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Vortices in quantum droplets of heteronuclear Bose mixtures
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We have theoretically investigated the structure of spinning self-bound droplets made of a 41K - 87Rb Bose
mixture by solving the Gross-Pitaevskii equation including beyond-mean-field correction in the Lee-Huang-Yang
form. The structure and energetics of vortex formation in the self-bound mixture have been elucidated, showing
that the formation of linear vortices in the heavier species is energetically favored over other configurations.
A fake (partially filled) core develops as a consequence in the other species, resulting in a hole which might
be imaged in experiments. We computed the minimal size of 41K − 87Rb droplets which can host stable vortex
lines in their interior, which is important information for experiments aimed at the observation of vortices in such
systems. The different role of quantized vortices and capillary waves, which are the two ways angular momentum
can be stored in a swirling superfluid, is addressed in detail by computing the relation between angular
momentum and rotational frequency. The results show intriguing similarities with the case of a prototypical
superfluid, i.e., 4He droplets when set into rotation. A two-branches curve in the stability diagram, qualitatively
similar to the one expected for classical (incompressible and viscous) rotating liquid droplets, is obtained when
vortices are present in the droplets, while prolate (i.e., nonaxisymmetric) shapes are only permitted in vortex-free
droplets.
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I. INTRODUCTION

A new quantum state of matter has been predicted [1] and
shortly thereafter experimentally observed [2–5] in ultracold
atomic gases made of a binary mixture of Bose atoms, where
the competition between interspecies attractive interactions
and quantum fluctuations, which act as a repulsive interaction,
may result in the formation of self-bound, ultradilute liquid
droplets, with typical densities being about eight orders of
magnitude lower than those of the prototypical quantum fluid,
i.e., liquid helium, at room pressure. Self-bound quantum
liquid droplets have been predicted and observed in dipolar
Bose gases as well [6–9], with a similar stabilizing mecha-
nism.

Heteronuclear quantum droplets (QD) in a bosonic mixture
of 41K and 87Rb have been experimentally realized more re-
cently [4], and also in the 23Na - 87Rb mixture [5]. At variance
with the largely studied homonuclear 39K - 39K mixture of
K atoms in two different hyperfine states, the 41K and 87Rb
mixture is characterized by longer lifetimes, of the order
of several tens of milliseconds, i.e., more than a factor 10
larger than those characterizing the 39K mixtures [3]. The
longer lifetime is mainly a consequence of the smaller den-
sities of the two components that result from the stronger
intraspecies interactions. It follows that the regime of in-
teraction parameters for which self-bound droplets form is
such that three-body losses are expected to be significantly
reduced, at variance with the 39K - 39K mixture where much

stronger three-body losses continuously drive the system out
of equilibrium, eventually leading to the depletion of the
droplet. Longer lifetimes offer the possibility of investigating
the collective modes of the droplets, likely allowing the ob-
servation of droplet self-evaporation [10]. Moreover, this will
also favor the realization of larger droplets, characterized by
a flat-top density profile encompassing a “bulk” region with a
nearly constant saturation density and a surface region whose
width is determined by the surface tension [11]. The crossover
from compressible (i.e., smaller droplets characterized by an
“all-surface,” Gaussian-like profile) to incompressible (i.e.,
flat-top) quantum droplets, which is driven by the num-
ber of atoms, has been recently addressed experimentally in
39K - 39K droplet collision experiments [12] and studied with
numerical simulations [12,13]. However, a clean interpreta-
tion of the experimental results seems to be hampered by the
major role played in the 39K - 39K mixture by three-body loss
factor, which is necessary in order to explain the experimen-
tal data [12,13], but whose actual value is affected by large
uncertainties. For this reason, the 41K - 87Rb mixture appears
to be a better candidate for a clear determination of the
crossover.

Vortices are quantized topological excitations of superflu-
ids and have been extensively studied over the years both in
superfluid 4He [14,15] and in cold bosonic atoms [16–18].
Although they should also appear under suitable conditions in
quantum droplets, no experimental evidence of their existence
has been gathered so far. There exist, however, a number of
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theoretical papers addressing vorticity in quantum droplets
made of Bose-Bose mixtures, mainly for two-dimensional
systems, which are briefly reviewed in the following.

While vortices in quantum droplets made of dipolar con-
densates are found to be always unstable [19,20], in binary
Bose-Einstein condensates (BEC) described by the Gross-
Pitaevskii (GP) equation augmented by the beyond-mean-field
correction in the Lee-Huang-Yang (LHY) form, they are
found instead to be stable excitations when specific conditions
are fulfilled [21–23]. Ground-state and rotational properties of
two-dimensional self-bound quantum droplets made of a bi-
nary mixture of BECs are studied in Ref. [24]. Several phases
are found depending on the system parameters, including
center-of-mass excitation, ghost vortices, and vortices with
single and multiple quantizations. The metastability of clus-
ters made of quantum droplets is considered in Ref. [21] for
a binary BEC in two dimensions, leading to the formation of
ring-shaped clusters, possibly hosting “supervortices.” Angu-
lar momentum-carrying droplets made of species-symmetric
rotating binary BEC confined in two dimensions [25] are
found to be unstable in free space and decay into fragments.
When stabilized in a weak harmonic trap, and after switching
off the trap potential, the rotational ground state displays
an array of few metastable singly quantized vortices, with
significant distortions of the droplet shapes from the axisym-
metric configurations. The effects of vorticity on the breathing
modes of these droplets have been addressed in Ref. [26].
Two-dimensional droplets carrying vorticity are investigated
in Ref. [27], where axisymmetric QDs with heterosymmetric
and heteromultipole structures, i.e., with different vorticities
in each component and/or different multipolarities (singly or
doubly quantized) are studied. The stability of vortical QDs
was also studied in Refs. [23,28].

To our knowledge, only two theoretical papers address
vortical states in three-dimensional quantum droplets made
of Bose mixtures. In the first [29], droplets made of a two-
component superfluid Bose mixture under rotation are studied
and stationary states in the form of vortex rings with em-
bedded topological charges m1 = m2 = 1 and m1 = m2 = 2
of the two components are found for sizes larger than some
critical values. Droplets with hidden vorticity, i.e., with topo-
logical charges m1 = −m2 = 1 in the two components, are
found instead to be always unstable and split into fragments.
Equal scattering lengths a of the contact interactions in both
components are assumed in Ref. [29], as well as equal masses
for the two species.

In Ref. [30], whose focus is mainly on the thermodynamics
conditions that leads to the formation of self-bound states in
binary Bose mixtures, two examples of vortical configurations
in self-bound droplets are provided, i.e., a singly and a doubly
quantized vortex line in the center of a three-dimensional
droplet made of the heteronuclear 23Na - 87Rb bosonic mix-
ture and of the homonuclear 39K - 39K mixture as well. A
singly quantized vortex nucleated in both species is found to
be stable and robust against quadrupolar deformation, while
the doubly quantized vortex eventually decays into pairs of
singly quantized vortices. In both cases, the velocity field
associated to the angular momentum stored in the droplet
results in surface capillary waves that are responsible for the
droplet distortion into a prolate shape and in the apparent

rotation of the droplet as a whole. The results of Ref. [30]
represent a very preliminary and limited study of vorticity in
three-dimensional quantum droplets.

A more detailed study is presented here, where we address
the properties of spinning three-dimensional droplets made of
the 41K - 87Rb Bose mixture. We compute several properties
of vortices in such QDs and focus on the relations among
angular momentum, shape, and vorticity of quantum droplets.
We also compute the minimum size that a QD must have to
host a stable vortex in its interior. These properties have been
the subject of recent experimental and theoretical studies on
the prototype superfluid Bosonic system, where spinning 4He
nanodroplets have been investigated in a series of experiments
[31–37]. Given the similarities between quantum droplets
made of Bose mixtures and liquid 4He droplets, as clarified
in the following, we give here a brief account of recent the-
oretical and experimental studies on spinning superfluid 4He
nanodroplets.

We first recall here (the following discussion is partly taken
from Ref. [38]) that the macroscopic behavior of a superfluid
at zero temperature is described by the equations of irro-
tational hydrodynamics, from which the moment of inertia
along the z axis can be calculated as [17,39] �irr = ε2 �rig,
where

ε = 〈y2 − x2〉
〈y2 + x2〉 (1)

�rig = Nm〈x2 + y2〉 is the rigid-body moment of inertia,
N is the number of atoms in the droplet, and m is the atomic
mass, showing that in a superfluid the value of the moment
of inertia is smaller than the value for a rigid-body system. In
particular, the above relation shows that for axisymmetric (i.e.,
oblate) systems, where 〈x2〉 = 〈y2〉, the angular momentum
of the superfluid along the z axis vanishes, 〈L̂z〉 = �irr ω = 0,
for any value of the rotational frequency. Therefore, oblate
samples of a superfluid cannot spin, whereas prolate (non-
axisymmetric) configurations can, and the resulting angular
momentum Lcap = �irr ω is associated with the presence of
capillary waves (see, for instance, Ref. [40]). Quantized vortex
lines represent the other well-known mechanism with which
angular momentum can be stored in spinning superfluids. In
general, capillary waves and vortices may coexist in spinning
droplets, as shown by experiments and theory for the 4He case
[37,38]. In the experiments [31–37] where 4He liquid droplets
may acquire angular momentum during the passage of the
fluid through the nozzle of the molecular beam apparatus and
where they were able to reconstruct images of the rotating
4He droplets, oblate droplets were observed, which should
be forbidden on quantum mechanical grounds. Thus, the only
possible explanation for such experimental observation is that
these drops must contain quantized vortices which can store
most of the angular momentum of the droplet.

One striking outcome of these experiments was the finding
that spinning superfluid 4He droplets show unexpected simi-
larities with the behavior of classical incompressible viscous
droplets, only subject to surface tension and centrifugal forces
[41–44]. It is precisely the presence of vortices in the droplet
interior that confers on the spinning droplet the appearance
and the properties of a rotating, classical viscous droplet,
as also shown by density functional calculations [45,46]. A
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well-known example of this apparently classical behavior of a
rotating superfluid is the macroscopic meniscus that develops,
at the liquid-vapor interface, in a rotating bucket filled with
superfluid 4He above the critical angular velocity required for
vortex nucleation [14,47,48]. Similarities with the classical
behavior of rotating viscous droplets are also displayed, as
shown in the following, by rotating QDs.

II. METHOD

The Gross-Pitaevskii energy functional for a Bose-Bose
mixture, including the Lee-Huang-Yang correction account-
ing for quantum fluctuations beyond mean field, reads [1,30]

E =
2∑

i=1

∫
dr

[
h̄2

2mi
|∇ψi(r)|2 + Vi(r)ρi(r)

]

+ 1

2

2∑
i, j=1

gi j

∫
dr ρi(r)ρ j (r)

+
∫

dr ELHY(ρ1(r), ρ2(r)) (2)

where Vi(r) and ρi(r) = |ψi(r)|2 represent the external
potential and the (number) density of each component
(i = 1 for 41K, i = 2 for 87Rb). The coupling constants
are g11 = 4πa11h̄2/m1, g22 = 4πa22 h̄2/m2, and g12 = g21 =
2πa12h̄2/mr , where mr = m1m2/(m1 + m2) is the reduced
mass. The intraspecies s-wave scattering lengths a11 and a22

are both positive, while the interspecies one, a12, is negative.
The scattering parameters describing the intraspecies repul-
sion are fixed and their values are equal to a11 = 65 a0 [49]
and a22 = 100.4 a0 [50]. Notice that a slightly different value
for the K-K scattering length, a11 = 62 a0, has been used more
recently [10].

The total number of bosons is N = N1 + N2. The number
densities ρ1, ρ2 are normalized such that

∫
V ρ1(r) dr = N1

and
∫

V ρ2(r) dr = N2.
The LHY correction is [1,30]

ELHY = 8

15π2

(
m1

h̄2

)3/2

(g11ρ1)5/2 f

(
m2

m1
,

g2
12

g11g22
,

g22 ρ2

g11 ρ1

)

≡ C(g11ρ1)5/2 f (z, u, x). (3)

Here f (z, u, x) > 0 is a dimensionless function, whose ex-
plicit expression for z �= 1 and u = 1 can be found in
Ref. [30]. Following Ref. [1], we consider this function at
the mean-field collapse u = 1, i.e., f (z, 1, x). We note that the
actual expression for f can be fitted very accurately with the
same functional form of the homonuclear case (m1 = m2) [51]

f (z, 1, x) � (1 + zαx)β, (4)

where α and β are fitting parameters. For the K-Rb mixture
(z = 87/41), we found α = 0.586 and β = 2.506, which are
very close to the values α = 3/5 and β = 5/2 proposed in
Ref. [51] under the assumption that α and β are independent
of the mass ratio z.

Minimization of the action associated to Eq. (2) leads to
the following Euler-Lagrange (EL) equations (generalized GP
equations)

ih̄
∂ψi

∂t
=

[
− h̄2

2mi
∇2 + Vi + μi(ρ1, ρ2)

]
ψi ≡ Hiψi, (5)

where

μi = giiρi + gi jρ j + ∂ELHY

∂ρi
( j �= i) (6)

and

∂ELHY

∂ρ1
= Cg11(g11ρ1)3/2

(
5

2
f − x

∂ f

∂x

)
, (7)

∂ELHY

∂ρ2
= Cg22(g11ρ1)3/2 ∂ f

∂x
, (8)

where C is defined in Eq. (3). The above equations are solved
by mapping the system (densities, wave functions, differential
operators, etc.) on discrete equally spaced Cartesian grids.
The differential operators are represented by a 13-point dis-
cretization. We solve the above equations by propagating the
wave functions ψi in imaginary time, if stationary states are
sought, or by propagating them in real time to simulate the
dynamics of the system starting from specified initial states.
The time-dependent equations have been solved by using the
Hamming’s predictor-modifier-corrector method, initiated by
a fourth-order Runge-Kutta-Gill algorithm [52]. The spatial
mesh spacing and time step are chosen such that during the
time evolution excellent conservation of the total energy of
the system is guaranteed.

In order to deposit angular momentum in the droplet, we
have used an “imprinting” procedure [52] by starting the
imaginary time minimization from a flexible guess for the
effective wave function ψ0(r) for a given species, namely a
superposition of a quadrupolar capillary wave and nv vortex
lines parallel to the z axis,

ψ0(r) = ρ
1/2
0 (r) ei αxy

nv∏
j=1

(x − x j ) + i(y − y j )√
(x − x j )2 + (y − y j )2

. (9)

Here, ρ0(r) is an arbitrary, vortex-free droplet density, the
complex phase eiαxy imprints a capillary wave with quadrupo-
lar symmetry around the z axis, and the product term imprints
a vortex array made of nv linear vortices [52], where (x j, y j )
is the initial position of the jth vortex core. The initial value
of α and the vortex core positions are guessed, and ψ0 is opti-
mized by iteratively solving Eqs. (5): During the minimization
process both the vortex core structure and positions, together
with the droplet shape, change to provide at convergence the
lowest total energy configuration.

To study spinning droplets, it is convenient to work in the
fixed-droplet frame of reference (corotating frame at angular
velocity ω); i.e., we consider the functional

E ′ = E − ω 〈L̂z〉, (10)

where L̂z is the total angular momentum operator in the z
direction; one looks for solutions of the EL equation resulting
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from the functional variation of E ′

{Hi − ωL̂z} ψi(r) = μi ψi(r), (11)

where Hi (i = 1, 2) are defined in Eq. (5).
Two alternative strategies can be employed to solve the

previous equations; i.e., one can either (i) fix ω and find the as-
sociated stationary configuration, which will be characterized
by some value of the angular momentum L = 〈L̂z〉 depending
upon the chosen value of ω, or (ii) solve it by imposing a
given value for L and iteratively find the associated value of ω.
Classically, the fixed ω calculations correspond to forced rota-
tion conditions (“driven drops”), while the fixed L calculations
correspond to torque-free drops with an initially prescribed
rotation (“isolated drops”). Both methods will be used here,
as it turns out that stable prolate configurations can only be
found by using method (ii), i.e., fixing the value of L from the
start [41–43]. At variance, stable oblate configurations can be
found either by fixing ω or L [41].

Working at fixed angular momentum requires to adjust iter-
atively the value of ω: There are efficient ways of doing this,
such as the augmented Lagrangian method [53] (used here),
which consists in evolving the system using the Hamiltonians

H′
i = Hi − [ω − μL(〈L̂z〉 − L)]L̂z (12)

and updating at each time step the angular velocity accord-
ing to

ωnew = ωold − μL(〈L̂z〉 − L), (13)

where μL is a positive constant controlling the rate of conver-
gence toward a state with the imposed value L of the angular
momentum.

III. RESULTS

A. Surface tension and healing length

As discussed in Sec. III E, results for rotating liquid
droplets can be better interpreted in terms of rescaled units
of the rotational frequency and angular momentum, whose
definitions require the knowledge of the surface tension of
the system. Moreover, the widths of the vortex cores in the
quantum droplets are related to the healing lengths of the
mixture. For this reason, we report in the following the calcu-
lated values of both these quantities for the 41K - 87Rb mixture.
From now on, we will refer to 41K as the first species and to
87Rb as the second species.

While all the calculations described in the present work
are obtained by solving the two coupled Eqs. (5), as far as
the surface tension and the healing length are concerned, we
use (as often done in the literature; see, for instance, Ref. [2])
a simpler single-component density functional, as briefly de-
scribed in the following.

The equilibrium density of a droplet at T = 0 is obtained
by requiring the vanishing of the total pressure, which yields
the condition [1]

ρ2

ρ1
=

√
g11

g22
. (14)

If one assumes that this optimal composition is realized
everywhere in the system, the energy functional (3) becomes

FIG. 1. Surface tension of the 41K - 87Rb quantum liquid as a
function of the interspecies scattering length a12 (from Ref. [11]).

effectively single component, and can be written in terms of a
single density only. By defining the following coefficients,

α = 1

4

(
h̄2

2m1
+ h̄2

2m2

√
g11

g22

)
, (15)

β = g11 + g12

√
g11

g22
, (16)

γ = 8

15π2

(
m1

h̄2

)3/2

g5/2
11

[
1 +

(
m2

m1

)3/5√g22

g11

]5/2

, (17)

the effective single-component energy density of the mixture,
expressed for simplicity in terms of the density ρ1 of the first
species, reads

E = α
(∇ρ1)2

ρ1
+ βρ2

1 + γ ρ
5/2
1 (18)

so that E = ∫
dr E .

Self-bound quantum droplets are, by definition, systems
with a finite surface tension. Remarkably, the surface tension
for a planar interface separating a self-bound quantum liquid
from vacuum can be estimated, without any prior knowledge
of the density profile, by calculating the following integral
[54],

σ = 2
∫ ρ0

0
dρ1

√
α
(
βρ1 + γ ρ

3/2
1 − μ0

)
, (19)

where μ0 = βρ + γ ρ3/2 is the chemical potential of a liquid
system in equilibrium with the vacuum, evaluated at the equi-
librium density ρ = ρ0.

The surface tension of the binary mixture 41K - 87Rb has
been computed for different values of the interspecies scat-
tering length a12 in Ref. [11]. It turns out that relatively small
changes in the interspecies interaction strength cause order-of-
magnitude changes in the surface tension [11], which ranges
from σ ≈ 102 nK/μm2 for a12 = −80 a0 to σ ≈ 105 nK/μm2

for a12 = −100 a0. We show for clarity in Fig. 1 the values of
σ for the 41K - 87Rb mixture, as calculated in Ref. [11].
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FIG. 2. Healing lengths of the 41K - 87Rb quantum liquid as a
function of the interspecies scattering length a12.

An explicit expression for the healing length of the self-
bound 41K - 87Rb mixture can be obtained as the length scale
where the kinetic energy of the system equals the chemical
potential. In this way, one can derive the following expression
for the healing length in the first species and second species,
respectively:

ξ1 =
(

− 2α

2βρ1 + 5
2γ ρ

3/2
1

)1/2

, (20)

ξ2 =
(

− 2α

2β
√

g22

g11
ρ2 + 5

2γ
( g22

g11

)3/4
ρ

3/2
2

)1/2

. (21)

Notice that if the optimal ratio between the two densities
is exactly realized, then ξ1 = ξ2. We plot in Fig. 2 the calcu-
lated healing length ξ1 for different values of the interspecies
scattering length a12.

B. Vortices in the extended system

In order to achieve a better understanding of the intrin-
sic properties of vortices in the 41K - 87Rb mixture, we first
studied, by solving the two-component system (5), isolated
vortices in an extended 41K - 87Rb system for different values
of the scattering length a12 in the range where the formation
of self-bound liquid is expected: For this specific mixture, this
occurs for a12 < −75.4 a0. With an extended system, we refer
to a uniform mixture where the densities are constant inside
the whole three-dimensional simulation domain, with a ratio
given by Eq. (14). In this way, the calculated vortex core prop-
erties (as computed in the following) become independent on
the droplet size, the extended system being equivalent to a
droplet with an infinite radius.

The initial state is represented by Eq. (9), where we take
α = 0 and imprint just a single vortex in the center of the
system (on the x − y plane), with ρ0 equal to the bulk density
for the species hosting the vortex. The flow field of a linear
vortex has a long-range character, ∼1/r, r being the distance
from the vortex axis (namely, the z axis). We have imposed,

during the minimization, antiperiodic boundary conditions
[55] in the x − y plane in order to satisfy the condition of no
flow across the boundary of the computational cell. Standard
periodic boundary conditions are used, instead, along the z
direction.

A measure of the vortex excitation energy per unit length
of a linear vortex of length L is given by the integrated vortex
kinetic energy [56,57], which can be defined as follows:

εv (R) = 1

L

[
E v

kin(R) − E0
kin(R)

]
, (22)

where E v
kin, E0

kin are the kinetic energies within a cylinder
of radius R =

√
x2 + y2 and length L (with and without a

vortex line along the z axis, respectively) as a function of the
distance R from the vortex line. E v

kin(R) is given by the integral∫ L
0 dz2π

∫ R
0 dR′ R′ ε(R′), where ε(R) = (h̄2/2m)|∇Rψi|2, and

∇R ≡ (∂/∂x, ∂/∂y) (i is the index of the vortex-hosting com-
ponent of the mixture). Similar expressions hold for E0

kin(R).
We notice that the classical hydrodynamical counterpart of

εv (R) for a vortex in an incompressible fluid of density ρ0 and
circulation κ is

εhydro
v (R) = κ2

4π
mρ0

[
ln

(
R

dv

)
+ δ

]
, (23)

where dv is the vortex core radius and δ depends on the model
for the core (δ = 0 for the hollow core model and δ = 1/4 for
a core in rigid rotation) [14]. The parameter δ in the previous
equation can be absorbed in the logarithmic term; using the
quantum value for the circulation, κ = h/m, ε

hydro
v reads

εhydro
v (R) = h̄2

m
πρ0 ln

(
R

λ

)
(24)

for a singly quantized vortex, where λ = dve−δ is the core
parameter.

We compute the lowest energy solution, for different val-
ues of the interspecies scattering length a12, starting from
the initial state given by Eq. (9), and then make a best-fit
interpolation of the calculated vortex kinetic energy εv (R), as
defined in Eq. (22), with the hydrodynamic approximation for
the vortex excitation energy (the vortex being in the species i)
given by Eq. (24), using ρ0 and λ as fitting parameters. We will
consider two cases: (i) both species embed a singly quantized
vortex with a common core position and (ii) a singly quantized
vortex is imprinted in one species only. Therefore in the first
case the phase change around the core position is 2π when
calculated separately for the two species, while in the second
case the phase change is zero for the species which does not
embed any vorticity.

We find that the hydrodynamic expression (24) accurately
reproduces the calculated excitation energies far from the
vortex line. By comparing the calculated kinetic energy with
that predicted by Eq. (24), we computed the core parameter
λ as a function of a12. We found, with good accuracy, that
λi = 1.07 ξi when both species host a singly quantized vortex.
When a vortex is imprinted in the first species only, K, we find
λ1 = 0.82 ξ1, whereas we find λ2 = 0.53 ξ2 for a vortex in the
Rb species only. These ratios are independent on the chosen
values for a12.
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FIG. 3. Core energies for the two species as a function of the
parameter δg. Filled squares: First species (K); open squares: Second
species (Rb). The solid lines are obtained from Eq. (25).

As expected, the approximation breaks down at distances
approaching the vortex core, as there the local density be-
comes very small. The radius Rc of the vortex core region
is defined here as the distance from the center at which the
modulus of the wave function is equal to half the value it
takes far from the core region. From this, the vortex “core”
energy, defined as E core,i = Ekin,i(Rc), is thus obtained. The
calculated values are shown in Fig. 3 as a function of δg =
g12 + √

g11g22, for the case where a singly quantized vortex is
embedded in each species.

We found that the core energies E core,i are well approxi-
mated by the expression (solid lines in Fig. 3)

E core,i

L
= π

4

h̄2

mi
Kiδg2, (25)

where Ki are the coefficients relating the densities for the
uniform system to δg2, i.e.,

ρ1 = 25π

1024

1

a3
11

f −2(z, 1, x)

g11g22
δg2 ≡ K1δg2 (26)

and similarly for ρ2 = √
g11/g22 ρ1.

When a singly quantized vortex is imprinted in both
species, the resulting density profile is shown in Fig. 4. As
the scattering length becomes more negative, the vortex core
shrinks. The core in the total density is empty since both
species host a vortex line.

When the vortex is in the second, heavier species only (Rb),
the profiles look like those in Fig. 5. Notice that the vortex
core size is reduced with respect to the previous case, and
moreover the core is partially filled by the first species, which
hosts no vorticity. Similar profiles, characterized by a core that
is partially filled with the species without vorticity, are found
when the vortex is imprinted in the first species only (K).

We compare in Fig. 6 the vortex structure, close to the
core region, for the two cases: (i) both species host a singly
quantized vortex and (ii) only the second species hosts a singly
quantized vortex (a similar behavior is found in the case where

FIG. 4. Total density ρ1 + ρ2 along a line passing through the
core of a vortex imprinted in both species, for different values of
the interspecies scattering length a12. From top to bottom: a12 =
−105, −100, −95, −90, −85 a0.

only the first species carries a vortex). In spite of the fact that
only the second species carries vorticity, a deep depression
develops also in the vortex-free species 1, mimicking a “fake”
vortex core with a small residual density at the core position.
A similar effect has been theoretically predicted for two-
dimensional QDs made of binary homonuclear Bose mixture
[27]. This is a consequence of the fact that the system tries
to restore everywhere the optimal ratio between the densities
[Eq. (14)], except very close to the core center. We observe
that the amount of filling due to the species without vorticity
decreases as a12 becomes less negative.

From the calculated density profiles, we computed the
widths of the vortex cores, defined as the half-width at half-
maximum of the density value far from the vortex position,

FIG. 5. Total density ρ1 + ρ2 along a line passing through the
core when a single vortex is nucleated in the second species (Rb), for
different values of the interspecies scattering length a12. From top to
bottom: a12 = −105, −100, −95, −90, −85 a0.
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FIG. 6. Density profiles for each species, for the case a12 = −90
a0, for a vortex imprinted in both species (dotted lines), and a vortex
imprinted only in the second one, Rb (solid lines): Notice that, in the
latter case, the K density displays a partially filled core, as discussed
in the text.

as a function of the scattering length a12. We show the results
in Fig. 7 for the cases where a vortex is imprinted either in
one species or the other. It appears that the core widths in the
lighter species, K, are twice as large as in Rb, and increase
with a12, as expected from the behavior of the healing length
in Fig. 2. This could turn out to be a useful information to
identify the vortex-hosting species in experiments, where the
two species can be imaged separately.

In order to determine the most energetically favorable con-
figuration of vortices in the mixture, we computed the energy
cost to have (i) a vortex in both species and at the same
position, (ii) two spatially separated vortices, both in the first

FIG. 7. Widths of the vortex cores, defined as the half-width at
half-maximum of the density value far from the vortex, for the case
of a vortex in the first species (K) only (black squares) and for a
vortex in the second species (Rb) only (black dots).

FIG. 8. Vortex formation energies (per pair) as a function of a12.
The value a12 = −75.4 a0 marks the crossover between the self-
bound and the uniform (unbound) superfluid system. Values to the
right of this point are multiplied by a factor 100 for clarity. Triangles,
2V2; squares, V1+2; crosses, V1 + V2; dots, 2V1.

species only, (iii) two spatially separated vortices, both in the
second species only, and (iv) two spatially separated vortices,
one in the first species and the other in the second species.

The results, as a function of interspecies scattering length,
are shown in Fig. 8, where we report the calculated energies
per atom, �(E/N ), where

�(E/N )2Vi = 2[(E/N )Vi − (E/N )0] (27)

for two isolated vortices in the species i = 1 (K), i = 2 (Rb);

�(E/N )V1+2 = (E/N )V1+2 − (E/N )0 (28)

for two vortices in the same position, one inside each species;

�(E/N )V1+V2 =
2∑

i=1

(E/N )Vi − 2(E/N )0 (29)

for two isolated vortices, one in the first species and one in the
second species. Here (E/N )0 is the energy for the vortex-free,
uniform system.

We remark that in order to compute the energy of two iso-
lated (i.e., spatially separated) vortices Vi and Vj (i, j = 1, 2)
we simply add the calculated energies [obtained by solving
the GP Eq. (5)] of single vortex configurations Vi, so it is as if
the two vortices were noninteracting with one another.

The results in Fig. 8 show that the most energetically
favored configuration is the one with a vortex in the second
species (Rb), whereas the least energetically favored is that
with vortices in the first species (K) only.

The fact that nucleating vortices in the heavier species are
energetically favored could be explained by recalling that the
vortex energy (24) is essentially proportional to the ratio ρ/m,
which is lower for the Rb species.

The same energetic ordering, albeit with much smaller
energies (which appear multiplied by a factor 100 in Fig. 8
for clarity) persists also for the unbound superfluid mixture,
i.e., for |a12| < 75.4 a0. Notice that, in this superfluid miscible
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regime, the overall interaction between atoms is repulsive
and the LHY quantum correction provides only a sublead-
ing contribution with respect to the mean-field term that is
described by the parameter δg > 0. As a result, vortex cores
in the superfluid mixture have a larger extension with respect
to the droplet case: The healing lengths in Eqs. (20) and
(21) reduce to the standard expression for a single-component
BEC, ξ ∝ (δgρ)−1/2.

The results just presented for the extended system are rep-
resentative to a large extent of the properties of vortices in
droplets. Although in principle finite-size effects cannot be
neglected in droplets, the minimal size of droplets hosting
stable vortex lines, as shown in the following, is relatively
large: For such droplets, the equilibrium density profile is
flat-top, i.e., almost constant inside the bulk region and rapidly
vanishing at the liquid-vacuum interface, and vortex cores are
well contained within the bulk constant density region. As a
result, we do not expect much differences with respect to the
case of the extended system.

C. Nucleation of vortices from dynamical simulations

A possible way of producing in experiments QDs hosting
vorticity could be to first nucleate vortices in a superfluid, un-
bound mixture (i.e., with a12 greater than the critical value for
the stabilization of self-bound droplets) subject to harmonic
confinement by, e.g., stirring the condensate with a laser beam
or by using a rotating, slightly ellipsoidal radial trap. Then the
scattering length a12 should be quenched to a more negative
value, where the formation of a (much denser) QD is expected,
and the harmonic confinement released at the same time. If
the size of the droplet is large enough to accommodate one
or more vortices, the final configuration would likely be a
vortex-hosting QD.

Although such process could be simulated by performing
time-dependent numerical simulations based on the extended
GP equation described in Sec. II, it implies a huge computa-
tional cost in the present settings, due to the very large size
of the droplets needed in order to host few stable vortices
and due to the fine mesh in real space required to accurately
represent the wave functions, especially in the vortex core
regions. Therefore, we consider a 41K - 87Rb mixture in a
rotating cylindrical trap (described in the following) aligned
with the rotational axis. We use periodic boundary conditions
along the z direction, where the densities of the two species
are constant (the system is translationally invariant along
this direction). In this way, we reduce the calculations to an
effectively two-dimensional system. Calculations are per-
formed in the corotating frame, using Eq. (11) and fixed
angular velocity.

We will only address a simplified version of the vortex
nucleation process here, i.e., the dynamical nucleation of vor-
tices in a rotating, trapped mixture in the superfluid, unbound
phase (we notice that the stability of vortex states in a super-
fluid binary mixture in two dimensions has been studied in
Ref. [58]). This will allow us to verify the above prediction
that nucleation of singly quantized vortices in the Rb phase
only will most likely occur. A more systematic study of the
full process (i.e., the vortex nucleation in the rotating super-
fluid phase, followed by a quench of the interspecies scattering

FIG. 9. 2D total density profiles on the xy plane of the SF cylin-
der. On the left, the equilibrium density profile at rest is shown: The
deformation is due to the anisotropic harmonic potential. The right
part of the figure shows the stationary configuration in the corotating
frame with angular frequency ω, with four vortices nucleated in the
second species (Rb). Lengths are expressed in μm, and densities are
expressed in units of 102 μm−3.

length into the self-bound regime, with the likely formation
of vortex-carrying quantum droplets) will be the subject of a
future study.

The interspecies scattering length is set to a12 = −70 a0

so that the system is just inside the miscible regime with
δg > 0. Since the system is in the gaseous phase, an additional
harmonic confining potential is necessary in order to stabilize
it. The number of atoms for each species is N1 = 106 and
N2 = 1.1765 × 106: Notice that since the available volume
is the same for both species, the atom numbers satisfy the
optimal ratio in Eq. (14), N1/N2 = ρ1/ρ2 = √

g22/g11. We use
different trapping potentials acting on each species, through
an additional term in the energy functional (2):

Eho[ρ1, ρ2] =
2∑

i=1

1

2
mi

(
ω2

i,xx2 + ω2
i,yy2)ρi(r). (30)

We choose here the trapping frequencies in such a way that
the two species experience the same force constant along each
direction, i.e., m1ω

2
1,α = m2ω

2
2,α (α = x, y) We also intro-

duce a slight anisotropy in the trapping potential, ω1,x/ω1,y =
ω2,x/ω2,y = 1.1, which favors the nucleation of vortices as
the trap is rotated. The values used are (ω1,x, ω1,y ) = 2π ×
(6.50, 5.91) Hz and (ω2,x, ω2,y) = 2π × (4.46, 4.06) Hz. As
for the rotational frequency in the corotating frame
[see Eq. (10)] we use the value ω = 2π × 3.1 Hz. The
chosen value for ω must be higher than the critical value
necessary to nucleate a single vortex line, which is of the order
of ωc = h̄

mR2 ln( R
λ

) ∼ 2π × 0.9 Hz, where R is the average
condensate radius in the x − y plane and λ is the vortex core
parameter.

The initial configuration of the imaginary-time dynamics is
shown in the left panel of Fig. 9, which represents the ground-
state configuration in the (stationary) elliptical trap.

The outcome of the imaginary-time dynamics is the spon-
taneous nucleation of four vortex lines in the second species
(Rb), which enter the cylinder from the lateral surface and
then move inside the bulk region until they reach a station-
ary position. In the final configuration, that is shown in the
right panel of Fig. 9, these vortex lines are located at the
same distance from the rotational axis. Angular momentum

063328-8



VORTICES IN QUANTUM DROPLETS OF HETERONUCLEAR … PHYSICAL REVIEW A 105, 063328 (2022)

FIG. 10. Superfluid flow for the first species (K), shown with
streamlines in the xy plane orthogonal to the rotation axis, for the
rotating configuration shown in the right part of Fig. 9.

is stored in the first species (K) only through the quadrupolar
deformation favored by the elliptical trap. We remark that the
configurations shown in the figure are stationary in the coro-
tating frame; as a consequence, they would be seen in the
laboratory frame as if they were rotating with the angular fre-
quency ω. This is indeed what we observed after performing a
real-time dynamics with ω = 0 starting from the configuration
shown in the right panel of Fig. 9.

Streamlines of the superfluid flow are shown in Figs. 10
and 11, illustrating the irrotational velocity fields in each
component. Streamlines allow to infer by visual inspection the
coexistence of vortices and surface capillary waves, as their
velocity fields are very different. The streamlines associated

FIG. 11. Superfluid flow for the second species (Rb), shown with
streamlines in the xy plane orthogonal to the rotation axis, for the
rotating configuration shown in the right part of Fig. 9.

to vortices wrap around their cores, as in Fig. 11, whereas
those associated to capillary waves end abruptly at the surface
of the superfluid [37,59,60], as in Fig. 10: In the laboratory
frame, this results in the rotation of the cloud as a whole, with
angular frequency ω.

D. Critical droplet sizes for vortex stability

Not all values of N = N1 + N2 are allowed in a self-bound
droplet for a given a12 because small droplets, made with
a total number of atoms below some critical value Nc, be-
come unstable when the kinetic energy dominates over the
interaction energy, eventually causing the evaporation of the
droplet itself. The critical size Nc for quantum droplets has
been calculated for the 41K - 87Rb mixture in Ref. [11]. In
the presence of vortices, however, the critical size is expected
to be larger, since the droplet must accommodate the vortex
structure and the associated velocity field. We have estimated
such critical size by computing a vortex-hosting droplet struc-
ture and check its stability during the evolution in time. We
have studied first the case of two singly quantized vortices
in a 41K - 87Rb quantum droplet, one in each species: For a
fixed value of a12 and a given total number of particles N =
N1 + N2 (with N1/N2 = √

g22/g11), one vortex line for each
species was imprinted in the droplet center, aligned with the z
direction, and the system was let to evolve in imaginary time
in order to find the lowest energy stationary state. In this case,
three possible outcomes of the minimization in the corotating
frame are found: (i) Unstable regime: During the evolution in
imaginary time the vortex core is gradually expelled from the
droplet, which eventually recovers the lowest energy structure
of a stable, vortex-free one. (ii) Metastable regime: During the
evolution in imaginary time the system apparently converges
toward a stable configuration with the vortex in the center of
the droplet. However, starting a real-time dynamics from this
state the system slowly (in a time of the order of 5 ms) expels
the vortex and the droplet again recovers a stable, vortex-free
structure. (iii) Stable regime: The system converges toward a
stable configuration with the vortex cores aligned along the z
direction and in the center of the droplet. These configurations
are found to be robust against real-time evolution initiated
from this converged stationary state.

In the case of the most energetically favored configuration,
i.e., one vortex in the second species only, we find that there
is not a metastable region: The vortices are either unstable
and are eventually expelled from the droplet, or they stabilize
inside the droplet. The critical line separating stable from
unstable vortices is the dotted one shown in Fig. 12, compared
with the similar line for the double-vortex case (solid line in
the figure). As shown in Fig. 6, the core sizes in this con-
figuration are smaller with respect to the previous one: This
gives the possibility to smaller droplets to sustain a single
vortex.

The results shown in Fig. 12 clearly show how the fi-
nite size of droplets strongly influence their capability to
host stable vortex lines, especially as one approaches the
superfluid-to-droplet transition. From the comparison with the
critical size for vortex-free K-Rb droplets [11], it appears that
the critical size for stability of a single vortex is much larger,
of the order of 106 atoms. For comparison, at a12 = −85 a0

063328-9



MATTEO CALDARA AND FRANCESCO ANCILOTTO PHYSICAL REVIEW A 105, 063328 (2022)

FIG. 12. Stability diagram showing the minimal size of droplets
hosting a vortex. Solid line, one vortex in both species; dotted line,
one vortex in the second species (Rb) only.

the critical size for vortex-free droplets is N ≈ 20 000 [11].
We must notice that droplets of sizes above the lower critical
line in Fig. 12 have not been experimentally realized so far for
the K-Rb mixture.

E. Angular momentum and shapes in rotating
K-Rb quantum droplets

The shapes of classical liquid droplets undergoing rigid-
body rotation follow a universal stability diagram in terms of
reduced angular momentum � and reduced angular velocity
� (defined in the following). The configurations of rotat-
ing droplets lie on two possible branches in the �-� plane
[33,42,43]:

(1) An ascending �(�) branch for lower values of
� corresponding to oblate axisymmetric shapes: The
higher �, the more squeezed is the droplet along the rotational
axis.

(2) A descending �(�) branch for higher values of �

describing prolate (i.e., nonaxisymmetric) shapes, such as
ellipsoids, capsules, and dumbbells: The higher �, the more
elongated are such droplets along an axis perpendicular to the
rotational axis.

The two branches meet at the point � = 1.2 where they
form a cusp.

The analysis of superfluid 4He droplets rotating solely
through capillary waves shows the presence of an additional
descending �(�) branch in the stability diagram [38,46]
that is peculiar to superfluid: This branch is populated by
prolate (i.e., nonaxisymmetric) droplets, since these are the
only configurations that can store a finite amount of angular
momentum in the form of capillary waves.

We will use here rescaled units, as usually done for classi-
cal liquid droplets, which allow us to compare our results for
different droplet sizes and values of a12 and also to compare
our results with the ones for 4He rotating droplets, in spite of
the orders-of-magnitude differences in surface tensions and

FIG. 13. Rescaled angular velocity � vs rescaled angular mo-
mentum �. Solid line, 4He droplets [45] hosting vortices (N =
1500); dotted line, prolate vortex-free 4He droplets [45] (N =
1500); black triangles, oblate 3-vortex droplets (N = 9 × 106, a12 =
−95 a0); open triangles, prolate 3-vortex droplets (N = 1.5 × 106,
a12 = −105 a0); open squares, prolate vortex-free droplets (N =
105, a12 = −105 a0); open circles, prolate vortex-free droplets (N =
105, a12 = −90 a0); black squares, prolate vortex-free droplets (N =
1.5 × 106, a12 = −105 a0); black dots, prolate 2-vortex droplets
(N = 9 × 106, a12 = −95 a0).

densities. Such units, in the case of a binary mixture, are
defined as

� ≡
√

(m1ρ1 + m2ρ2) R3

8 σ
ω, (31)

� ≡ 1√
8σR7(m1ρ1 + m2ρ2)

Lz, (32)

where σ is the surface tension of the 41K - 87Rb mixture,
shown in Fig. 1, and R is the sharp radius of a (spher-
ical) droplet with N = N1 + N2 atoms, defined such that
4πR3(ρ1 + ρ2)/3 = N .

We investigated different configurations of QDs hosting a
finite amount of angular momentum, with and without vor-
tices, although the fully three-dimensional geometry used here
and the need of fine meshes in real space severely limit the
maximum sizes and number of vortices that we can address.
We consider here droplets hosting vortices only in the second
component, i.e., Rb, which is the most stable vortex configu-
ration as shown in Sec. III B.

The equilibrium shapes of the rotating droplets are strongly
influenced by the way in which angular momentum is stored
(i.e., via capillary waves and/or vortices). The vortex-free
droplets are, as expected, on a single branch, which character-
izes prolate shapes: The angular momentum in these droplets
can only be stored in the form of capillary waves, as discussed
in the introduction. The calculated points in the �-� plane
corresponding to prolate, vortex-free droplets (open squares
and open circles in Fig. 13) are very close to the curve found
for prolate 4He droplets [38], as shown in Fig. 13. This
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FIG. 14. Left: Total density ρ on the xy-symmetry plane per-
pendicular to the rotational axis for a prolate, vortex-free droplet
with N = 105; right: Side view in the xz plane passing through the
center of the droplet. Lengths are expressed in μm, and densities are
expressed in units of 102 μm−3.

(almost) universal behavior is a remarkable result given the
very different natures of these two quantum liquids, whose
surface tensions and densities differ by many orders of magni-
tude. An example of prolate vortex-free droplet (with N = 105

and for a12 = −105 a0) is shown in Fig. 14, corresponding to a
value of the angular momentum � = 1.1. The two plots show
the total density of the droplet in the xy-symmetry plane per-
pendicular to the rotation axis and in the xz plane containing
the rotation axis.

When vortices are present in the droplet, however, the
calculated points seem to follow a more “classical” behavior,
characterized by a rising branch for oblate, vortex-hosting
QDs, and a decreasing branch where prolate, vortex-hosting
QDs lie instead (open and black triangles in Fig. 13). An ex-
ample of oblate (axisymmetric) droplet (black triangles in the
rising branch in Fig. 13) hosting three vortices in its interior
(with N = 1.6 × 107 and for a12 = −90 a0), corresponding
to a value of the angular momentum � = 0.7, is shown in
Fig. 15 by means of equal total density maps in the xy and xz
symmetry planes, as in Fig. 14 (only the vortex whose core
is contained in the xz plane passing through the center of the
droplet appears in the right panel of Fig. 15).

Finally, an example of prolate droplet (open triangles in the
decreasing branch in Fig. 13) hosting three aligned vortices in
its interior (with N = 1.5 × 106 and for a12 = −90 a0) cor-
responding to a value of the angular momentum � = 0.9, is

FIG. 15. Left: Total density ρ on the xy-symmetry plane per-
pendicular to the rotational axis for an oblate droplet hosting three
vortices (only in Rb) with N = 1.6 × 107; right: Side view in the
xz plane passing through the center of the droplet. Lengths are
expressed in μm, and densities are expressed in units of 102 μm−3.

FIG. 16. Left: Total density ρ on the xy-symmetry plane per-
pendicular to the rotational axis for a prolate droplet hosting three
vortices (only in Rb) with N = 1.5 × 106; right: Side view in the
xz plane passing through the center of the droplet. Lengths are
expressed in μm, and densities are expressed in units of 102 μm−3.

shown in Fig. 16. At variance with the case of oblate, vortex-
hosting droplets, where the angular momentum is associated
mainly with the vortices, in the case of prolate, vortex-hosting
droplets like the one shown in Fig. 16 angular momentum is
shared between vortices and capillary waves, the latter being
associated with the loss of axial symmetry in the xy plane (in
analogy with the case of spinning 4He droplets [38]).

Again, the quasiclassical behavior of the rotating quantum
droplets with vortices almost matches that of liquid 4He nan-
odroplets, as it appears from Fig. 13. Some differences are
present though, which are most likely due to finite-size effects
and to the small number of vortices. More marked deviations
occur, instead, with respect to the universal behavior of in-
compressible viscous droplets under rotation. The rotational
properties of spinning 4He droplets display a clear dependence
on the droplet size and the number of vortices they host [38].
In particular, the cusp in the �-� diagram appears around
� � 0.7 (see Fig. 13), at variance with the case of viscous
liquid droplets, where the cusp appears at � � 1.2. In general,
however, the larger the number of vortices in the droplet, the
closer is the behavior of the spinning droplets to the classical
ones [38] (that could also be a possible reason of why prolate
two-vortex droplets do not follow the common trend of the
other cases). We thus expect that bigger quantum droplets
with a larger number of vortices in their interior will display a
behavior (and cusp position) closer to the classical case. Un-
fortunately, we were only able to investigate droplets with two
or three vortices at most, due to the excessive computational
burden discussed before.

IV. CONCLUSIONS

We have studied spinning, self-bound quantum droplets
made with the binary Bose mixture 41K - 87Rb. A preliminary
analysis of the extended 41K - 87Rb system in the quantum liq-
uid regime shows that the configurations with vortices inside
the heavier species, Rb, is the most energetically favored. In
the presence of a vortex line in one component alone, the den-
sity of the vortex-free species forms an almost empty “fake”
core on top of the vortical one. The increased stability with
one vortex in the second species is confirmed by studying the
rotation of a trapped mixture in the SF regime and subsequent
vortex nucleations.
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We have then moved to the study of small 41K - 87Rb
quantum droplets under rotation, focusing on the role of cap-
illary waves and quantized vortices, that are the two main
mechanisms with which angular momentum can be stored
in spinning superfluid droplets, in determining the rotational
properties of QDs.

The resulting (�,�) phase diagram presents strong
similarities, despite the orders-of-magnitude differences in
densities and surface tension, with the case of rotating super-
fluid 4He nanodroplets. In particular, while prolate vortex-free
quantum droplets, where angular momentum can only be
stored in the form of capillary waves, are on the superfluid
branch of the diagram, the vortex-hosting droplets show, in-
stead, a behavior similar to classical rotating liquid droplets,
again in analogy with the case of superfluid 4He. The shapes
of vortex-hosting droplets can be either axisymmetric (where
the angular momentum is stored in the form of singly quan-
tized vortex lines) or prolate (where the angular momentum

is shared between vortices and capillary waves). Finite-size
effects have been addressed by studying the critical droplet
sizes for vortex stability, which are about two orders of magni-
tude larger than the critical sizes for the stability of vortex-free
droplets. Although quantum droplets with such sizes have not
been experimentally realized so far for the K-Rb mixture, we
believe that this study could be helpful for the interpretation
of future experiments aimed at the detection of vortices in
quantum droplets, where angular momentum can be deposited
in the latter by, e.g., setting into rotation the mixture in the
superfluid state and then quenching it into the droplet regime
by tuning the interspecies scattering length.
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