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Optical-plug-assisted spin vortex in a 87Rb dipolar spinor Bose-Einstein condensate
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Generating a spin vortex in a 87Rb dipolar spinor Bose-Einstein condensate in a controllable way is still
experimentally challenging. We propose an experimentally easy and tunable way to produce a spin vortex by
varying the potential barrier height and the width of an additionally applied optical plug. A topological phase
transition occurs from the trivial single-mode approximation phase to the optical-plug-assisted-vortex one, as
the barrier height increases and the width lies in an appropriate range. The optical plug causes radial density
variation and thus the spin vortex is favored by significantly lowering the intrinsic magnetic dipolar energy. A
type of coreless spin vortex, different from the conventional polar core vortex, is predicted by our numerical
results. Our proposal removes a major obstacle to investigating the topological phase transition in a 87Rb dipolar
spinor Bose-Einstein condensate.
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I. INTRODUCTION

Phase transitions are ubiquitous in the classical world [1],
while in the quantum world, phase transitions are an impor-
tant and developing branch of quantum theory, especially for
unconventional topological phase transitions and dynamical
quantum phase transitions. Although various types of quan-
tum phase transitions have been observed for decades in many
quantum systems, such as superconducting phase transitions,
magnetic phase transitions, and quantum Hall phase transi-
tions [2–6], quantum phase transitions in a controllable way
have become possible only recently, with the aid of fine-tuning
quantum control techniques developed in the past 20 years
[7–9].

The Bose-Einstein condensate (BEC) in alkali-metal
atomic gases offers an excellent platform for the experi-
mental investigation of quantum phase transitions, due to its
extremely clean environment, macroscopical quantum behav-
iors, and great controllability. In particular, when the optical
potential was first utilized to trap the atomic gases, a vast
unexplored area in the ultracold atomic physics was opened up
by revealing the spin degree of freedom [10]. Beautiful theo-
ries and extensive experimental investigations of spinor BECs
have been developed and subsequently carried out [11–18].

It has been well known that there exist two kinds of spin
interaction in a dipolar spinor condensate: the short-range
and isotropic spin-exchange interaction and the long-range
and anisotropic magnetic dipole-dipole interaction (MDDI)

*Corresponding author: wxzhang@whu.edu.cn

[19–26]. The competition between these two spin interactions
drives the system into a rich spin phase diagram, e.g., from the
ferromagnetic phase to the antiferromagnetic one by chang-
ing the spin-exchange interaction and from the spin-uniform
single-mode approximation (SMA) phase to the polar core
vortex (PCV) one by increasing the MDDI strength [27–29].

Among these phase transitions, the topological phase tran-
sition is of particular interest due to its sudden change of
the global property at the critical point. It also offers a new
paradigm of quantum phase transition. For a metastable state,
topological vortices and spin domains were pursued exper-
imentally and numerically with large-scale supercomputers
through quench dynamics in a 87Rb dipolar spinor condensate
[25,30,31]. For the ground state, however, the topological
phase transition from the SMA to the PCV was only predicted
theoretically and confirmed numerically in a dipolar spinor
BEC. It has yet been realized in experiments [27,28]. The con-
ditions to generate such a ground-state spin vortex are rather
challenging, both with a highly anisotropic trap potential and
with an extremely large number of atoms. A more controllable
manner and less stringent experimental conditions to realize
the topological phase transitions are still seriously needed.

In this paper we apply an additional optical plug to a 87Rb
dipolar spinor BEC in a highly anisotropic pancake optical
trap [32–34]. By varying the potential barrier height and the
width of the optical plug, we expect to realize the topological
phase transition in the 87Rb condensate with fewer atoms
and a lower experimentally available trap aspect ratio. With
analytical arguments and numerical calculations, we illustrate
the phase transition from the SMA to the optical-plug-assisted
spin vortex, due to the competition between the MDDI and the
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kinetic energy with the optical plug. The generated spin vortex
is further divided into two cases: a PCV and a flux-closure
coreless spin vortex (FCLSV). Actually, the FCLSV has a
similar spin structure to the PCV but the polar core is strongly
suppressed by the optical plug. Our results reveal a viable
and tunable way to experimentally investigate the topological
quantum phase transition in a 87Rb dipolar spinor condensate.

The paper is organized as follows. We describe the nonlo-
cal model with the coupled Gross-Pitaevskii equations (GPEs)
for the 87Rb dipolar spinor BEC in Sec. II. We sketch the
idea and the analytical arguments of generating a spin vortex
with the application of an additional optical plug in Sec. III.
In Secs. IV and V we describe the numerical truncation
technique for the accurate calculation of the MDDI in the
condensate and present the numerical results which confirm
the topological phase transition from the SMA to the spin
vortex, respectively. A summary is given in Sec. VI.

II. NONLOCAL DIPOLAR MODEL

Due to the long-range nature of its MDDI, a 87Rb dipolar
spin-1 BEC in an optical trap is described by a nonlocal
model. The Hamiltonian in the second quantized form is
[23,28,35,36]

Ĥ =
∫

dr
[
ψ̂†

α (r)

(
− h̄2∇2

2M
+ V (r)

)
ψ̂α (r)

+ c0

2
ψ̂†

α (r)ψ̂†
β (r)ψ̂β (r)ψ̂α (r)

+ c2

2
ψ̂†

α (r)ψ̂†
α′ (r)Fαβ · Fα′β ′ψ̂β (r)ψ̂β ′ (r)

]

+ Ĥdd , (1)

where ψ̂α (α = 0,±1) represents the annihilation operator in
the magnetic level α, M the mass of a 87Rb atom, and Fαβ

the spin-1 matrix. The spin-independent interaction strength is
c0 = 4π h̄2(a0 + 2a2)/3M and the spin-dependent exchange
interaction is c2 = 4π h̄2(a2 − a0)/3M, which originate from
the two-body s-wave scattering with as (s = 0, 2) the charac-
teristic scattering length of the total spin s.

The V (r) is an external harmonic trap with an additional
optical plug,

V (r) = 1
2 Mω2

0(x2 + y2 + λ2z2) + U0e−(x2+y2 )/σ 2
, (2)

where ω0 is the harmonic trap angular frequency in the x-y
plane, λ is the trap aspect ratio, and U0 and σ are two ad-
justable parameters characterizing the barrier height and the
width of the Gaussian optical plug, respectively [32–34]. The
Hamiltonian of the MDDI Ĥdd is

Ĥdd = cdd

2

∫
dr

∫
dr′ 1

|r − r′|3
× [ψ̂†

α (r)ψ̂†
α′ (r)Fαβ · Fα′β ′ψ̂β (r)ψ̂β ′ (r)

− 3ψ̂†
α (r)ψ̂†

α′ (r)(Fαβ · e)(Fα′β ′ · e)ψ̂β (r)ψ̂β ′ (r)], (3)

where cdd = μ0g2
F μ2

B/4π , with μ0 the magnetic permeability
of the vacuum, gF the Landé g factor for the 87Rb atom, and
μB the Bohr magneton, and e = (r − r′)/|r − r′| is the unit
vector along r − r′.

By adopting the standard mean-field approximation [16],
the order parameter (wave function) of the dipolar spin-1 BEC
becomes 	(r) = (ψ1(r), ψ0(r), ψ−1(r))T . The dynamics of
the system is described by the nonlocal GPEs [37,38]

ih̄
∂ψα (r)

∂t
= (T + V + c0n)ψα + Be · Fαβψβ, (4)

where T = −h̄2∇2/2M and n = ∑
α |ψα|2 the total density.

All spin-dependent interactions are considered as an effective
magnetic field

Be(r) = c2f (r) + cdd D(r), (5)

where f (r) = ∑
αβ ψ∗

α (Fαβ )ψβ is the spin density and D(r)
denotes dipolar contribution with its μ(μ = x, y, z) compo-
nent defined as

Dμ(r) = −
∑

ν=x,y,z

∫
dr′ (δμν − 3eμeν )fν (r′)

|r − r′|3 . (6)

In the numerical calculation, we also employ

D+(r) = D∗
−(r) = Dx(r) + iDy(r)

= 3

2

∫
dr′ sin2 θei2ϕf−(r′)

|r − r′|3

+ 1

2

∫
dr′ (1 − 3 cos2 θ )f+(r′)

|r − r′|3 + 3

2

∫
dr′

+ sin 2θeiϕfz(r′)
|r − r′|3 , (7)

where f+ = f ∗
− = fx + ify. The polar and azimuthal angles of

the unit vector e are θ and ϕ, respectively. For numerical
convenience, we set the length unit as ar = √

h̄/Mω0, the
energy unit as E0 = h̄ω0, and the density unit as nr = N/a3

r .
For a set of parameters {U0, σ } of the optical plug, we can

find the ground state of the dipolar spin-1 BEC by solving
Eq. (4) with the imaginary-time propagation method [39,40].
The phase diagram is obtained by scanning U0 and σ and
the phase transition and optical-plug-induced vortex are then
investigated. We do not expect that a tiny external magnetic
field much smaller than |Be| would change qualitatively the
results.

III. OPTICAL-PLUG-ASSISTED SPIN VORTEX

The spin vortex in a dipolar spinor BEC has been investi-
gated extensively in theory and experiment [25,28–30,35]. We
first briefly review a special spin vortex, the PCV [16,41–44].

In general, the ground state of a 87Rb dipolar spinor BEC
is a ferromagnetic SMA phase, due to |c2| � cdd and c2 < 0,
where all three components share the same spatial mode. The
energy of such a SMA state is

ES = T + V + E0 + E2 + Edd , (8)

where T , V , and E0 are the kinetic energy, the trap potential
energy, and the spin-independent energy, respectively. The
spin energy includes the spin-exchange energy E2 and the
weak but long-range MDDI energy Edd . It is easy to obtain
that [16,45]

Edd = E ′
dd + E ′′

dd , (9)
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with

E ′
dd = 1

4π2
cdd

∫
dk|k̂ · f̃ (k)|2,

E ′′
dd = −2π

3
cdd

∫
dr|f (r)|2,

where f̃ (k) is the Fourier transform of the spin density f(r) and∫
dk|f̃ (k)|2 = (2π )3

∫
dr|f (r)|2. We find immediately that

E ′′
dd shares the same form as E2 ≡ (c2/2)

∫
dr|f (r)|2, so we

define an equivalent spin-exchange energy

E ′
2 = E2 + E ′′

dd = (1 + p)E2,

where p ≡ E ′′
dd/E2 = 4πcdd/3|c2| ≈ 0.3797 for a 87Rb BEC.

Similarly, for a PCV state, its energy EV is almost the same
except for the energy difference from the local area around the
vortex core and the dipolar energy difference from the spin
structure. Clearly, for a uniform and large BEC (compared
to the core size of a spin vortex), the long-range dipolar
energy would dominate the spin (vortex) structure because
other terms are local and negligible. We thus analyze the
MDDI energy difference between the SMA and the PCV
state, �E = EV − ES ≈ E ′V

dd − E ′S
dd , where E ′S

dd and E ′V
dd are

the intrinsic MDDI energies for the SMA and the PCV state,
respectively. It is easy to find that �E < 0 because E ′V

dd = 0,
due to the circular spin density structure k̂ · f̃ (k) = 0 [16,28],
and E ′S

dd > 0. Consequently, the PCV state may become the
ground state. In fact, Kawaguchi and Ueda found that the PCV
state is indeed the ground state if the MDDI is strong enough
for a dipolar spinor condensate with the atom number larger
than a threshold Nc [16].

Although the PCV state may be the ground state for a large
enough dipolar condensate, the condition to observe such a
spin texture in a finite-size BEC is still quite challenging, e.g.,
the atom number threshold Nc ∼ 2.6 × 106 for a spherical trap
with ω0 = 2π × 100 Hz. Even for a disk trap with λ = 20, the
threshold is still Nc ∼ 1.4 × 106. To mitigate these stringent
requirements, we propose placing an optical plug at the center
of the BEC. This idea is inspired by the observation that
a nonzero density gradient helps the formation of the PCV
structure by lowering the term E ′

dd [46].
Let us consider a limiting case, a quasi-one-dimensional

ring trap formed by a harmonic trap and an optical plug with
a width σ and an infinite barrier height [47]. Obviously, such
a spin vortex is coreless since the total density is zero due to
the infinite barrier height. For the FCLSV, we compare the
energy difference(per atom) �E between the spin vortex and
the SMA state. Obviously, we find

�E = �T + �E ′
dd

since other terms are the same for both states. We have defined
�T = T V − T S with T V,S the kinetic energy for the spin vor-
tex and the SMA state, respectively. After a straightforward
calculation we find

�E = ζ1 + ζ−1

2σ 2
− cdd N

8πσ 3
Idd , (10)

where ζm = Nm/N , with Nm the atom number of m compo-
nent, and Idd is a constant independent of σ defined by

Idd =
∫ 2π−ϕc

ϕc

dϕ
3 − 2 sin2(ϕ)

|sin(ϕ)|3 ,

with ϕc the cutoff (smallest) angle. The cutoff angle is on the
order of ϕc ∼ r0/σ , with r0 the average distance between two
closest atoms on the ring [40,48–52]. We have used T S = 0
(see the Appendix for the derivation).

As shown by Eq. (10), the energy difference �E is lowered
as σ decreases and may be negative if σ is smaller than a
characteristic width σc = cdd NIdd/4(ζ1 + ζ−1). The ground
state becomes a spin vortex. Of course, the optical-plug width
should be larger than the dipolar healing length ξdd in order
to form a vortex σ > ξdd , with ξdd = h̄/

√
2Mcdd n and n the

characteristic density [28,35]. Based on the above analysis,
we may draw the conclusion that the application of an optical
plug may help form a spin vortex in a dipolar spinor BEC.

IV. TRUNCATION EFFECT OF MDDI

Accurately calculating the dipolar potential Dx,y,z is nu-
merically time consuming, due to the nonlocal nature of the
MDDI and the multidimensional integral in the real space. A
conventional method to overcome this difficulty is employing
the fast Fourier transform (FFT) convolution theorem [40,53].
However, the introduction of the FFT causes quite a large error
because the FFT approach assumes a periodic lattice which is
not a good approximation in a trapped dipolar BEC. Thus, the
MDDI must be truncated to increase the numerical accuracy,
particularly in the tightest trapped direction, as in a polarized
dipolar BEC [54].

We restrict the dipole potential to the z direction with
|z − z′| < |Rz| by applying a window function to the integral
kernel terms with (δμν − 3eμeν )/|r − r′|3 [35,48]. The win-
dow function and its Fourier transform are

W (z) =
{

1, |z| < Rz

0, |z| > Rz
(11)

and

W̃ (kz ) = sin(Rzkz )

πkz
. (12)

respectively. The kernel terms now become

y22(r − r′) = sin2 θei2ϕ

|r − r′|3 W (|z − z′|),

y21(r − r′) = sin 2θe−iϕ

|r − r′|3 W (|z − z′|),

y20(r − r′) = 1 − 3 cos2 θ

|r − r′|3 W (|z − z′|). (13)
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TABLE I. Relative error of the MDDI energy before and after
truncation. The relative error is an order of magnitude smaller with
the truncation method. The grid points are 128 × 128 × 64 along the
x, y, and z axes, respectively.

�
��

λ 10 20 40 60 80

Rx,y 8 8 11 15 22.5
Rz 4.5 3.25 3 2.5 1.5
εo 1.4 × 10−2 2.3 × 10−2 1.9 × 10−2 2.4 × 10−2 6.9 × 10−2

εt 4.7 × 10−3 5.4 × 10−3 2.4 × 10−3 2.5 × 10−3 9.6 × 10−3

After the FFT, these terms are

ỹ22(k) = − 4π

3
sin αei2β [sin α − sin α cos(Rzkz )e−Rzk⊥

+ cos α sin(Rzkz )e−Rzk⊥],

ỹ21(k) = − 8π

3
sin αeiβ [cos α − cos α cos(Rzkz )e−Rzk⊥

− sin α sin(Rzkz )e−Rzk⊥ ],

ỹ20(k) = − 4π

3
(1 − 3 cos2 α) + 4πe−Rzk⊥ [sin2 α cos(Rzkz )

− sin α cos α sin(Rzkz )],
(14)

where k⊥ =
√

k2
x + k2

y , α is the polar angle, and β is the
azimuthal angle of the unit vector k̂.

We evaluate the dipolar energy on the cubic grids of ex-
tent [−Rx, Rx] × [−Ry, Ry] × [−Rz, Rz]. The calculation box
is lager than the condensate size, i.e., Rx,y,z ∼ 1.5 × Rc

x,y,z.
The condensate size is defined as n(Rc

x, Rc
y, Rc

z ) = 10−9 × np,
with np the highest density. Note that the truncation size
coincides with the calculation box along z axis. In order to
obtain valid results, the truncation window [−Rz, Rz] must be
larger than the condensate size. Combining Eqs. (14) and (9),
we calculate the dipolar energy in three ways: the original
method, the truncated numerical method, and the analytical
method for a given quantum state of the spin-1 condensate.
The wave function has the form ψm(r) = √

n(r)/3 with the
density

n(r) =
√

λ

(2π )3
exp[−(x2 + y2 + λz2)/2]. (15)

We denote by Ea the analytical MDDI energy, by Eo the orig-
inal, and by Et the truncated. The relative errors are defined
as εν = |(Eν − Ea)/Ea| (ν = o, t). The results are displayed
in Table I. Clearly, although we may in principle reduce the
relative error by simply extending the computation range with
more grid points, the truncation operation is a more efficient
and practical way.

V. NUMERICAL RESULTS ON TOPOLOGICAL PHASE
TRANSITION

We determine numerically the ground state of the 87Rb
dipolar spin-1 condensate by employing the conventional
operator-splitting approach to evolve the three coupled GPEs
(4) in the imaginary-time domain. The kinetic and the

FIG. 1. Phase diagram of a 87Rb dipolar BEC with an optical
plug. The spin vortex phase emerges when the optical-plug barrier
height U0 and the width σ lie in the cyan region. Within the spin vor-
tex phase, the FCLSV appears if the parameter (U0, σ ) is above the
dashed red line and the PCV appears below. The top inset sketches
the spin density distribution in the x-y plane for the FCLSV ground
state at the parameter P3. The middle inset shows that for the PCV
ground state at P2. The bottom inset portrays that for the SMA ground
state at P1. The other parameters are λ = 20 and N = 5 × 105.

truncated MDDI terms are calculated with the FFT algo-
rithm [55]. We set the atom number in the condensate as
N = 5 × 105, the trap frequency ω0 = 2π × 100 Hz, the trap
aspect ratio λ = 20, and the calculation box Rx = Ry = 27ar

and Rz = 2.8ar , unless stated otherwise. The two optical-plug
parameters, the barrier height U0 and the width σ , are scanned.
The initial wave function is set as a parabolic shape with
random coefficients.

The phase diagram in the parameter space (U0, σ ), as
shown in Fig. 1, summarizes the key results for the dipolar
spinor 87Rb BEC. We observe that two phases are present, the
SMA and the spin vortex phases, whose spin density distribu-
tions are sketched in the insets in Fig. 1. From the figure we
find that the appearance of the spin vortex phase requires
the optical-plug barrier height to be larger than a critical value
U0 > Uc. Once the U0 is large enough, the optical-plug width
σ also has to be in an appropriate range, neither too big nor too
small, for the spin vortex phase. This numerical result agrees
qualitatively with the previous analysis in Sec. III, where the
width should lie in an intermediate range. Interestingly, we
find a spin structural change within the spin vortex phase,
from the PCV to the FCLSV, which is coreless (the nearly
zero total density or numerically the total density at the center
is less than 1% of the peak density). The spin structural change
is marked by the red dashed line in Fig. 1. We note that this is
not a phase transition because the symmetries are the same in
the PCV and the FCLSV region [38].
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FIG. 2. Density distribution of the ground state on the x axis (y =
0 and z = 0) for the total density n (black dashed line) and three
components n1 (red solid line), n0 (green solid line), and n−1 (blue
dashed line). The optical-plug potential height is (a) U0 = 0, (b) U0 =
50, (c) U0 = 90, and (d) U0 = 140. The other parameters are σ = 5,
λ = 20, and N = 5 × 105. (b)–(d) correspond to the parameters P1,
P2, and P3 in Fig. 1, respectively. (a) and (b) belong to the SMA phase
where the wave function of three components share the same spatial
mode. (c) and (d) belong to the PCV and the FCLSV, respectively.

The ground-state density is significantly suppressed by
the optical plug, as shown in Fig. 2. The figure shows only
the density distribution along the x axis because the density
distribution is cylindrically symmetric. As the optical-plug
barrier height U0 increases, the total density within and around
the optical plug becomes lower until it reaches nearly zero.
Correspondingly, the densities of each spin component show
a similar trend. An interesting feature is also exhibited, i.e.,
the density distributions of the |mF = +1〉 and |mF = −1〉
components are exactly the same n1(r) = n−1(r). The phe-
nomenon of fz(r) = n1 − n−1 = 0 manifests the anisotropic
property of the MDDI, i.e., spins are aligned in the easy
plane, which is the x-y plane for a disk-shaped condensate
with λ � 1 [27,35,36]. In addition, we find that the density of
the |mF = 0〉 component n0(r) is always larger than n1(r) and
n−1(r) and n0(r) ≈ 2n1(r) in the SMA and the FCLSV phases
(not in the PCV). These features stem from the requirement
to lower the ferromagnetic spin-exchange interaction, which
reaches its lowest value if the spin is fully polarized. Com-
bined with the property of fz(r) = 0, we immediately obtain
n0 = 2n1 = 2n−1 everywhere. Such a density distribution dis-
tinguishes the SMA and the FCLSV states from the PCV state
where n0/n1,−1 is not a constant, especially around the vortex
core.

Typical spatial phase and spin density distributions of a
FCLSV are presented in Fig. 3. As a comparison, we also
show the constant spatial phase and spin density distributions
of an SMA state. The spatial phases of the |0〉 component
of the FCLSV and the SMA are not shown because they
are trivially constant. Clearly, the phases of the FCLSV lin-
early change ∓2π around the origin for the |1〉 and | − 1〉

FIG. 3. Spatial phase distribution of the ground state in the x-y
plane (z = 0) for (a) the | + 1〉 component and (b) the | − 1〉 compo-
nent, with U0 = 50 (P1, the SMA state in Fig. 1). (d) and (e) Same as
(a) and (b) except with U0 = 140 (P3, the FCLSV state). (c) and (f)
Corresponding spin density (arrows) at P1 and P3, respectively. The
color denotes the total density n. The other parameters are the same
as in Fig. 2.

components, respectively, illustrating the phase distribution
of a spin vortex. This phase changing is distinctive from the
SMA, whose phases are constant in the whole space. The spin
density distribution in Fig. 3(f) shows more direct evidence,
where the local spins are aligned circularly around the center
of the spin vortex. Clearly, the spin direction (along the az-
imuthal angle) is always perpendicular to the density gradient,
which has nonzero components only along the radial direction
and the z axis. Such a spin configuration guarantees E ′

dd = 0
(as confirmed also in Fig. 4).

For a vortex, the winding number of the spin component
must be a nonzero integer. For the spin vortex, either the PCV
or the FCLSV, we calculate the winding number of each spin
component, which is proportional to the angular momentum
[28,41]

Lm =
∫

dr ψ∗
m(r)

( − i ∂
∂ϕ

)
ψm(r)∫

dr|ψm(r)|2 , m = 1, 0,−1. (16)

The Lm is depicted in Fig. 4 where U0 increases from 0 to
200. The abrupt change of winding number from zero to
±1 is obvious evidence of a topological phase transition. For
the 87Rb dipolar spinor condensate, the winding numbers are
−1, 0, and 1 for the three components |1〉, |0〉, and | − 1〉,
respectively, in the spin vortex phase where the optical-plug
barrier height U0 is large.

The phase transition from the SMA to the spin vortex
is also indicated by the density ratios for the | ± 1〉 com-
ponent R1,−1, which is defined as R1,−1 = n1,−1(0, 0, 0)/np.
Since fz = 0 everywhere, n1 = n−1 and thus R1 = R−1 always
holds. In the spin vortex phase, R1,−1 = 0 indicates that the
densities of the | ± 1〉 component are zero at the vortex core.

As we discussed in Sec. III, the spin vortex in the dipolar
spinor BEC may be ascribed to the competition between the
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FIG. 4. Phase transitions induced by the plug with the same
parameters as in Fig. 2. The phase transition from the SMA (light
green) to the PCV (light blue) occurs at U0 = 70, where L−1 (solid
line with crosses), L1 (solid line with diamonds), R1 (solid line with
circles), E ′

dd (solid line with squares), and Tϕ (solid line with trian-
gles) undergo an obvious disruption. The structure change from the
PCV to the FCLSV (cyan) occurs at U0 = 120, where Rt approaches
zero. The L0 (dashed line with circles) is always zero and E ′

2 (dotted
line with circles) is continuous and smooth at both phase transitions.

kinetic energy along the azimuthal angle

Tϕ =
∑

m=−1,0,1

∫
dr ψ∗

m(r)

(
− ∂2

2ρ2∂ϕ2

)
ψm(r)

and the intrinsic dipolar energy E ′
dd . Indeed, the intrinsic

dipolar energy drops suddenly to zero, but the azimuthal
kinetic energy soars from zero around the phase transition.
More importantly, the sum energy E ′

dd + Tϕ also decreases
abruptly once the system changes from the SMA phase to the
spin vortex, provided other spin energy terms like E ′

2 remain
continuous and smooth. This confirms that the spin vortex is
due to nothing but the MDDI effect.

As the optical-plug potential barrier height U0 further
increases, the dipolar BEC changes from the PCV to the
FCLSV indicated by the total density ratio Rt , which is de-
fined as Rt = n(0, 0, 0)/np. Such a gradual change in the
central total density is manifested by the appearance of the
coreless vortex, i.e., n(0, 0, 0) = 0. Obviously, the FCLSV
is distinguished from the PCV where a polar core exists
[n0(0, 0, 0)isnonzerothoughn1,−1(0, 0, 0) = 0].

More atoms in the 87Rb dipolar BEC is good for the for-
mation of a spin vortex structure [28]. We investigate also
the phase transition for the atom number N . The numerical
results are shown in Fig. 5. The calculation box Rx,y,z is
adjusted appropriately with N increasing. Clearly, the spin
vortex always appear if the number of atoms is larger than
a critical value Nc, with or without an optical plug. How-
ever, the critical atom number Nc with an optical plug is
an order of magnitude smaller than that without the optical
plug (1.4 × 106 → 1 × 105). Therefore, the application of
an additional optical plug mitigates greatly the experimental

FIG. 5. Same as Fig. 4 except on the atom number N for U0 = 90
with (top) and without (bottom) an optical plug. The critical atom
number Nc (red arrow) with the optical plug is an order of magnitude
lower than that without the optical plug.

effort to realize a spin vortex in the 87Rb dipolar spinor
BEC.

VI. CONCLUSION

By increasing the potential barrier height and adjusting ap-
propriately the width of an additionally applied optical plug, a
87Rb dipolar spinor condensate transits from a spin-uniform
SMA phase to a spin vortex one, due to the competition
between the MDDI and the azimuthal kinetic energy. With
the aid of the optical plug, it is possible to generate the PCV
and the FCLSV states of the 87Rb dipolar condensate in a
controllable way under more relaxed experimental conditions,
e.g., an order of magnitude smaller atom number and smaller
aspect ratio. Our results provide a practical way to realize the
spin vortex state and to explore the topological quantum phase
transition and dynamical phase transitions in 87Rb conden-
sates.

Recent experiments in a ferromagnetic spin-1 7Li BEC
demonstrated a very large spin-dependent exchange inter-
action strength (|c2| ∼ c0/2) [56–58]. For such a strong
ferromagnetic interaction, it would be more challenging to
generate a spin vortex state. However, as implied by Eq. (10),
a FCLSV state is still possible with the assistance of an optical
plug. It is wort exploring this novel regime in the future.
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APPENDIX: DERIVATION OF EQ. (10)

In the quasi-one-dimensional ring trap, we assume that
the ring of a BEC lies in the two-dimensional plane with a
linear density n = N/2πσ , where σ is the ring’s radius. For
the 87Rb dipolar BEC, the one-dimensional wave function
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is expressed as ψm(ϕ) = (1/
√

2π ) exp(iθm) (m = 1, 0,−1),
where the phase θm = kmϕ + αm satisfies [14,59]

θ1 + θ−1 − 2θ0 = 0. (A1)

For the spin vortex we consider, km = −m, and for the SMA
phase km = 0 [27].

We calculate the energy difference �E between two local-
energy-minimum states, the SMA and the spin vortex state,
denoted by the superscripts S and V , respectively. Due to the
homogeneous one-dimensional density, the potential energy
difference �V ≡ V V − V S = 0 and the spin-independent
(density) interaction energy difference �E0 = 0. The kinetic
energy is

T =
∑

m

∫
σ dϕ ψ∗

m

(
− 1

2σ 2

∂2

∂ϕ2

)
ψm = 1

2σ 2

∑
m

ζmk2
m,

(A2)
where Nm is the atom number of the m component and ζm =
Nm/N . Clearly, T S = 0 and thus the kinetic energy difference
�T = T V − T S = T V = (ζ1 + ζ−1)/2σ 2.

To calculate the MDDI energy difference, we cut off the
dipolar interaction at the average distance of two neighboring

atoms rc = 2πσ/N [48], which yields the cutoff of the az-
imuthal angle ϕc = 2π/N on the ring. The MDDI energy
difference is

�Edd = EV
dd − ES

dd

= − cdd N

16π2σ 3

∫ ϕ f

ϕi

dϕ−

×
∫ 2π

0
dϕ+

3 − 2 sin2(ϕ−) + 3 cos(2ϕ+)

|sin(ϕ−)|3

= − cdd N

8πσ 3

∫ ϕ f

ϕi

dϕ−
3 − 2 sin2(ϕ−)

|sin(ϕ−)|3

= − cdd N

8πσ 3
Idd , (A3)

where ϕi = ϕc, ϕ f = 2π − ϕc, and ϕ± = (ϕ ± ϕ′)/2, with ϕ

and ϕ′ representing the azimuthal angle of two atoms located
at (σ, ϕ) and (σ, ϕ′), respectively. Obviously, Idd is only a
positive number determined by the atom number and the trun-
cation ϕc. As a result, the total energy difference becomes

�E = �T + �Edd = ζ1 + ζ−1

2σ 2
− cdd N

8πσ 3
Idd . (A4)
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