-
stant is compared with that for a single emitter case where the
emitter energy is in resonance with the single-photon energy
band, excluding the region near the bottom of the band.

(iv) When the on-site interaction is negative and the detun-
ing is chosen such that the energy of the two emitters is in
the band but close to the bottom of the band (the actual value
of δ/J depends on the separation x and the coupling strength
g/J), the emitters do not decay to the ground state but instead
approach a steady state that is characterized by fractional
populations. Some of the time-dependent characteristics can
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be explained in terms of effective photon-pair–photon-pair
interactions.

(v) Detuning extremely close to the bottom of the band [as
in (iv), the actual value of δ/J depends on the separation x
and the coupling strength g/J] leads to weakly damped or es-
sentially undamped Rabi oscillations, which display a notable
separation dependence and can be explained in terms of two
bound hybridized photonic polaron–excited emitter states. An
analytical two-state model that provides a semiquantitative
description of the Rabi oscillations is derived.

We note in passing that our results in support of the con-
clusions summarized under (iii) form the basis for developing
master equation formulations.

The remainder of this paper is organized as follows. Sec-
tion II introduces the model Hamiltonian and the approaches
used to solving the time-dependent and time-independent
Schrödinger equation. Sections III and IV present our time-
independent and time-dependent results. Last, Sec. V provides
a summary and outlook. Appendix A reviews single-emitter
results from the literature while Appendix B contains techni-
cal details related to the adiabatic elimination.

II. SYSTEM HAMILTONIAN AND THEORETICAL
TECHNIQUES

Sections II A and II B introduce the full system Hamilto-
nian and the bath Hamiltonian, respectively. Our approach
for solving the full Schrödinger equation is summarized in
Sec. II C. The adiabatic elimination of the single-photon states
is discussed in Sec. II D. Building on the reduced Hilbert-
space Hamiltonian that results after the adiabatic elimination,
Sec. II E discusses the Markov approximation.

A. System Hamiltonian

The total Hamiltonian Ĥ is given by [31,32]

Ĥ = Ĥs + Ĥb + Ĥsb, (2)

where Ĥs denotes the system Hamiltonian, Ĥb the bath Hamil-
tonian, and Ĥsb the system-bath coupling [see Fig. 1(a) for a
schematic]. We consider a system consisting of Ne two-level
emitters with energy separation h̄ωe between the ground state
|g〉 j and the excited state |e〉 j of the jth emitter. Specifically,
Ĥs is given by

Ĥs = h̄ωe

2

Ne∑
j=1

(σ̂ z
j + Î j ), (3)

where σ̂ z
j = |e〉 j〈e| − |g〉 j〈g| and Î j = |g〉 j〈g| + |e〉 j〈e|. The

inclusion of the identity
∑Ne

j=1 Î j in Eq. (3) introduces an
energy shift such that the energy of the state with Ne emitters
in their excited state and the bath in the vacuum state is equal
to Neh̄ωe. The energy shift due to the identity introduces an
overall phase in the time-dependent wave packet but does not
impact the population dynamics. The jth emitter is coupled to
the n j th lattice site of the waveguide, i.e., the emitters do not
move during the dynamics.

Triggered by the system-bath Hamiltonian Ĥsb with cou-
pling strength g, the emitters can change their state from |e〉 j

to |g〉 j and from |g〉 j to |e〉 j :

Ĥsb = g
Ne∑
j=1

(ân j σ̂
+
j + â†

n j
σ̂−

j ). (4)

Here, σ̂+
j and σ̂−

j denote raising and lowering operators of
the jth emitter, σ̂+

j = |e〉 j〈g| and σ̂−
j = |g〉 j〈e|. The operators

â†
n j

and ân j , respectively, create and destroy a photon at lattice
site n j , where the label n j takes values from 1 to N with N
denoting the number of lattice sites or cavities of the waveg-
uide. We are interested in the regime where the dynamics
is independent of N (large N limit). Since the system-bath
Hamiltonian does not include any counter-rotating terms, the
treatment is restricted to the weak-coupling regime where |g|
is small compared to the other energy scales of the system
[35].

The Hamiltonian Ĥb is taken to be a one-dimensional ar-
ray of tunnel coupled cavities in the tight-binding limit. It
is characterized by the “photon energy” h̄ωc (the middle of
the single-photon energy band has energy h̄ωc), the tunneling
energy J , and the on-site interaction energy U :

Ĥb = h̄ωc

N∑
n=1

â†
nân − J

N∑
n=1

(â†
nân+1 + â†

n+1ân)

+U

2

N∑
n=1

â†
nâ†

nânân. (5)

In Eq. (5), the photons are assumed to interact, due to the
presence of a Kerr-like medium, either effectively repulsively
(U > 0) or effectively attractively (U < 0). A positive U gives
rise to a two-photon bound state with center-of-mass wave
vector K that lies above the two-photon continuum while
a negative U gives rise to a two-photon bound state with
center-of-mass wave vector K that lies below the two-photon
scattering continuum [36–39].

The bath Hamiltonian considered here has been chosen for
several reasons.

(i) The eigenenergies and eigenstates of Ĥb are known
analytically (see below) [38].

(ii) Despite its simplicity, the Hamiltonian Ĥb supports a
nontrivial mode structure, namely, the above-mentioned two-
photon bound state [36–39].

(iii) It was predicted in Ref. [31] that the emission dy-
namics of Ĥ displays, for certain parameter combinations,
subradiance and supercorrelations.

These intriguing findings motivate our quest to map out
constructive and destructive interferences, with the goal of
identifying the dominant emission pathways. Throughout,
we are interested in situations where the initial t = 0 state
contains two excitations in the emitter Hilbert space (i.e.,
|�(0)〉 = |e〉1|e〉2|vac〉) and where the dynamics is driven, at
least in part, by the nontrivial mode structure of the bath, i.e.,
by the existence of the two-photon bound states supported
by Ĥb. For brevity, we adopt the notation |e〉1|e〉2|vac〉 =
|e, e, vac〉, etc. The next section discusses selected properties
of Ĥb.

The Hamiltonian Ĥ has four independent energy scales: δ,
g, J , and U . Throughout, J , h̄/J , and a are used as energy
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unit, time unit, and length unit, respectively. To reduce the
parameter space, we analyze the system properties for fixed
g/J as functions of δ/J and x/a. The dependence on U/J
is explored a bit; most calculations presented, however, are
for U/J = −1. Throughout, we work in the weak-coupling
regime, i.e., we use g/J = 1/50. Section V comments briefly
on the dependence of the system properties on g/J . As illus-
trated in Fig. 2, the detuning δ is set such that the energy
2h̄ωe of the initial state is, for g = 0, (A) in resonance with
a two-photon bound state with Ka/π not too close to zero and
not too close to ±1 [see the horizontal dashed line in Fig. 2(b)
as an example]; (B) in resonance with a two-photon bound
state with Ka/π a bit larger than zero [see the horizontal solid
line in Fig. 2(b) as an example]; and (C) in resonance with the
two-photon bound state extremely close to the bottom of the
band [K (0)a/π ≈ 4.5 × 10−3; see the horizontal dotted line in
Fig. 2(b) as an example].

We note that single-photon losses are not included in our
treatment. This is justified if the dynamics governed by Ĥ is
notably faster than the dynamics associated with the single-
photon losses. Using the parameters of Fig. 11 as an example,
this implies that the single-photon loss rate is assumed to be
smaller than ≈10−4J/h̄.

B. Mode structure of the bath Hamiltonian

Since the Hamiltonian Ĥb commutes with the photon num-
ber operator N̂ [36–38],

N̂ =
N∑

n=1

â†
nân, (6)

Ĥb is block diagonal in the number of photons. In what fol-
lows, we discuss the eigenspectrum of Ĥb in the one- and
two-photon subspaces.

We start with the single-photon subspace. The single-
photon energy Ek reads [40]

Ek = h̄ωc − 2J cos (ka), (7)

where the single-photon wave number k (ka/π ∈ [−1, 1]) is
a good quantum number. The single-photon eigenstates with
energy Ek are denoted by |ψk〉. Equation (7) shows that Ek

is equal to h̄ωc for ka/π = ±1/2 (this is the middle of the
band), equal to h̄ωc − 2J for ka/π = 0 (this is the bottom of
the band), and equal to h̄ωc + 2J for ka/π = ±1. For later
reference, we note that the single-photon group velocity vk is
given by

vk = 2Ja

h̄
sin(ka). (8)

This shows that a single photon travels, “on average,” two
lattice sites per characteristic time h̄/J for ka/π = ±1/2 and
not at all for ka = 0 and ka/π = ±1. According to this classi-
cal average-speed-picture, two individually launched photons
may not interfere with each other if the photon’s wave number
is close to zero or ±π/a, or if the emitters are separated by
many lattice sites.

We now turn to the two-photon subspace, which is spanned
by scattering states |ψK,q〉 with energy EK,q and bound
states |ψK,b〉 with energy EK,b [36–39]. The center-of-mass

wave number K is a good quantum number. The gray band
in Fig. 2(a) shows the two-photon scattering energy EK,q

[36–38],

EK,q = 2h̄ωc − 4J cos
(Ka

2

)
cos(qa), (9)

as a function of K (Ka/π ∈ [−1, 1]). The energy continuum
arises from the fact that the relative wave number q can take a
range of values that depends on K (e.g., qa/π ∈ [−1, 1] for
K = 0 and qa/π = 0 for Ka/π = ±1). The middle of the
scattering continuum lies at 2h̄ωc, and the scattering contin-
uum has a width of 8J for Ka/π = 0 and a width of zero for
Ka/π = ±1. While the two-photon scattering energies EK,q

are independent of U , the associated scattering states depend
on U .

In addition, the Hamiltonian Ĥb supports one two-photon
bound state with energy EK,b for each K [36–39]:

EK,b = 2h̄ωc + sign(U )
[
U 2 + 16J2 cos2

(Ka

2

)]1/2

. (10)

For negative U/J , the bound state lies below the scattering
continuum (see the thick blue solid line in Fig. 2 for U/J =
−1). In this case, the binding energy for a given K is defined as
the energy difference between the lower edge of the scattering
continuum (EK,q with q = 0) and the bound-state energy EK,b.
The situation for positive U/J is similar, except that the bound
state lies above the scattering continuum. The binding energy
increases with increasing |U |/J; correspondingly, the two-
photon bound-state wave function becomes more localized.
We note that two-photon bound states [41] and repulsively
bound atom pairs in optical lattices [42] have been observed
experimentally.

The horizontal lines in Fig. 2(b) show the energy of the
state |e〉1|e〉2|vac〉 for three different values of δ/J: δ/J =
0.0431 (dashed line) corresponds to scenario A, δ/J = 0.0011
(solid line) corresponds to scenario B, and δ/J = 0.0001 (dot-
ted line) corresponds to scenario C. The crossings between
the energy of the initial state and the energy EK,b of the
two-photon bound state define the uncoupled (i.e., g = 0)
resonance wave numbers ±K (0) [31], where K (0) is defined to
be positive. For finite coupling strength g, the value of the res-
onance wave vector shifts from K (0) to K (∗) (see Appendix B
for details).

In scenario A, radiation is emitted predominantly, via in-
termediate single-photon states, into two-photon bound states
with wave numbers ≈ ±K (∗), leading to exponential decay
[31]. Since the group velocity vK,b [38],

vK,b = 1

h̄

∂EK,b

∂K
, (11)

of the two-photon bound state depends on K (vK,b is zero
for Ka/π = 0 and ±1 and finite for all other Ka), the decay
constant shows a distinct dependence on the resonance wave
number or, equivalently, on the detuning δ/J [31]. In scenario
B, the near flatness of the band implies that the initial energy
is nearly equal to that of several two-photon bound states with
|Ka/π | � 1. This leads, as shown in Sec. IV, to fractional
populations. In scenario C, the two-photon bound-state band
splits into a band and an emitter-photon coupling induced po-
laronlike bound state that hybridizes with the state |e, e, vac〉
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upon inclusion of the coupling between the polaronlike bound
state and the state |e, e, vac〉, leading to essentially undamped
Rabi oscillations that are reproduced very well by a two-state
model. Selected results for scenarios B and C are discussed in
Ref. [32].

C. Solving the Schrödinger equation

Since Ĥ commutes with the excitation operator N̂exc

[16,25,26,31,34],

N̂exc = N̂ +
Ne∑
j=1

σ̂+
j σ̂−

j , (12)

the number of excitations Nexc (eigenvalue of N̂exc) is con-
served. Correspondingly, the time evolution of an initial
state with Nexc = 2 under the Hamiltonian Ĥ , Eq. (2), can
be expanded in terms of the states |e, e, vac〉, â†

n|e, g, vac〉,
â†

n|g, e, vac〉, and â†
nâ†

n′ |g, g, vac〉, where n and n′ take the val-
ues 1, . . . , N . Alternatively, the time-dependent state |�(t )〉
can be expanded using the zero-, one-, and two-photon eigen-
states of Ĥb [31]:

|�(t )〉 = exp(−2ıωet )[cee(t )|e, e, vac〉
+

∑
k

c1k (t )â†
k |e, g, vac〉

+
∑

k

c2k (t )â†
k |g, e, vac〉

+
∑

K

cK,b(t )P̂†
K,b|g, g, vac〉

+
∑
K,q

cK,q(t )P̂†
K,q|g, g, vac〉], (13)

where |ψk〉 = â†
k |vac〉, |ψK,b〉 = P̂†

K,b|vac〉, and |ψK,q〉 =
P̂†

K,q|vac〉. The operators â†
n and â†

k are related via a Fourier
transform in the standard way:

â†
k = 1√

N

N∑
n=1

exp(ıkan)â†
n. (14)

Inserting Eq. (13) into the time-dependent Schrödinger
equation

ı h̄
∂�(t )

∂t
= Ĥ�(t ) (15)

and projecting onto the basis states, we obtain a set of first-
order differential equations for the time-dependent expansion
coefficients [31]:

ı h̄ċee(t ) = g√
N

∑
α=1,2

∑
k

exp(ıkanβ )cαk (t ), (16)

ı h̄ċαk (t ) = �kcαk (t ) + g√
N

exp(−ıkanβ )cee(t ) + g

N

∑
K

Mb(k, nα, K )cK,b(t ) + g

N

∑
K,q

Mq(k, nα, K )cK,q(t ), (17)

ı h̄ċK,b(t ) = �K,bcK,b(t ) + g

N

∑
α=1,2

∑
k

[Mb(k, nα, K )]∗cαk (t ), (18)

and

ı h̄ċK,q(t ) = �K,qcK,q(t ) + g

N

∑
α=1,2

∑
k

[Mq(k, nα, K )]∗cαk (t ). (19)

For Nexc = 2 (recall, this is the focus of our paper), Eqs. (16)–
(19) are equivalent to the time-dependent Schrödinger equa-
tion. The quantities �k , �K,b, and �K,q denote energy
detunings:

�k = Ek − h̄ωe, (20)

�K,b = EK,b − 2h̄ωe, (21)

and

�K,q = EK,q − 2h̄ωe. (22)

In Eq. (17), α takes the value 1 or 2. The value of β depends
on α: β = 2 for α = 1 and β = 1 for α = 2 in Eqs. (16)
and (17). The matrix elements Mb(k, n, K ) and Mq(k, n, K )
measure the contribution of a photon with wave number k to
the two-photon bound state and to the two-photon scattering
state, respectively, after acting with ân on the two-photon
state:

Mb(k, n, K ) = N〈ψk|ân|ψK,b〉 (23)

and

Mq(k, n, K ) = N〈ψk|ân|ψK,q〉. (24)

The matrix element Mb(k, n, K ) reads [31]

Mb(k, n, K )

=
√

2
∑

m

exp
[
ım

(
k − K

2

)
a + ın(K − k)a

]
ψK,b(m)],

(25)

where ψK,b(m) = 〈r = ma|ψK,b〉 with |r〉 denoting the rela-
tive distance between the two photons; Mq(k, n, K ) is obtained
by replacing the subscript b in Eq. (25) by q. The matrix
elements Mb(k, n, K ) and Mq(k, n, K ) are defined such that
their values for a given k, n, and K [and q for Mq(k, n, K )] are
independent of N ; they differ by a factor N from those defined
in Ref. [31].

We solve the coupled differential equations by discretiz-
ing the wave numbers k, K , and q. For N lattice sites and
Nexc = 2 excitations, we have N2 + (Ne + 1)N + 1 expansion
coefficients. If the scattering continuum can be neglected,
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the computational complexity reduces dramatically since the
number of coupled equations reduces from order N2 to order
N . For the parameters considered in this paper, we found—
by performing calculations for N � 300—that the scattering
continuum plays a negligible role. This is consistent with the
findings of Ref. [31]. Thus, the results presented are calculated
using N up to 9001, excluding the scattering continuum from
the Hilbert space.

Two numerical approaches are used. First, we use the
Runge-Kutta algorithm [43] with adjustable time step to prop-
agate the coefficients for a given initial state at t = 0 to time
t . Second, we express the Hamiltonian Ĥ in terms of the un-
coupled g = 0 basis states using the matrix elements defined
above. Determining the finite g eigenstates through diagonal-
ization, we project the initial state onto the eigenstates of Ĥ .
Since the exact diagonalization approach is numerically more
stable, the results presented in this paper are obtained using
that approach.

The eigenspectrum of Ĥ provides complementary clues for
understanding the emitter dynamics. For finite g, eigenstates
with hybridized character that contain photon and emitter con-
tributions can exist [32]; for certain parameter combinations,
these strongly mixed states have energies that lie “outside”
the two-photon bound-state band. These states are discussed
in more detail in Sec. III. Hybridized light-matter states play
a critical role in many other related contexts [44–47].

D. Adiabatic elimination of single-photon states

This section discusses the construction of a reduced dimen-
sionality Hamiltonian that “lives” in the Hilbert space spanned
by the states |g, g, vac〉, P̂†

K,b|g, g, vac〉, and P̂†
K,q|g, g, vac〉. The

basis states â†
k |e, g, vac〉 and â†

k |g, e, vac〉 are removed and
accounted for approximately through effective interactions
in the reduced dimensionality Hilbert space [see Figs. 1(b)
and 1(c)]. The construction of the reduced dimensionality

Hamiltonian is based on the adiabatic elimination of c1k (t ) and
c2k (t ) from the coupled equations [31,48]. The approximation
requires that the change of c1k (t ) and c2k (t ) with time in
Eqs. (16)–(19) can be neglected.

Even though the adiabatic elimination approach removes
c1k (t ) and c2k (t ) from the coupled equations, we emphasize
that the single-photon states play an important role even in
the regime where the differential equations after adiabatic
elimination provide a faithful description of the dynamics.
This can be seen by inspecting Eqs. (16)–(19). If we start,
e.g., with cee(0) = 1, then the evolution of the initial state for
t = 0+ is driven by the change of ċαk (t ); this follows since the
cee(t ) coefficient appears on the right-hand side of Eq. (17) but
not on the right-hand side of Eqs. (18) and (19). The key point
of the adiabatic elimination is that the single-photon states
serve as intermediate states—population goes into and out of
these states at roughly equal rates such that the majority of the
population is in the basis states with two emitter excitations
and zero emitter excitations. The adiabatic elimination breaks
down when g becomes too large (the actual value of g/J
depends on the values of δ/J , U/J , and x/a).

Carrying out the adiabatic elimination and neglecting
the effective coupling matrix elements HK,K ′,q(n1, n2) and
JK,K ′,q,q′ (n1, n2) that involve the two-photon scattering con-
tinuum (see Appendix B), Eqs. (16)–(19) reduce to a set
of differential equations that can be written in terms of the
effective adiabatic Hamiltonian Ĥ adia. In matrix form, we find
[31]

ı h̄
∂

∂t

(
cee(t )

cK,b(t )

)
= H adia

(
cee(t )

cK,b(t )

)
, (26)

where


cK,b(t ) = (cK1,b(t ), . . . , cKN ,b(t ))T , (27)

H adia =
(

2�e 0
0 �K,b

)
+ g2

J

(
0 N−1/2( 
FK,b(n1, n2))T

N−1/2[ 
FK,b(n1, n2)]∗ N−1GK,K ′ (n1, n2)

)
, (28)

and


FK,b(n1, n2) = (FK1,b(n1, n2), . . . , FKN ,b(n1, n2))T . (29)

The definition of the vector 
FK,b(n1, n2) is given in Eq. (B4).
The matrices �K,b and GK,K ′ (n1, n2) have dimension N × N :
�K,b is diagonal with �K1,b, . . . ,�KN ,b on the diagonal and
the elements of GK,K ′ (n1, n2) are given by GKl ,Kl′ (n1, n2)
[Eq. (B6)], with l and l ′ taking the values 1, . . . , N . The sec-
ond term on the right-hand side of Eq. (28) represents effective
interactions that arise due to the elimination of the single-
photon states. The element FKl ,b(n1, n2) represents an effective
interaction between the state |e, e, vac〉 and the two-photon
bound state with center-of-mass wave number Kl while the
element GKl ,Kl′ (n1, n2) represents an effective interaction be-
tween the two-photon bound state with wave number Kl and
the two-photon bound state with wave number Kl ′ . We note

that FKl (n1, n2) and GKl ,K ′
l′
(n1, n2) are independent of g and,

in general, complex.
Figure 3 shows 
FK,b(n1, n2) as functions of Ka/π and x/a

for δ/J = 0.0011 and two different U/J , namely, U/J = −1
(top row) and U/J = −5/2 (bottom row). The real and imag-
inary parts of 
FK,b(n1, n2) are shown in the left and right
columns, respectively. We note that the system properties only
depend on the emitter separation x/a and not independently
on the actual emitter positions n1 and n2; to make Fig. 3,
the separation is—to aid with the visualization—treated as a
continuous as opposed to a discrete variable. The magnitude
of the real part of the effective interactions is larger for U/J =
−1 (weakly bound state) than for U/J = −5/2 (more strongly
bound state). The characteristics common to both U/J values
considered in Fig. 3 are as follows: First, the real part of the
effective interactions is most negative near Ka/π = x/a = 0,
even though the resonance wave vector K (0) differs in the
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FIG. 3. Contour plots of the effective dimensionless interac-
tions 
FK,b(n1, n2) between the states |e, e, vac〉 and P̂†

K,b|g, g, vac〉 as
functions of Ka/π and x/a for δ/J = 0.0011; to obtain the actual in-
teraction strength, 
FK,b(n1, n2) needs to be multiplied by g2/(N1/2J ).
(a) Re[ 
FK,b(n1, n2)] for U/J = −1. (b) Im[ 
FK,b(n1, n2)] for U/J =
−1. (c) Re[ 
FK,b(n1, n2)] for U/J = −5/2. (d) Im[ 
FK,b(n1, n2)] for
U/J = −5/2. The color scheme for each of the four panels is
different.

two cases [K (0)a/π = 0.0152 for Figs. 3(a) and 3(b) and
K (0)a/π = 0.0162 for Figs. 3(c) and 3(d)]. Second, the real
part of the effective interactions displays a larger K depen-
dence for x/a = 0 than for x/a > 0. Third, for fixed Ka/π ,
the real part of the effective interactions is characterized by an
overall falloff that sits on top of small amplitude oscillations.
Fourth, the magnitude of the imaginary part of the effective
interactions is very small for Ka/π ≈ 0. The separation and
wave-vector dependencies of 
FK,b(n1, n2) have, as shown in
the later sections, a strong impact on the system dynamics.

Section IV shows that the effective interactions
GK,K ′ (n1, n2) play a non-negligible role for scenarios B
and C, corresponding to the horizontal solid and dotted lines
in Fig. 2(b). The effective interactions GK,K ′ (n1, n2) between
two two-photon bound states, one with K and the other with
K ′, depend—for fixed U/J and δ/J—on Ka, K ′a, and x/a.
Figure 4 shows the real part of GK,K ′ (n1, n2) for δ/J = 0.0011
for two different separations, namely, x = 0 (top row) and
x/a = 10 (bottom row). The left and right columns are for
U/J = −1 and −5/2, respectively. The key characteristics
are as follows.

(i) The oscillatory structure of the real part of GK,K ′ (n1, n2)
increases with increasing separation.

(ii) For the on-site interaction and detuning considered, the
real part of GK,K ′ (n1, n2) is negative; the most negative values
are found for K = K ′ = 0 for x/a = 0 and 10.

We note that the imaginary part of GK,K ′ (n1, n2) (not
shown) is zero for K = K ′.

Since Ĥ adia is Hermitian [this can be seen readily by in-
specting GK,K ′ (n1, n2)], the population is normalized at all
times, i.e., |cee(t )|2 + ∑

K |cK,b(t )|2 = 1, and the eigenener-
gies of Ĥ adia are real. The validity of the approximations
(adiabatic elimination and dropping of scattering states)
can thus be assessed in two complementary ways, namely,
by comparing the time evolution of, e.g., the initial state
|e, e, vac〉 under Ĥ and Ĥ adia and by comparing the eigen-
spectra of Ĥ and Ĥ adia. Reference [31] constructed a master

FIG. 4. Contour plots of the real part of the effective di-
mensionless interactions GK,K ′ (n1, n2) between the states |g, g, K〉
and |g, g, K ′〉 as functions of Ka/π and K ′a/π for δ/J =
0.0011; to obtain the actual interaction strength, GK,K ′ (n1, n2)
needs to be multiplied by g2/(NJ ). (a) Re[GK,K ′ (n1, n2)] for
U/J = −1 and x/a = 0. (b) Re[GK,K ′ (n1, n2)] for U/J = −5/2
and x/a = 0. (c) Re[GK,K ′ (n1, n2)] for U/J = −1 and x/a = 10.
(d) Re[GK,K ′ (n1, n2)] for U/J = −5/2 and x/a = 10. The color
schemes for U/J = −1 (a, c) are the same; similarly, the color
schemes for U/J = −5/2 (b, d) are the same.

equation, using Eq. (28) with GKl ,Kl′ (n1, n2) = 0 as a starting
point. We denote Ĥ adia with GKl ,Kl′ (n1, n2) = 0 and �= 0 by
Ĥ adia,0 and Ĥ adia,1, respectively. Section IV shows that Ĥ adia,1

significantly expands the applicability regime of the reduced
dimensionality Hamiltonian compared to Ĥ adia,0 in certain
parameter regimes.

E. Markov approximation for Ĥadia,0

For scenario A, the population of the initial state |e, e, vac〉
decays approximately exponentially for x/a not too large. As
shown in Ref. [31], the decay constant can be determined
analytically in this regime using the Markov approximation.
Appendix B shows that c̃ee(t ), where c̃ee(t ) denotes the ex-
pansion coefficient for the state that rotates with 2�e, falls off
exponentially according to

c̃ee(t ) = exp (−�batht ), (30)

where �bath is given by

�bath = g4a

J3h̄
|FK (∗),b(n1, n2)|2ρ(K (∗) ). (31)

Here, K (∗) is defined through

EK (∗),b = 2h̄ωe + 2�e, (32)

with the “Stark shift” 2�e [31],

2�e = − 2

N

∑
k

g2

�k
, (33)

quantifying the shift of the state |e, e, vac〉 due to the “renor-
malization” by the single-photon states. Correspondingly, the
decoupled (g = 0) resonance wave number K (0) gets shifted
to K (∗) for finite g/J; the use of K (∗) in place of K (0), as done
in Ref. [31], provides an improved description. The density of
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FIG. 5. Lines show the dimensionless decay constant
�bath h̄J3/g4, obtained within the Markov approximation [Eq. (31)].
(a) The black solid, red dashed, blue dotted, and magenta dash-dotted
lines show �bath h̄J3/g4 as a function of U/J for δ/J = 0.0431 and
x/a = 0, 2, 4, and 6, respectively. (b) The black solid, blue dotted,
and magenta dash-dotted lines show �bath h̄J3/g4 as a function of δ/J
for U/J = −1 and x/a = 0, 4, and 6, respectively. For comparison,
the open black circles show the decay constant extracted from the
dynamics for the full Hamiltonian Ĥ for x/a = 0 and g/J = 1/50;
the Markov approximation results (solid line) capture the decay
constant extracted from the full decay dynamics quite well. Note that
the Markov approximation breaks down when δ/J approaches zero
(left portion of the panel) and when δ/J approaches the two-photon
scattering continuum (right portion of the panel).

states ρ(K (∗) ) at the resonance wave vector can be written as

ρ(K (∗) ) = J (h̄vK (∗),b)−1. (34)

When |g/J| is not much smaller than 1, the adiabatic elimi-
nation and, correspondingly, the concept of a resonant wave
number lose their meaning. The importance of the Stark shift
2�e increases as K (0)a and, correspondingly, the detuning δ/J
approach zero.

Figures 5(a) and 5(b) show the decay constant �bathh̄J3/g4

as a function of the on-site interaction U/J and the detuning
δ/J , respectively, for various separations (x/a = 0 to 6). It
can be seen that the radiation dynamics is characterized by a
larger dimensionless decay constant (faster decay) for x/a =
0 (solid line) than for x/a = 6 (dash-dotted line). This makes
sense intuitively since a larger separation is associated with
a smaller, in magnitude, effective interaction FK (∗),b(n1, n2).
The dependence on U/J [see Fig. 5(a)] can also be under-
stood readily intuitively. As |U/J| increases, the two-photon
bound state becomes more localized and the coupling to the
state |e, e, vac〉 decreases. The Markov approximation results
shown in Fig. 5(a) agree quite well with the decay constants
extracted from full numerical calculations (not shown).

The dependence of the dimensionless decay constant, cal-
culated within the Markov approximation, on the detuning
is nonmonotonic [see Fig. 5(b)]. The increase of �bathh̄J3/g4

as the dimensionless detuning δ/J , for fixed x/a, approaches
zero [left part of Fig. 5(b)] is unphysical. This increase is due
to the breakdown of the Markov approximation in the vicinity
of the bottom of the band, where the density of states of two-
photon bound states is large and diverges as δ/J → 0. The
open circles in Fig. 5(b) show the decay constant for x/a = 0,
extracted from calculations for the full Hamiltonian Ĥ . While
the agreement with the Markov approximation results is quite
good, we note that the full dynamics displays nonexponential
characteristics for small δ/J that get “averaged” when fitting
to an exponential. The Markov approximation also breaks

down when δ/J becomes too large [right part of Fig. 5(b)].
The reason for this breakdown is that the adiabatic elimination
is not valid when 2h̄ωe is close to the two-photon scattering
continuum.

To recapitulate, we arrived at Eq. (30) by making
four distinct approximations: adiabatically eliminating c1k (t )
and c2k (t ), neglecting the two-photon scattering continuum,
neglecting GK,K ′ (n1, n2), and making the Markov approxi-
mation. It is useful to compare the results obtained for the
two-emitter case with nonlinear bath to those for a single
emitter [Ĥ in Eq. (2) with Ne = 1 and U = 0 with initial state
|e, vac〉]. Appendix A shows that the decay constant �single

for the single-emitter system evaluates within the Markov
approximation to

�single = g2a

h̄J
ρsingle(k(0) ), (35)

where

ρsingle(k(0) ) = J (h̄vk(0) )−1, (36)

with k(0) denoting the single-photon resonance wave vector.
Comparison of Eqs. (31) and (35) indicates that the two-

emitter dynamics, in the regime where |cee(t )|2—starting in
the state |e, e, vac〉—falls off exponentially, is the same as that
for the single emitter system, provided (i) the dimensionless
densities of states aρ(K (∗) ) and aρsingle(k(0) ) take the same
value and (ii) the coupling constant gsingle of the single emitter
system is set to

gsingle = g2

J
|FK (∗),b(n1, n2)|; (37)

the quantities on the right-hand side are understood to be
those characterizing the two-emitter system. To match the
densities of states, we consider K (∗)a and k(0)a values that
are sufficiently large for the Markov approximation to hold
but sufficiently small for �K,b and Ek to be well approximated
by their Taylor-expanded expressions up to order (Ka)2 and
(ka)2, respectively. Comparing the slopes of the quadratic
terms, we find that the dimensionless densities of states match
if the tunneling coupling strength Jsingle of the single emitter
system is set to

Jsingle = 2J

[(U

J

)2

+ 16 cos2

(
K (∗)a

2

)]−1/2

; (38)

the quantities on the right-hand side are, again, understood to
be those characterizing the two-emitter system.

The meaning of Eqs. (37) and (38) is as follows. Say we
have a coupled two-emitter–cavity system in the Markovian
regime. For a given U/J , g/J , δ/J , and x/a, this implies
that the exponential decay of the population is characterized
by �bath. Imagine now that we want to design a coupled
single-emitter–cavity system such that the exponential decay
of |de(t )|2, see Eq. (B1), is characterized by �single = �bath.
This goal is accomplished if the tunneling coupling strength
Jsingle and coupling strength gsingle of the single-emitter–cavity
system are chosen according to Eqs. (37) and (38).

Using that |FK (∗),b(n1, n2)| is—for the parameters consid-
ered in this paper (see Fig. 3 for two examples)—of the order
of 1 to 10, Eq. (37) shows that the two-emitter dynamics con-
sidered is slower than the single-emitter dynamics would be
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FIG. 6. Energy of the two lowest eigenstates as a function of
δ/J for U/J = −1 and g/J = 1/50. (a) The black solid and red
dashed lines show the energy for Ĥ adia,1 and Ĥ adia,0, respectively,
for x = 0. For comparison, the open circles show the eigenenergies
for Ĥ (using a basis that excludes the two-photon scattering states).
The energies for Ĥ and Ĥ adia,1 agree very well. (b) The black solid
and black dotted lines show the energies of Ĥ adia,1 for x/a = 0 and
5, respectively. A clear separation dependence can be seen. In both
panels, the lower state corresponds to a hybridized bound state with
appreciable |e, e, vac〉 and |g, g, pol〉 contributions (see Sec. III B for
details).

if the single emitter was in resonance with the single-photon
band. Importantly, if the two-emitter energy is in resonance
with the two-photon bound-state band, then the single-emitter
energy is not in resonance with the single-photon band (at
least not for the parameters considered in this paper). We
note that appreciable single-emitter dynamics is observed for
large x/a for certain parameter combinations (see Sec. IV for
details).

III. STATIONARY SOLUTION

This section discusses the stationary solutions of the cou-
pled emitter-cavity system under study. Section III A provides
an overview for different detunings while Sec. III B focuses
on the physics near the bottom of the band.

A. Overview

To assess the reliability of the different approximations,
we compare the energy spectrum obtained by diagonaliz-
ing Ĥ adia,0, Ĥ adia,1, and Ĥ (using a basis that excludes the
two-photon scattering states) for U/J = −1 for various δ/J .
Figure 6(a) shows the lowest two eigenenergies for x/a = 0.
The zero of the energy axis corresponds to the bottom of
the g = 0 two-photon energy band. The eigenenergies of the
full Hamiltonian (open circles) are reproduced much better
by Ĥ adia,1 (black solid lines) than by Ĥ adia,0 (red dashed lines).
Specifically, neglecting the effective interactions GK,K ′ (n1, n2)
leads to a weakening of the binding of the lowest-energy
state, especially for positive δ/J . The lowest-energy state is
a hybridized bound state that contains contributions from the

FIG. 7. Visualization of the eigenspectrum of Ĥ adia,1 as a func-
tion of the detuning δ/J for U/J = −1, g/J = 1/50, and x = 0.
The density of states ρE (E ) of the continuum portion of the energy
spectrum, which is dominated by states that have no or extremely
small emitter admixtures, is shown in color (the legend is shown on
the right; arbitrary units are used). The lowest hybridized bound state
(black solid line) is well separated from the energy continuum. The
second lowest state (black dashed line) is separated by a small gap
from the continuum for negative δ/J and part of the continuum for
positive δ/J .

state |e, e, vac〉 and two-photon bound states. The hybridized
state is clearly separated from the energy continuum. The
character of the lowest-energy eigenstate is elucidated in the
next section.

The density of states ρE (E ) (number of states per unit
energy interval) of the energy continuum, which reduces to
the two-photon bound-state band for g = 0, is shown by the
color map in Fig. 7 for the same parameters as those used
in Fig. 6(a). The density of states is large near the bottom
of the energy band and decreases as one moves away from
the bottom of the band. While the coupling constant g has
a profound effect on the two lowest eigenstates (black solid
and dashed lines in Fig. 7), the density of states depends
comparatively weakly on g.

To elucidate the dependence on the separation for U/J =
−1, we work with Ĥ adia,1. Figure 6(b) shows the two low-
est eigenenergies as a function of δ/J for x/a = 0 (solid
line) and x/a = 5 (dotted line). The binding energy of the
lowest hybridized bound state decreases with increasing x/a.
This might be expected naively since a larger emitter separa-
tion is associated with reduced interactions. Interestingly, the
second-lowest-energy state has a somewhat lower energy for
x/a = 5 than for x/a = 0; this can be seen most clearly in
Fig. 6(b) for negative detuning but also holds true for positive
δ/J . An analysis of the corresponding eigenstate reveals that
the second lowest state for x/a = 5 has bound-state charac-
ter not only for negative but also for positive detuning. For
x/a = 0, in contrast, the second lowest state merges into the
continuum when the detuning is positive. The emergence of
a second bound state with increasing separation is somewhat
counterintuitive. We checked that the full Hamiltonian Ĥ
also supports a second bound state, i.e., we checked that its
appearance is not an artifact of the adiabatic approximation.
To gain additional insights, the next section discusses a two-
state model that captures key aspects of the two hybridized
bound states that exist for U/J = −1, small detuning, and
sufficiently large x/a.
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B. Near the bottom of the band: Two-state model

An important conclusion of the previous section is that
the adiabatic Hamiltonian Ĥ adia,1 captures the key features
of the bound states supported by the full Hamiltonian Ĥ .
Using Ĥ adia,1, we now review the physical picture that was
introduced in Ref. [32]. Since the effective interactions
GK,K ′ (n1, n2) cannot be neglected near the bottom of the band
(see the previous section), the bath Hamiltonian contains off
diagonals in the {|g, g, K〉, |e, e, vac〉} basis. To proceed, we
change the basis. We continue to use |g, g〉 and |e, e〉 with
energy 0 and 2�e, respectively, for the two emitters. For the
two-photon bath Hamiltonian, in contrast, we change from
the basis states |K〉, in which the bath is characterized by
effective interactions between two-photon bound states with
center-of-mass wave numbers K and K ′,

H adia,1
b = �K,b + g2

JN
GK,K ′ (n1, n2), (39)

to a basis in which the bath Hamiltonian Ĥ adia,1
b is diago-

nal. Performing the diagonalization, we find that the energy
spectrum of the adiabatic bath Hamiltonian Ĥ adia,1

b consists
of a continuum, similar to the two-photon bound-state band,
and an “isolated state” the energy of which is energetically
separated from the bottom of the two-excitation continuum;
this state lives in the band gap and corresponds to a bound
state.

The isolated state |pol〉 is well reproduced by an ansatz
with Lorentzian distributed expansion coefficients dK [32]:

|pol〉 =
∑

K

dK |K〉 (40)

and

dK = (2L−1
eff a)3/2

√
N

1

(2Ka)2 + (L−1
eff a)2

, (41)

where the normalization is chosen such that

a
∫ ∞

−∞
|dK |2dK = 1. (42)

In writing this ansatz, it is assumed that L−1
eff a is much smaller

than π so that the integration limits can be safely extended
from ±π to ±∞. We refer to the isolated state as a polaronlike
state as it represents a quasiparticle that is a superposition
of states with different center-of-mass momenta. The wave-
number width of the expansion coefficients dK is given by
(Leff )−1. We determine Leff by minimizing the ground-state
energy of Ĥ adia,1

b . To make the calculations tractable analyti-
cally, we approximate the effective interactions GK,K ′ (n1, n2)
by a constant, namely, their value at K = K ′ = K (0). We find

Leff

a
= 2J3

g2|GK (0),K (0) (n1, n2)|√U 2 + 16J2
(43)

and

Epol = −δ − g4

8J4
|GK (0),K (0) (n1, n2)|2

√
U 2 + 16J2. (44)

This variational result reproduces the numerically determined
ground-state energy of Ĥ adia,1

b very well. In the condensed-
matter context, the Hamiltonian that supports the polaronlike

FIG. 8. Contour plots of the effective dimensionless
interaction FK (0),b(n1, n2) between the states |e, e, vac〉 and
P̂†

K (0),b
|g, g, vac〉 and the effective dimensionless interaction

GK (0),K (0) (n1, n2) between the states |g, g, K (0)〉 and |g, g, K (0)〉
as functions of δ/J and U/J; to obtain the actual interaction
strengths, FK (0),b(n1, n2) and GK (0),K (0) (n1, n2) need to
be multiplied by g2/(N1/2J ) and g2/(NJ ), respectively.
(a) Re[FK (0),b(n1, n2)] for x/a = 0. (b) Re[FK (0),b(n1, n2)]
for x/a = 10. (c) Re[GK (0),K (0) (n1, n2)] for x/a = 0.
(d) Re[GK (0),K (0) (n1, n2)] for x/a = 10. The color schemes for
Re[FK (0),b(n1, n2)] are different for the two separations. The color
schemes for Re[GK (0),K (0) (n1, n2)], in contrast, are the same for the
two separations.

state shows up when an impurity or defect in a one-
dimensional lattice is associated with attractive all-to-all
momentum space interactions. All-to-all interactions are cur-
rently being investigated by a number of groups due to their
relevance in quantum gravity and spin-glass physics [49–51].

As already alluded to in Sec. II D, the effective interac-
tions GK,K ′ (n1, n2) are purely real for K = K ′. Figures 8(c)
and 8(d) show Re[GK (0),K (0) (n1, n2)] as functions of δ/J and
U/J for x/a = 0 and 10, respectively. It can be seen that
GK (0),K (0) (n1, n2) depends extremely weakly on the separation
x/a. Consequently, the energy Epol of the photonic polaron
is to a very good approximation independent of the emitter
separation x/a.

Next, we rewrite Ĥ adia,1 in the product basis in which the
emitter and bath Hamiltonians are diagonal. Transforming the
system-bath coupling g2N−1/2 
FK,b(n1, n2)/J to the new basis
and restricting the Hilbert space to the states |e, e, vac〉 and
|g, g, pol〉, we arrive at the following matrix representation of
the two-state Hamiltonian Ĥ2-st.:

H2-st. =
(

2�e Geff(n1, n2)
[Geff(n1, n2)]∗ Epol

)
. (45)

Using our variational expression for |g, g, pol〉, the effective
coupling Geff(n1, n2) between states |e, e, vac〉 and |g, g, pol〉
can be written as

Geff(n1, n2) = g3(U 2 + 16J2)1/4

2J5/2

× FK (0),b(n1, n2)|GK (0),K (0) (n1, n2)|1/2. (46)

Figures 8(a) and 8(b) show Re[FK (0),b(n1, n2)] as functions of
δ/J and U/J for x/a = 0 and 10, respectively. It can be seen
that Re[FK (0),b(n1, n2)] [Figs. 8(a) and 8(b)] varies much more
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FIG. 9. Energy of the hybridized states as a function of U/J for
g/J = 1/50, δ/J = 0.0011, and x/a = 10. The black circles and red
lines are obtained using the full Hamiltonian Ĥ and the two-state
Hamiltonian Ĥ2-st., respectively. The agreement is very good for the
parameter regime considered.

strongly with x/a than Re[GK (0),K (0) (n1, n2)] [Figs. 8(c) and
8(d)]. We conclude that, in the regime where the two-state
model Ĥ2-st. provides a faithful description, the separation
dependence of the hybridized energy eigenstates of Ĥ (see the
discussion surrounding Figs. 6 and 7) is due to the dependence
of Geff(n1, n2) on FK (0),b(n1, n2).

The eigenstates �± and eigenenergies E± of Ĥ2-st. read

�± = d (±)
vac |e, e, vac〉 + d (±)

pol |g, g, pol〉 (47)

and

E± =
(
�e + Epol

2

)
±

√(
�e − Epol

2

)2
+ |Geff|2, (48)

where the expansion coefficients d (±)
vac and d (±)

pol are given by

d (±)
vac = N±Geff (49)

and

d (±)
pol = N±

⎛
⎝−�e + Epol

2
±

√(
�e − Epol

2

)2

+ |Geff|2
⎞
⎠,

(50)

respectively; in Eqs. (49) and (50), N+ and N− denote
normalization constants. We refer to �+ and �− as the sym-
metric hybridized state and antisymmetric hybridized state,
respectively.

Figure 9 compares the two eigenenergies supported by
Ĥ2-st. (red solid lines) for δ/J = 0.0011 and x/a = 10 with
the two eigenenergies of Ĥ , the eigenstates of which have
the largest overlap with the initial state |e, e, vac〉 (black cir-
cles), as a function of U/J . The two-state model reproduces
the energy of the hybridized energy eigenstates of the full
Hamiltonian well. The state �− is bound for |U/J| values
smaller than 1.4 and unbound for |U/J| values larger than 1.4.
Since a strong on-site interaction (large |U/J|) corresponds
to more localized two-photon bound states (in real space),
the “reach” of the two-photon bound state for large |U/J|
is too small to induce a new bound state. As discussed in
the next section, the two-state Hamiltonian Ĥ2-st. describes
several key characteristics of the dynamics predicted by the
full Hamiltonian in the |δ/J| → 0 limit.

0.04 0.048
0.0001

0.01

1

|<
� E

 | 
e,

e,
 v

ac
>

|2

0 0.003 0.006

0.04 0.041 0.042
( E - E

 0,b
 ) / J

0.0001

0.01

1

|<
��

E
 | 

e,
e,

 v
ac

>
|2

-0.001 0 0.001
( E - E

 0,b
 ) / J

(a)

(b)

(c)

(d)

��� / J = 0.0431 ��� / J = 0.0011

bound

scattering

FIG. 10. Projection of the initial state |e, e, vac〉 onto the energy
eigenstates φE of Ĥ for U/J = −1 and g/J = 1/50. The square of
the absolute value of the overlap onto scattering states and bound
states is shown by black circles and red squares, respectively, for
(a) δ/J = 0.0431 and x/a = 0, (b) δ/J = 0.0431 and x/a = 10,
(c) δ/J = 0.0011 and x/a = 0, and (d) δ/J = 0.0011 and x/a = 10.

IV. DYNAMICS

This section discusses the radiation dynamics for U/J =
−1 for various detunings δ/J and separations x/a. Through-
out, the initial state is taken to be the excited emitter state
|e, e, vac〉. Figure 10 shows the decomposition of the state
|e, e, vac〉 into the energy eigenstates φE of Ĥ for U/J = −1
and two different separations, namely, x/a = 0 (top row) and
x/a = 10 (bottom row). Two different detunings are consid-
ered: δ/J = 0.0431 (left column) and δ/J = 0.0011 (right
column). As discussed in Sec. II E, the Markov approxima-
tion provides a good description of the radiation dynamics
for δ/J = 0.0431 but breaks down for δ/J = 0.0011. For
the larger detuning, the initial state is dominated by a few
eigenstates the energy of which is close to those correspond-
ing to K (∗). The applicability of the Markov approximation
relies on the fact that the overlap coefficients peak around one
energy value and fall off quickly away from this energy. We
emphasize that the overall behavior of the overlap coefficients
for x/a = 0 [Fig. 10(a)] and x/a = 10 [Fig. 10(b)] is similar.
Note, however, that the scale of the energy axis and the num-
ber of eigenstates that contribute are significantly smaller for
x/a = 10 than for x/a = 0.

As the detuning decreases to small positive values, where
the two-emitter energy is very close to the bottom of the
energy band, the decomposition of the initial state into the en-
ergy eigenstates changes significantly. For x/a = 0, the initial
state is dominated by a single state [red square in Fig. 10(c)]
the energy of which is separated from the energy continuum
(round circles). Altogether, the states corresponding to the en-
ergy continuum contribute 34.5%. For x/a = 10, in contrast,
there are two energy eigenstates that contribute appreciably
[84.6 and 12.0%; see red squares in Fig. 10(d)]. The eigen-
states corresponding to the red squares in Figs. 10(c) and 10(d)
are quite well described by the two-state model Hamiltonian
Ĥ2-st., Eq. (45).
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FIG. 11. Radiation dynamics for the initial state |e, e, vac〉, U/J = −1, and g/J = 1/50. The lines show the population Pee(t ) for various
x/a and δ/J . The value of x/a increases from the top row to the bottom row (x/a = 0, 5, and 10 for the first, second, and third row, respectively).
The value of δ/J decreases from the leftmost to the rightmost column (δ/J = 0.0431, 0.0011, and 0.0001 for the first, second, and third
column, respectively). In all panels, the solid, dotted, and dashed lines show Pee(t ) obtained by propagating the initial state |e, e, vac〉 under the
Hamiltonian Ĥ , Ĥ adia,1, and Ĥ adia,0, respectively. The data shown in panels (a)–(f) are also shown in Ref. [32].

Figure 11 shows the time evolution of the population Pee(t )
of state |e, e, vac〉 for U/J = −1. For δ/J = 0.0431 (left
column), Pee(t ) falls off roughly exponentially. The decay
is faster for x/a = 0 [Fig. 11(a)] than for x/a = 5 and 10
[Figs. 11(b) and 11(c)]. For this large δ/J , the Markov ap-
proximation works well and the agreement between the results
for Ĥ (solid lines), Ĥ adia,1 (dotted lines), and Ĥ adia,0 (dashed
lines) is quite good. For x/a = 0, 5, and 10, the population of
the single-photon states (i.e., the sum of

∑
j=1,2

∑
k |c jk|2) is

approximately equal to 1.8, 2.0, and 4.0%, respectively. The
comparatively large population of the single-photon states for
x/a = 10 signals that the adiabatic elimination deteriorates
for large x/a. The inset of Fig. 11(c) shows that the radia-
tion emitted by the first and second emitters are uncorrelated
initially. We find that the oscillations displayed by the black
solid line are well reproduced by the single-emitter dynamics,
i.e., by treating the two emitters as independent quantities
(effectively, this corresponds to setting U = 0).

For small δ/J , the dynamics changes significantly. The
middle and rightmost columns of Fig. 11 correspond to δ/J =
0.0011 and 0.0001, respectively. For these two detunings, the
population Pee(t ) does not change exponentially but instead
exhibits damped or essentially undamped oscillatory behav-
iors for x/a = 0, 5, and 10. For all six parameter combinations
[Figs. 11(d)–(i)], the adiabatic elimination Hamiltonian Ĥ adia,1

(red dotted lines), which accounts for the effective interactions
GK,K ′ (n1, n2), reproduces the key features of the dynamics
of the full Hamiltonian Ĥ (black solid line)—such as the
amplitude, frequency, and degree of damping—faithfully. The

adiabatic elimination Hamiltonian Ĥ adia,0 (blue dashed lines),
in contrast, provides a comparatively poor description of the
oscillatory dynamics [Figs. 11(d)–(i)]. The comparison shows
that appearance of essentially undamped oscillations depends
critically on the effective interactions GK,K ′ (n1, n2); recall,
these are not included in Ĥ adia,0. The inset of Fig. 11(i) il-
lustrates, as for the larger detuning, that the elimination of the
single-photon states from the Hilbert space does remove fast
oscillations and fails to capture the initial decay of Pee(t ) that
is due to uncorrelated decay of single photons.

Figure 12 shows the populations |cK,b(t )|2 of the two-
photon states |g, g, K〉 as functions of Jt/h̄ and Ka/π for
δ/J = 0.0431 (top row) and δ/J = 0.0011 (bottom row). The
behavior for large and small detunings is distinct. For δ/J =
0.0431, a few Ka/π values—centered around K (∗)a/π—get
populated as time increases for x/a = 0 [Fig. 12(a)] and
x/a = 10 [Fig. 12(c)]. The excitations, which exist initially
in the form of matter, get transferred to the photons. Since
the decay involves multiple states, the radiation emitted is
incoherent. For δ/J = 0.0011, the populations |cK,b(t )|2 with
K ≈ 0 oscillate in time for x/a = 0 [Fig. 12(b)] and x/a = 10
[Fig. 12(d)]. As expected, the oscillation frequencies are the
same as those displayed in Figs. 11(d) and 11(f).

The undamped Rabi oscillations displayed in Fig. 11 are
readily explained by the fact that the Hamiltonian Ĥ sup-
ports two bound states for sufficiently large x/a. The initial
state can, to a good approximation be written as a superpo-
sition of the symmetric and antisymmetric hybridized energy
eigenstates �+ and �−. As a function of time, population is

063501-12



TWO EMITTERS COUPLED TO A BATH WITH KERR-LIKE … PHYSICAL REVIEW A 105, 063501 (2022)

FIG. 12. Contour plot of the populations |cK,b(t )|2 of the two-
photon bound states |g, g, K〉 as functions of the dimensionless
center-of-mass wave number Ka/π and the dimensionless time Jt/h̄
for U/J = −1 and g/J = 1/50. (a) δ/J = 0.0431 and x/a = 0.
(b) δ/J = 0.0011 and x/a = 0. (c) δ/J = 0.0431 and x/a = 10.
(d) δ/J = 0.0011 and x/a = 10. The color scheme and range of the
vertical axis are adjusted in each panel for ease of viewing.

transferred between the two bound energy eigenstates, with
the angular oscillation frequency being equal to (E− − E+)/h̄.

To explain the damping, we decompose the initial state
|e, e, vac〉 into the energy eigenstates φE of Ĥ . For this cal-
culation, we divide the energy eigenstates into two groups:
the state φ0 with energy E0 (lowest-energy eigenstate) and
the states {φ j} with energy Ej ( j = 1, 2, . . .; all other states).
The latter group of states includes the scattering states and
the hybridized state �−, the energy of which is either just
below or immersed into the scattering continuum. Using this
grouping, we find

|cee(t )|2 ≈ (P0)2 + 2P0

∑
j>0

Pj cos

[
(E0 − Ej )t

h̄

]
, (51)

where the time-independent probabilities Pj are given by

Pj = |〈e, e, vac|φ j〉|2 (52)

(the Pj are positive). In writing Eq. (51), we dropped the term
C(t ),

C(t ) =
∑

j>0, j′>0

PjPj′ cos

[
(Ej − Ej′ )t

h̄

]
, (53)

on the right-hand side; we find numerically that the term C(t )
contributes negligibly to |cee(t )|2. The damping of the Rabi
oscillations is thus due to the energy spread of the energy
states φ j ( j > 0) with nonvanishing Pj . We refer to this as
dephasing.

If we replace the energies Ej with j > 0 in Eq. (51) by E−,
we find

|cee(t )|2 ≈ (P0)2 + 2P0(1 − P0) cos

[
(E0 − E−)t

h̄

]
. (54)

The fractional population [52], i.e., the large t limit of
|cee(t )|2, is to a very good approximation given by (P0)2.
Equation (54) describes undamped Rabi oscillations, which
reproduce the short-time amplitude and oscillation frequency
very well (see Fig. 13). The damping, which is due—as
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FIG. 13. Population Pee(t ) = |cee(t )|2 as a function of time for
U/J = −1, g/J = 1/50, δ/J = 0.0011, and x/a = 5. The black
solid line shows Pee(t ) obtained by propagating the initial state
|e, e, vac〉 under the Hamiltonian Ĥ . The red dashed and blue
dash-dotted lines show Pee(t ) obtained using Eqs. (51) and (54),
respectively.

already pointed out above—to the energy spread of the Ej

with j > 1, is not captured by Eq. (54). Alternatively, the
damping can be explained by using that the hybridized state
�−, supported by Ĥ and Ĥ adia,1, is for small x/a immersed
in the scattering continuum. As such, its energy acquires an
imaginary part, which provides a finite lifetime or damping
coefficient.

V. CONCLUSION

This paper discussed the dynamics of two emitters coupled
to a waveguide with Kerr-like nonlinearity. Our interest was
in the regime where the two emitters are in resonance with
the two-photon bound state supported by the one-dimensional
waveguide. Even though the emitters are not interacting with
each other, correlated dynamics is introduced through the
coupling of the emitters to the waveguide. The induced cor-
relations occur on length scales that are comparable to the
size of the two-photon bound state. Somewhat surprisingly,
a regime where the excitations are transferred back and forth
between the emitter and photonic degrees of freedom is ob-
served. The essentially undamped Rabi oscillations are due
to the emergence of two hybridized bound states the energies
of which lie in the band gap. This behavior is unique to the
two-emitter system: the single-emitter system does not display
an analogous behavior.

Throughout, we worked in the weak-coupling regime;
specifically, the figures all use a coupling strength of g/J =
1/50. In the Markovian regime [scenario A; see Fig. 2(b)],
the coupling constant enters as a multiplicative factor, i.e., the
decay constant �bath is directly proportional to (g/J )4 [see
Eq. (31)]. This regime had previously been investigated in
Ref. [31]. For resonance wave vectors K (∗) near the bottom of
the band [scenarios B and C; see Fig. 2(b)], the g dependence
is more intricate. Within the two-state Hamiltonian Ĥ2-st., the
coupling constant enters through �e, Epol, and Geff(n1, n2): �e

is directly proportional to −(g/J )2, Epol contains a term that
is proportional to −(g/J )4, and Geff(n1, n2) is directly pro-
portional to (g/J )3. Because of this nontrivial g dependence,
the energies of the hybridized eigenstates and, correspond-
ingly, the Rabi oscillation frequency vary notably with g/J .
In addition, the regime where the two-state Hamiltonian
Ĥ2-st. provides a reliable description depends on g/J . For g/J
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values that are smaller than the value considered in this paper,
the observation of Rabi oscillations requires smaller detuning
δ/J . Conversely, a larger g/J allows for the observation of
Rabi oscillations for larger δ/J . It is an open question how
large g/J can be before counter-rotating terms, which are not
included in Ĥ , play a non-negligible role. We are not aware of
any previous work on cavity arrays with Kerr-like nonlinearity
coupled to two-level emitters that looked at parameter combi-
nations corresponding to scenarios B and C. As shown in this
paper, these scenarios give rise to qualitatively new behaviors
that are inaccessible in the absence of the nonlinearity and in
cavity array–single-emitter systems.

Our treatment neglects, as already pointed out in the last
paragraph of Sec. II A, single-photon losses. If the single-
photon loss rate is denoted by κ , the exponential decay for
the initial state |e, vac〉 is characterized by �1, where �1 =
κg2/[4J1/2(h̄ωc − 2J − h̄ωe)3/2] [16]. For the dynamics to be
dominated by correlated two-photon processes, we must thus
require �1 � �bath or, dropping all factors that are (roughly)
of order 1, h̄κ/J � (g/J )2. Reference [31] argues that this
regime can be reached with nonlinear photonic lattices or
superconducting qubits coupled to an array of microwave
resonators. Recent experimental work on two transmon qubits
coupled to a superconducting microwave photonic crystal,
e.g., demonstrated tunable on-site and interbound-state inter-
actions [53].

The results presented open the door for several follow-
up investigations. Continuing to work in the two-excitation
subspace, it would be interesting to consider an emitter array
coupled to the nonlinear waveguide. Intriguing hopping dy-
namics of the radiation might be observed when the radiation
is initially localized in two of the emitters. In addition, it might
be interesting to investigate the dependence of the dynamics
on the initial state. For example, it might be interesting to
compare the dynamics for initial states that can be written as
product states to that for entangled superposition states.
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APPENDIX A: SINGLE-EMITTER DYNAMICS

Section IV uses the dynamics of a single emitter coupled to
cavity n as a reference. This Appendix summarizes the single-
emitter results. Note that the results are independent of n since
the emitter position does not matter.

We expand the time-dependent wave packet as [52,54]

|ψ (t )〉 = exp(−ıωet )

[
de(t )|e, vac〉 +

∑
k

dk (t )â†
k |g, vac〉

]
,

(A1)

where de(t ) and dk (t ) are expansion coefficients. Starting at
time t = 0 in the state |e, vac〉 [i.e., setting de(0) = 1 and

dk (0) = 0] and following the steps of Ref. [52], one finds

ḋe(t ) = −
∫ t

0
de(t − t ′)M(t ′)dt ′, (A2)

where

M(t ′) = g2

h̄2N

∑
k

exp

(
− ı�kt ′

h̄

)
. (A3)

The integral in Eq. (A2) can be evaluated analytically [54].
In what follows, we review results obtained within the

Markov approximation [52,54]. The presence of the bath
memory function M(t ′) in Eq. (A2) indicates that the dy-
namics is, in general, non-Markovian: the evolution of the
coefficient de(t ) depends on the past, i.e., the system’s state
at earlier times. If the bath memory time τbath is short, i.e., if∣∣∣∣ ḋe(t )

de(t )
τbath

∣∣∣∣ � 1, (A4)

the Markov approximation∫ t

0
M(t ′)de(t − t ′)dt ′ ≈ de(t )

∫ t

0
M(t ′)dt ′ (A5)

should be reliable. Using

Re

[
lim

t→∞

∫ t

0
exp

(
− ı�kt ′

h̄

)
dt ′

]
= π h̄δ(�k ) (A6)

and dropping the imaginary part, which introduces a negligi-
ble energy shift �single, Eq. (A2) can be rewritten as

ḋe(t ) = −�singlede(t ) (A7)

or

de(t ) = exp (−�singlet ), (A8)

where

�single = πg2

h̄N

∑
k

δ(�k ). (A9)

Equation (A7) describes the effect of the bath on the expan-
sion coefficient of the state |e, vac〉. The emitter-bath coupling
induces an exponential decay of the population, with a decay
rate 2�single, and an energy shift �single in the energy of the
state |e, vac〉.

To find an explicit expression for �single, we replace the
sum over k by an integral,

∑
k

(· · · ) = Na

2π

∫ π/a

−π/a
(· · · )dk, (A10)

and perform a change of variable:

dk = ∂k

∂Ek
dEk =

(
∂Ek

∂k

)−1

dEk . (A11)

Defining the density of states ρsingle(k) through

ρsingle(k) = J

(
∂Ek

∂k

)−1

(A12)
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and using Eqs. (A10)–(A12) in Eq. (A9), we find

�single = g2a

h̄J

∫ h̄ωc+2J

h̄ωc−2J
δ(Ek − h̄ωe)ρsingle(k)dEk . (A13)

Evaluating the integral yields Eq. (35) from the main text.

APPENDIX B: DETAILS ON ADIABATIC ELIMINATION

Equations (16)–(19) of the main text are equivalent to
the time-dependent Schrödinger equation within the two-
excitation subspace. After adiabatic elimination, the equa-
tions reduce to

ı h̄ċee(t ) = 2�ecee(t ) + g2

J
√

N

∑
K

FK,b(n1, n2)cK,b(t ) + g2

J
√

N

∑
K

∑
q

FK,q(n1, n2)cK,q(t ), (B1)

ı h̄ċK,b(t ) = �K,bcK,b(t ) + g2

J
√

N
F ∗

K,b(n1, n2)cee(t ) + g2

JN

∑
K ′,K

GK,K ′ (n1, n2)cK ′,b(t ) + g2

JN

∑
K ′

∑
q

HK,K ′,q(n1, n2)cK ′,q(t ), (B2)

and

ı h̄ċK,q(t ) = �K,qcK,q(t ) + g2

J
√

N
F ∗

K,q(n1, n2)cee(t ) + g2

JN

∑
K ′,K

∑
q′,q

[HK ′,K,q′ (n1, n2)]∗cK ′,b(t )

+ g2

JN

∑
K ′,K

∑
q′,q

JK,K ′,q,q′ (n1, n2)cK ′,q′ (t ), (B3)

where

FK,b(n1, n2) = −
∑

k

∑
α=1,2

J

N�k
exp(−ıkanβ(α) )[Mb(k, nα, K )]∗, (B4)

FK,q(n1, n2) = −
∑

k

∑
α=1,2

J

N�k
exp(−ıkanβ(α) )[Mq(k, nα, K )]∗, (B5)

GK,K ′ (n1, n2) = −
∑

k

∑
α=1,2

J

N�k
[Mb(k, nα, K )]∗Mb(k, nα, K ′), (B6)

HK,K ′,q(n1, n2) = −
∑

k

∑
α=1,2

J

N�k
[Mb(k, nα, K )]∗Mq(k, nα, K ′), (B7)

JK,K ′,q,q′ (n1, n2) = −
∑

k

∑
α=1,2

J

N�k
[Mq(k, nα, K )]∗Mq′ (k, nα, K ′), (B8)

and �e is given in Eq. (33) of the main text. The quantity
2�e can be interpreted as an effective Stark shift [31] that is
introduced by the single-photon states. Before the adiabatic
elimination, energies are measured relative to the energy 2h̄ωe

of the initial state. After the adiabatic elimination, the state
with two emitter excitations is “detuned with respect to itself.”
The Stark shift was set to zero in Ref. [31]. This approxima-
tion is justified when the resonance wave vector lies in the
middle of the band. Near the bottom of the band, however, the
quantity 2�e introduces a nonperturbative correction [32].

The quantity GK,K ′ (n1, n2) describes effective off-diagonal
couplings between two-photon bound states with center-
of-mass wave numbers K and K ′. Before the adiabatic
elimination, the right-hand side of the equation for ċK,b(t )
does not depend on cK ′,b(t ) for K ′ �= K . After the adiabatic
elimination, the right-hand side of the equation for ċK,b(t )
depends on cK ′,b(t ) for K ′ �= K .

The equations above simplify significantly if the contribu-
tions from the scattering states are dropped. The result is given
in Eqs. (26)–(29) of the main text. The next step is to go to a
rotating frame. Rewriting the coupled equations in terms of
c̃ee(t ) and c̃K,b(t ), where

c̃ee(t ) = exp (2ı�et/h̄)cee(t ) (B9)

and

c̃K,b(t ) = exp (ı�K,bt/h̄)cK,b(t ), (B10)

the diagonal terms vanish:

ı h̄ ˙̃cee(t ) = g2

J
√

N

∑
K

FK,b(n1, n2) exp

(
− ı�̃K,bt

h̄

)
c̃K,b(t )

(B11)

and

ı h̄ ˙̃cK,b(t ) = g2

J
√

N
[FK,b(n1, n2)]∗ exp

(
ı�̃K,bt

h̄

)
c̃ee(t ) (B12)

with

�̃K,b = �K,b − 2�e. (B13)

We now specialize to the initial state |e, e, vac〉. Integrating
Eq. (B12) and using the result in Eq. (B11), we obtain an equa-
tion for the coefficient c̃ee(t ) that is independent of c̃K,b(t ):

˙̃cee(t ) = −
∫ t

0
M(t ′, n1, n2)c̃ee(t − t ′)dt ′, (B14)
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where the bath memory function M(t ′, n1, n2) reads

M(t ′, n1, n2) = g4

h̄2J2N

∑
K

|FK,b(n1, n2)|2 exp

(
− ı�̃K,bt ′

h̄

)
.

(B15)

Following the same steps as in Appendix A and defining
the density of states ρ(K ) through

ρ(K ) = J

(
∂�K,b

∂K

)−1

, (B16)

we find Eq. (31) of the main text.
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