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Unitary Fermi superfluid near the critical temperature:
Thermodynamics and sound modes from elementary excitations
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We compare recent experimental results [Science 375, 528 (2022)] of the superfluid unitary Fermi gas near
the critical temperature with a thermodynamic model based on the elementary excitations of the system. We
find good agreement between experimental data and our theory for several quantities such as first sound, second
sound, and superfluid fraction. We also show that mode mixing between first and second sound occurs. Finally,
we characterize the response amplitude to a density perturbation: Close to the critical temperature both first and
second sound can be excited through a density perturbation, whereas at lower temperatures only the first sound
mode exhibits a significant response.
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I. INTRODUCTION

The unitary Fermi gas, i.e., a gas of resonantly interacting
fermions in the limit for which the scattering length diverges,
constitutes a fundamental model in many-body physics [1,2],
and it has been the subject of a great deal of theoretical
[3–6] and experimental investigations [7–12]. It is a unify-
ing paradigm, of remarkable importance for several different
subfields of physics, from ultracold quantum gases, nuclear
matter, up to high-energy physics. Indeed, the unitary Fermi
gases is the nonrelativistic setup which appears to be closer to
the perfect fluidity as conjectured by string-theoretical argu-
ments [13,14], i.e., a fluid saturating the lower bound on the
shear viscosity-entropy ratio [15].

The scale invariance of the system means that, as the scat-
tering length diverges, the only energy scale in the system at
T = 0 is the Fermi energy TF and that all thermodynamic
and transport quantities can be expressed as universal func-
tions, depending on T/TF only. As a consequence, the unitary
Fermi gas has emerged as a standard test bed for several
different many-body theoretical approaches [6]. A remarkable
possibility for studying the unitary Fermi gas comes from
ultracold fermions in the vicinity of a Feshbach resonance:
As an external magnetic field is tuned across the resonance,
the fermion-fermion interaction can assume all values from
weakly to strongly attractive—in a scenario known as the
BCS-BEC crossover. As a consequence, the system varies
with continuity from the BCS limit where fermions form
large Cooper pairs over a definite Fermi surface, to the BEC
limit where fermions form tightly bound bosonic molecules.
Critically, the unitary Fermi gas is to be found between these
two limits, so that its superfluid transition does not simply
correspond to the usual BCS or BEC paradigms, rather being
due to a delicate interplay between the two [2].

Through the years, it has been shown that this interplay
can be described within a thermodynamic approach [16–22]
including temperature-independent single-particle and collec-
tive elementary excitations of the unitary Fermi gas. Such an
approach describes with great precision a number of features,
with favorable comparisons with experimental data [18–20].
Moreover, it has been demonstrated that this approach, origi-
nally proposed by Landau on phenomenological grounds [23],
can be justified via beyond-mean-field treatments of a Fermi
gas, such as the Nozières-Schmitt-Rink (NSR) [24] and the
Gaussian pair-fluctuation approach (GPF) [25–28], in which
a systematic treatment of the order parameter and its fluctua-
tions leads to a rigorous ab initio theory with essentially the
same physical content: BCS-like single-particle excitations
and collective excitations with a Bogoliubov-like dispersion.
It is also important to note that it has been recently pointed
out that beyond-GPF corrections are quite small in the broken
symmetry phase [29,30].

In such a complex scenario, it is fundamental to identify
a diagnostic tool allowing for a comparison between theory
and experiment. From this perspective, sound propagation is
certainly a promising candidate for a variety of reasons. On
a conceptual standpoint it can be derived on a hydrodynamic
basis by connecting thermodynamic and transport quantities
within the framework of Landau two-fluid theory [23,31],
with no need—in principle—to refer to the particular features
of the microscopic constituents. From an experimental per-
spective, it has been recently shown that both modes predicted
by the above-mentioned Landau theory can be excited by
a density-perturbing protocol driven by external laser fields
[32].

Along this path, the most recent experimental break-
throughs concerning the unitary Fermi gas [11,12] allowed for
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the measurement of many properties at an unprecedented level
of precision, providing very stringent benchmarks for the the-
oretical models. The present paper demonstrates that a ther-
modynamic theory accounting for temperature-independent
elementary single-particle and collective excitation is able to
reproduce with excellent precision the most recent measure-
ments on the sound velocity. In particular, for first sound,
second sound, and superfluid fraction we find very good
agreement between experimental data [12] and our theory,
taking into account the mode mixing between first and second
sound. We also prove that around the critical temperature
both the first and second sound modes may be detected with
a density perturbation, but only the first sound mode has a
significant density response at very low temperatures.

II. DESCRIBING THE UNITARY FERMI GAS
FROM ELEMENTARY EXCITATIONS

Following an approach pioneered by Landau [23], we
describe the low-temperature thermodynamics of a uniform
unitary Fermi gas, consisting of N particles contained in a
volume V = L3, in the superfluid phase, by means of its
temperature-independent single-particle BCS-like excitations
and collective Bogoliubov-like excitations. Within this frame-
work, an effective Hamiltonian describing the system can be
written down [18] as

Ĥ = 3

5
ξεF N +

∑
σ=↑,↓

∑
p

εsp(p)ĉ†
pσ ĉpσ +

∑
q

ωcol(q) b̂†
qb̂q,

(1)

where the ĉ†
pσ (ĉpσ ) operator creates (annihilates) a single-

particle excitation, respectively, with linear momentum p, spin
σ , and energy εsp(p), whereas the b̂†

p (b̂p) operator creates
(annihilates) a bosonic collective excitation, respectively, of
linear momentum q and energy ωcol(q).

The first term of Eq. (1) represents the ground-state en-
ergy of the uniform unitary Fermi gas [33,34], ξ being
the celebrated Bertsch parameter ξ � 0.38 [35] having also
introduced the Fermi energy εF = h̄2(3π2n)2/3/(2m) of a
noninteracting Fermi gas of density n = N/V .

The second and third terms represent the contribution from
off-condensate fermionic single-particle excitations and col-
lective modes, respectively. Of course these terms do not have
any use until the dispersions of the temperature-independent
elementary excitations are specified. In Refs. [36,37] the dis-
persion relation of collective elementary excitations has been
derived as

ωcol(q) =
√

q2

2m

(
2mc2

B + λ

2m
q2

)
, (2)

where cB = √
ξ/3 vF is the Bogoliubov sound velocity with

vF = √
2εF /m the Fermi velocity of a noninteracting Fermi

gas. Here, se set λ = 0.02, by fitting the spectrum of bosonic
collective modes obtained from the GPF theory [20] (see
Refs. [25,28,38] for an exhaustive review on the basics of this
approach).

However, the collective modes correctly describe only
the low-energy density oscillations of the system; at higher
energies one expects the appearance of fermionic single-

particle excitations starting from the threshold above which
Cooper pairs break down [16,17,33,39,40]. The dispersion
of these temperature-independent single-particle elementary
excitations can be written as

εsp(p) =
√(

p2

2m
− ζ εF

)2

+ 	2
0, (3)

where ζ is a parameter taking into account the interaction
between fermions and the reconstruction of the Fermi sur-
face close to the critical temperature (ζ � 0.9 according to
accurate Monte Carlo results [40]). Moreover, 	0 is the gap
parameter, with 2	0 the minimal energy to break a Cooper
pair [33]. Notice that the gap energy 	0 of the unitary Fermi
gas at zero temperature has been calculated with Monte Carlo
simulations [40–43] and found to be 	0 = γ εF , with γ �
0.45. Let us also notice that, while 	 certainly has a tem-
perature dependence, the inclusion of a phenomenological
thermal profile (as proposed, for instance, in Ref. [44]) in
our framework does not produce any significant change in the
sound velocities and the superfluid fraction.

III. UNIVERSAL THERMODYNAMICS AT UNITARITY

The Helmholtz free energy F of the system is given by
the usual formula F = −kBT lnZ , where we introduced the
partition function Z of the system [45], defined as

Z = Tr[e−Ĥ/kBT ]. (4)

Similarly to Eq. (1), the free energy of the unitary Fermi gas
can be written as F = F0 + Fcol + Fsp, where F0 is the free
energy of the ground state,

Fsp = − 2

β

∑
k

ln[1 + e−βEk ] (5)

is the free energy of fermionic single-particle excitations, and
finally

Fcol = − 1

β

∑
q

ln[1 − e−βωq ] (6)

is the free energy of the bosonic collective excitations.
As discussed in detail in Ref. [18], the total Helmholtz free

energy F of a unitary Fermi gas in the superfluid phase can be
then written as

F = NεF �(x), (7)

where, due to the scale invariance of the system, �(x) is
a function of the scaled temperature x ≡ T/TF only, having
defined the Fermi temperature TF = εF /kB. Explicitly, �(x)
takes the following form,

�(x) = 3

5
ξ − 3x

∫ +∞

0
ln [1 + e−ε̃sp(u)/x]u2du

+ 3

2
x
∫ +∞

0
ln [1 − e−ω̃col (u)/x]u2du. (8)

Note that the discrete summations have been replaced by
integrals, and that we set ω̃col(u) =

√
u2(4ξ/3 + λu2) and

ε̃sp(u) =
√

(u2 − ζ )2 + γ 2.
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We now aim at calculating the thermodynamics of the sys-
tem in terms of the universal function �(x) and its derivatives.
We start from the entropy S, which is readily calculated from
the free energy F through the relation

S = −
(

∂F

∂T

)
N,V

, (9)

from which we immediately get

S = −NkB�′(x), (10)

where �′(x) is the first derivative of � with respect to x. Fur-
thermore, the internal energy E = F + T S, can immediately
be rewritten as

E = NεF [�(x) − x �′(x)] (11)

and, similarly, the pressure P is related to the free energy F
by the simple relation

P = −
(

∂F

∂V

)
N,T

, (12)

which we now rewrite in terms of �(x) and its derivatives as

P = 2
3 nεF [�(x) − x�′(x)]. (13)

As a consistency check of our simple analytical model, let us
underline that, by combining Eqs. (11) and (13) one can eas-
ily recover the well-known relation PV = (2/3)E for unitary
fermions [7].

IV. SUPERFLUID FRACTION AND
CRITICAL TEMPERATURE

According to Landau’s two-fluid theory [23,31], the total
number density n of a system in the superfluid phase can be
written as

n = ns + nn, (14)

where ns is the superfluid density and nn is the normal density
[23]. Naturally, at zero temperature the whole system is in
the superfluid phase, and one has nn = 0 and n = ns. As
the temperatures increases, the normal density nn increases
as well, until at the critical temperature Tc one has nn = n
and, correspondingly, ns = 0. Within our scheme, the normal
density of a unitary gas is given the sum of two contributions

nn = nn,sp + nn,sp, (15)

i.e., a contribution nn,sp from to the single-particle excitations
and a contribution nn,col from collective excitations. We note
that in the BCS limit of the BCS-BEC crossover one expects
nn,sp to be the dominating contribution, whereas in the BEC
limit nn,col should account for most of the normal density.
In the present unitary case, however, we expect both single-
particle and collective excitations to be relevant.

Furthermore, Landau linked the normal densities to
their statistic and their energy spectrum (see, for instance,
Ref. [46]), so that in the present case the single-particle con-
tribution to the normal density reads

nn,sp = 2β

3V

∑
k

k2

m

eβεsp(k)

(eβεsp(k) + 1)2
, (16)

whereas, concerning the contribution from the collective
modes,

nn,col = β

3V

∑
q

q2

m

eβωcol (q)

(eβωcol (q) − 1)2
. (17)

It is then easy to derive the superfluid fraction

ns

n
= 1 − �(x), (18)

where the universal function �(x) is again a function of the
scaled temperature x ≡ T/TF only, explicitly given by

�(x) = 2

x

∫ +∞

0

eε̃sp(η)/x

(eε̃sp(η)/x + 1)2
η4dη

+ 1

x

∫ +∞

0

eω̃col (η)/x

(eω̃col (η)/x − 1)2
η4dη, (19)

where we have converted sums to integrals. Finally, we stress
that in the present model, the superfluid density defines the
critical temperature Tc via the condition ns = 0, and with our
choice of parameters for the temperature-independent elemen-
tary excitation dispersions we find Tc ≈ 0.23TF . It must be
pointed out that, while this estimation of the critical tem-
perature agrees with more refined approaches, such as the
functional GPF theory [25,28] or the NSR scheme [24], it
actually differs from the most recent experimental results,
placing it at Tc/TF � 0.17 [12]. This shortcoming, shared
among a range of different formalisms, is due to the fact the
induced interaction is not taken into account [47] according to
the so-called Gorkov-Melik-Barkhudarov theory [48], which
has been shown to provide the dominant contribution on the
BCS side and a relevant correction at unitarity. The slight
overestimation of our theoretical critical temperature with
respect to the experimental one of Ref. [12] does not appear
plotting the physical quantities vs T/Tc.

In the left panel of Fig. 1, we report the theoretically
derived superfluid fraction ns/n as a function of the di-
mensionless temperature T/Tc (red dashed line), compared
with experimental data [12] for the unitary Fermi gas (blue
dots), showing remarkable agreement; as a reference, we also
plot the critical-exponent behavior observed in superfluid He
(black dashed line).

V. FIRST SOUND, SECOND SOUND, AND SOUND MIXING

According to Landau [31,49] a local perturbation excites
two wavelike modes—the first and the second sound—which
propagate with velocities u1 and u2. These velocities are de-
termined by the positive solutions of the algebraic biquadratic
equation (see also Ref. [50])

u4 − (
c2

10 + c2
20

)
u2 + c2

T c2
20 = 0, (20)

where

c10 =
√

1

m

(
∂P

∂n

)
S̄,V

= vF

√
5

9
�(x) − 5

9

T

TF
�′(x) (21)
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FIG. 1. Comparison between theory and experimental data in Ref. [12,51] as a function of the dimensionless temperature T/Tc. Left panel:
Superfluid fraction ns/n. Middle panel: Adimensional first velocity u1/vF . Right panel: Adimensional second sound velocity u2/vF . In the
central and right panels, we report the sound velocities computed in absence of mixing, i.e. under the assumption that c10 ≈ cT . From the left
panel, we infer that, contrary to the 4He picture [23,55], the equality between isothermal and adiabatic compressibilities reads a much worse
agreement with the experimental data, as evident from the behavior of the second sound u2 (right panel).

is the adiabatic sound velocity with S̄ = S/N the entropy per
particle,

c20 =
√√√√ 1

m

S̄2(
∂ S̄
∂T

)
N,V

ns

nn
= vF

√
−1

2

�′(x)2

�′′(x)

1 − �(x)

�(x)
(22)

is the entropic sound velocity, and

cT =
√

1

m

(
∂P

∂n

)
T,V

= vF

√
5

9

(
�(x) − T

TF
�′(x)

)
+ 2

9
x2�′′(x) (23)

is the isothermal sound velocity. It is immediate to find that
for T → 0 one has

c10 → cB = vF

√
ξ/3, (24)

c20 → cB/
√

3 = vF

√
ξ/3, (25)

cT → cB = vF

√
ξ/3. (26)

The first sound u1 is the largest of the two positive roots of
Eq. (20) while the second sound u2 is the smallest positive
one. Thus

u1,2 =

√√√√c2
10 + c2

20

2
±

√(
c2

10 + c2
20

2

)2

− c2
20c2

T . (27)

We now compare our theory with the experimental data
for the sound velocities from Ref. [12,51]. In particular, in
the middle panel of Fig. 1 we plot the theoretically calculated
dimensionless first sound velocity u1/vF as a function of the
dimensionless temperature T/Tc (red dashed line), comparing
it with the experimental data [12,51] (blue dots) showing quite
good agreement with our theory. In the same panel we also
plot the first sound calculated neglecting mode mixing, i.e.,
under the assumption that cT ≈ c10 (black thin dashed-dotted
line). In the right panel of Fig. 1 we plot the theoretically de-
rived dimensionless second sound velocity u2/vF (red dashed

line), compared with experimental data [12,51] for the second
sound velocity u2/vF (blue dots). In the same panel we also
plot the dimensionless second sound u2/vF calculated ne-
glecting mode mixing (black thin dashed-dotted line). As far
as the second sound is concerned, our theory shows remark-
able agreement with experimental data [12,51]. Importantly,
this implies there is mixing between the first and second sound
modes, and that for the unitary Fermi gas it is wrong to
assume an approximate equality of adiabatic and isothermal
compressibilities.

Concluding this section, we stress that the Einstein-like
relation

E

N
= 10

9
mc2

10 (28)

derived in Ref. [11] is automatically verified within our uni-
versal thermodynamic formalism, that naturally includes the
scale invariance of the unitary Fermi gas.

VI. RESPONSE TO A DENSITY PERTURBATION

In general, the knowledge of the first and second sound
velocities may not be sufficient to provide a reliable charac-
terization of the experimentally observed modes. First of all,
we stress that the situation is radically different from what
is observed in superfluid 4He, where the response in density
and temperature is decoupled and first sound corresponds to a
standard density waves (in-phase oscillations of the superfluid
and normal components), and the second sound is understood
as an entropy wave [23,52]. The technical reason has to be
traced back to the isothermal and adiabatic compressibilities
being approximately equal such that c10 ≈ cT [cf. Eqs. (21)
and (23)]. However, this assumption does not hold for a
generic quantum fluid, so that, in principle, even a simple
density-perturbing protocol may excite both modes. This is
exactly the case for ultracold bosons, for which, in two spatial
dimensions, second sound acts as a reliable diagnostic tool
for the onset of the Berezinskii-Kosterlitz-Thouless (BKT)
transition [53]. Moving to Fermi gases, the situation across
the BCS-BEC crossover is significantly more involved [32]:
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FIG. 2. Main panel: Contribution from the first (dashed red line)
and second sound (solid blue line) to the amplitude of a density
response, as given by Eqs. (30) and (31), as a function of the scaled
temperature T/Tc. Inset: Adiabatic and entropic sound velocities c10

and cT , respectively [cf. Eqs. (21) and (23)], as functions of the scaled
temperature. The no-mixing condition c10 ≈ cT (see main text) is ful-
filled for T/Tc � 0.4, exactly where W2 becomes vanishingly small.

While the experimental setups are certainly not comparable
to helium, there have been cases where a density-perturbing
protocol excited just a single mode [50,54].

Therefore, besides the values of u1 and u2 in Eq. (27),
in order to provide a more complete characterization of the
experimental picture, we also have to consider the amplitudes
modes W1 and W2 of the response to a density perturbation
[32,50,55], i.e.,

δρ(x, t ) = W1δρ1(x ± u1t ) + W2δρ2(x ± u2t ), (29)

where

W1

W1 + W2
=

(
u2

1 − c2
20

)
u2

2(
u2

1 − u2
2

)
c2

20

(30)

and

W2

W1 + W2
=

(
c2

20 − u2
2

)
u2

1(
u2

1 − u2
2

)
c2

20

. (31)

In Fig. 2 we report the behavior of the relative amplitude
contributions as a function of the temperature. Remarkably,
we observe that in the ultralow-T regime a density probe

actually excites only the first sound, since the amplitude of
the u2 mode vanishes as T → 0. It is important to notice that,
under the no-mixing condition c10 ≈ cT , Eqs. (30) and (31)
read W1 = 1 and W2 = 0. Thus, this implies that mode mixing
is extremely reduced deeply below the critical temperature,
as confirmed by the inset in Fig. 2, showing the no-mixing
condition fulfilled at T � 0.4 Tc. Moving closer to the transi-
tion, our theoretical model predicts that the balance between
W1 and W2 should tip over around T/Tc � 0.8, where the
second sound mode becomes the dominant one. This means
that, while in principle a density perturbation can excite both
modes, at T → 0 (i.e., deeply into the superfluid regime), the
amplitude corresponding to u2 is vanishingly small and actu-
ally undetectable. The situation is overturned moving closer
to the critical temperature, where the superfluid susceptibility
is much higher and both modes can be simultaneously excited
with comparable amplitudes.

VII. CONCLUSIONS

In this paper we have shown that a simple description in
terms of temperature-independent elementary excitations is
able to reproduce many properties of the unitary Fermi gas:
In particular we have reproduced the recently measured su-
perfluid fraction near the critical point [12] and, after properly
accounting for mixing between sounds modes, also the first
and second sound velocities. We have found that, contrary to
liquid helium, near the critical temperature the first and second
sound of the the unitary Fermi gas cannot be interpreted as a
pure pressure-density wave and a pure entropy-temperature
wave, respectively. We have also analyzed the density re-
sponse to an external perturbation, our investigation showing
that at very low temperatures the mixing of pressure-density
and entropy-temperature oscillations is absent, whereas ap-
proaching Tc a density probe will excite both sounds. Finally,
we stress that Ref. [12] reports a measurement of the sound
diffusion from which they derive the viscosity-entropy ratio.
Adopting the analysis developed in Refs. [19,56] our calcu-
lated viscosity-entropy ratio is about three times smaller than
the one of Ref. [12] but, however, in good agreement with
previous experimental determinations [57–60].
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