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Localization of ultracold atoms in Zeeman lattices with incommensurate spin-orbit coupling
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We consider a particle governed by a one-dimensional Hamiltonian in which artificial periodic spin-orbit
coupling and the Zeeman lattice have incommensurate periods. Using the best rational approximations to
such a quasiperiodic Hamiltonian, the problem is reduced to a description of spinor states in a superlattice.
In the absence of constant Zeeman splitting, the system acquires an additional symmetry, which hinders the
localization. However, if the lattices are deep enough, then localized states can appear even for Zeeman field
with a zero or small mean value. Spatial distribution of localized modes is nearly uniform and is directly related
to the topological properties of the effective superlattice: center-of-mass coordinates of modes are determined
by Zak phases computed from the superlattice band structure. The best rational approximations feature the
“memory” effect: Each rational approximation holds the information about the energies and spatial distribution
of the modes obtained under preceding, less accurate approximations. Dispersion of low-energy initial wave
packets is characterized by the law ∝ tβ , with β varying between 1/2 at the initial stage and 1 at longer, but
still finite-time, evolution. The dynamics of initial wave packets, exciting mainly localized modes, manifests
quantum revivals.
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I. INTRODUCTION

Eigenstates of a one-dimensional quantum particle in a
potential characterized by two incommensurate spatial pe-
riods, i.e., in a quasiperiodic potential, are dominated by
(but not limited to) spatially localized and delocalized wave
functions that correspond to different regions of the energy
spectra separated by a threshold energy usually referred to
as a mobility edge (ME) [1]. Over the past four decades,
the properties of quasiperiodic potentials have been broadly
explored using both the tight-binding approximation, i.e., dis-
crete models (see, e.g., [2–6]), and the spatially continuous
Schrödinger equation with incommensurate potentials (see,
e.g., [7–13]). The existence of localized and delocalized states
can also be observed in two-component systems, like spin-
orbit-coupled cold atoms [14] with spinor components loaded
in identical quasiperiodic optical lattices [15–17]. It has been
established that threshold lattice parameters at which the
localization-delocalization transition occurs can be strongly
modified by the spin-orbit-coupling (SOC)-induced band flat-
tening [18–20]. Emergent phases induced by uniform SOC in
a quasiperiodic tight-binding system on a square lattice have
been addressed too [21,22].

A setting with spin-orbit-coupled atoms allows for an es-
sentially novel formulation of the localization problem. First,
the SOC itself can be modulated in space [23,24] and, in par-
ticular, can be periodic. Second, the components of a spinor
describing a spin-orbit-coupled atom can experience different,
in particular, out-of-phase, periodic potentials [25] constitut-
ing a Zeeman lattice. Even without the SOC modulation, such
a lattice affects the dynamics of cold atoms very differently in

comparison with conventional optical lattices (see, e.g., [19]).
The study of the simultaneous effect of periodic SOC mod-
ulation and a Zeeman lattice when both have periods whose
relation approaches an incommensurate number is the main
goal of the present work. We demonstrate that this system fea-
tures a number of interesting properties. First, we find that a
constant component of the Zeeman splitting plays a prominent
and ambivalent role: when it is absent, the system acquires an
additional symmetry, which imposes that any localized state
must be degenerate and two peaked. As a result, in this case
the localization requires deeper lattices than in the case where
the Zeeman field has a nonzero mean. At the same time, at
large enough constant Zeeman splitting all modes become
delocalized. As a result, there exists a parametric region where
the most pronounced localization is achieved for intermedi-
ate values of the constant Zeeman field. Second, using the
best rational approximations to the incommensurate lattices,
we reduce the problem to a spinor in a periodic superlattice
and uncover the relation between the spatial distribution of
localized modes and topological properties of the effective su-
perlattice. Namely, the coordinate of the center of mass (c.m.)
of each localized mode is determined by the Zak phase [26]
of the respective superlattice miniband. Third, we report the
“memory” effect for successive best rational approximations:
Each approximation has memory of the preceding, i.e., less
accurate, ones. Finally, studying the dynamics of initially
localized wave packets, we observe oscillatory behavior, in-
terpreted as a signature of quantum revivals.

This paper is organized as follows. In Sec. II we in-
troduce the model and describe our approach, which relies
on the approximation of the quasiperiodic two-component
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Hamiltonian with an exactly periodic superlattice. Section III
presents numerical results for the localization of the eigen-
states of the obtained Hamiltonian. Section IV addresses the
dynamics of the system below and above the localization
transition. Section V concludes the paper.

II. THE MODEL

A. Best rational approximations and effective Hamiltonians

Let us consider a spin-orbit-coupled atom governed by the
dimensionless Hamiltonian as follows:

H = 1

2
[−i∂x + a(x)σ1]2 + � + �(x)

2
σ3. (1)

Here a(x) is a real-valued π -periodic function (it will be
referred to below as a SOC lattice): a(x) = a(x + π ), and
σ1,2,3 are the Pauli matrices. The Zeeman field consists of a
constant component � and a π/κ-periodic lattice: �(x) =
�(x + π/κ ), where κ is an irrational number; that is, the
periods of the SOC lattice and Zeeman lattice are incommen-
surate.

Since a real-world atomic system is finite and, without loss
of generality, can be centered at x = 0, we address the eigen-
value problem on a finite interval considered to be sufficiently
large,

Hψ = Eψ, x ∈ [−	/2, 	/2], (2)

where 	 denotes the spatial extent of the system.
For any irrational κ there exists a sequence

{κ (N1 ), κ (N2 ), . . .} of the best rational approximations (BRAs)
of gradually improving accuracy (see, e.g., [27]). Here “the
best” means that if a fraction κ (N ) = M/N is one of the BRAs
(with M and N being coprime integers), then it approximates
κ better than any other rational number with a denominator
less than or equal to N . More formally, κ (N ) = M/N is one the
BRAs if for any pair of coprime integers P and Q, such that
M/N �= P/Q and 0 < Q � N , one has |Qκ − P| > |Nκ − M|.
The sequence of BRAs can be constructed from the continued
fraction associated with the irrational number κ: truncation
of the infinite continued fraction to a finite number of terms
yields one of the BRAs. The more terms one keeps in the
truncated continued fraction, the better the accuracy of the
obtained BRA is.

Let κ (N ) = M/N be one of the BRAs to κ (hereafter we
use the upper index N to refer to the BRA with denomina-
tor N ; then the numerator M is uniquely defined). Define a
π/κ (N )-periodic function �(N )(x) = �(N )(x + (N/M )π ), ob-
tained from �(x) by the replacement κ → κ (N ), and introduce
the respective Hamiltonian H (N )

H (N ) = 1

2
[−i∂x + a(x)σ1]2 + � + �(N )(x)

2
σ3. (3)

Hamiltonian (3) features a combination of two commensurate
lattices, a(x) and �(N )(x), and therefore represents a periodic
superlattice with a period equal to L(N ) = πN . Assuming that
�(x) is a continuously differentiable function, one can always
find a sufficiently accurate BRA in the sense that the differ-
ence

ω(N ) = �(x) − �(N )(x) = O((κ − κ (N ) )x), |x| � 	

2
, (4)

FIG. 1. (a) The lowest energy bands for the π -periodic system
with M = N = 1 (solid black lines) and 2π -periodic system with
M/N = 3/2 (dashed red lines) are shown in the respective first Bril-
louin zones [−1, 1) and [−1/2, 1/2) (the latter shown by vertical
dotted lines). Spin densities 〈σ1,2,3〉 computed for the eigenfunctions
for (b) the lowest and second-lowest energy bands with M = N = 1
at k = 0. Here � = 3, �0 = 2, α = 2, and θ = π/3.

is as small as necessary for x ∈ [−	/2, 	/2]. Thus, any eigen-
state of H localized in the interval 	 can be considered a
weakly perturbed state in the Hamiltonian H (N ) in the same
interval; notice that the above requirement for ω(N ) implies
L(N ) � 	.

Several differences between the introduced system (1) and
its approximations (3) and the previously studied discrete
models of the Aubry-André (AA) type should be empha-
sized. Being of spinor character, the Hamiltonian (1) is
four-parametric, unlike the two-parametric AA model. With
the period of the SOC lattice being fixed, these four parame-
ters are the amplitude of the SOC lattice α [see (17) below],
the amplitude of the Zeeman lattice �0, the constant Zeeman
splitting �, and the phase shift θ between the two lattices. Fur-
thermore, although the incommensurate limit corresponds to
the Brillouin zones of the successive approximations shrink-
ing to zero (see the illustration in Fig. 1) and thus to the limit
of extremely flat low bands, the tight-binding approximation
is not applicable. Indeed, in the incommensurate limit the
lattices a(x) and �(x) are not required to be deep enough
to justify the tight-binding approximation for several lowest
levels. Furthermore, a Zeeman lattice incorporates sublattices
for two spinor components with opposite signs: where for one
component the potential has a minimum, the potential for the
other component has a maximum and vice versa. Thus, the
localization of the modes below the ME is not determined by
positions of equally spaced deep potential minima; instead,
as we show below, the places where modes are situated are
determined by the Zak phases, i.e., by the topology of the
superlattice.

B. Periodic boundary conditions

To describe the localized states of H , one can consider the
eigenvalue problem for H (N ) (cf. [8,10]) subject to desirable
boundary conditions. Periodicity of H (N ) implies that periodic
boundary conditions are the most promising choice, whose
advantages include the possibility to relate the problem to
the Bloch theory and employ topological characteristics of
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periodic systems. Therefore, from now on our goal is the study
of the localization of atomic states and the evolution of wave
packets governed by the approximated Hamiltonian H (N ) with
the focus on sufficiently large N (formally tending to infinity).
More specifically, we consider the eigenvalue problem for
H (N ),

H (N )ψ(N )(x) = E (N )ψ(N )(x), (5)

where ψ(N )(x) is a two-component spinor wave function in the
interval

x ∈ [−L(N )/2, L(N )/2] =: I (N ) (6)

subject to periodic boundary conditions,

ψ(N )(−L(N )/2) = ψ(N )(L(N )/2), (7)

and normalization∫
I (N )

[ψ(N )(x)]†ψ(N )(x) dx = 1. (8)

The eigenvalue problem (5) with boundary conditions (7)
has a discrete spectrum whose eigenenergies will be denoted
by E (N )

1 � E (N )
2 � · · · � E (N )

ν � · · · , where the lower index
ν = 1, 2, . . . enumerates the eigenenergies and respective
eigenvectors ψ(N )

ν . Given an eigenstate ψ(N )
ν , the quantitative

measure of its localization within the interval I (N ) can be con-
veniently represented by the inverse participation ratio (IPR)

χ (N )
ν =

∫
I (N )

([
ψ(N )

ν

]†
ψ(N )

ν

)2
dx. (9)

Large, χ (N )
ν � 1/L(N ), and small, χ (N )

ν � 1/L(N ), values of
the IPR correspond to localized and delocalized states.

Under the periodic boundary conditions (7), the position
of a localized mode within the superlattice period can be
computed as [28]

X(N )
ν = L(N )

2π
arg

{∫
I (N )

[
ψ(N )

ν

]†
ψ(N )

ν e2π ix/L(N )
dx

}
, (10)

where the principal value of the argument must be chosen,
i.e., arg ∈ (−π, π ]. Generally speaking, the position defined
in (10) is different from the conventional c.m., which is de-
fined as

x(N )
ν =

∫
I (N )

x
[
ψ(N )

ν

]†
ψ(N )

ν dx (11)

and is usually used when localization on the whole real axis is
considered. In the meantime, the difference between X(N )

ν and
x(N )
ν becomes appreciable only for states localized near the

boundaries of the interval I (N ), i.e., near x = ±L(N )/2. Since
we are interested in the limit N � 1, the relative number of
such modes is small, which means that their contribution to
the results presented below is negligible. Therefore, we will
have X(N )

ν ≈ x(N )
ν for almost all localized modes.

C. Superlattice band structure and Zak phases

Since the Hamiltonian H (N ) admits the periodic con-
tinuation from the interval I (N ) to the entire real axis, it
is natural to explore the band-gap spectrum of the corre-
sponding eigenvalue problem. Considering x ∈ R, one can
formulate the eigenvalue problem as follows: H (N )ϕ

(N )
νk (x) =

ε(N )
ν (k)ϕ(N )

νk (x). Here ϕ
(N )
νk (x) = eikxu(N )

νk (x) are Bloch states,
with u(N )

νk (x) = u(N )
νk (x + L(N ) ) being L(N )-periodic functions,

ε(N )
ν (k) are the energies, index ν = 0, 1, . . . enumerates the

spectral bands, and the Bloch wave number k runs over the
reduced Brillouin zone of the superlattice: k ∈ [−1/N, 1/N ).
The usual normalization requires that

∫
I (N ) [u

(N )
νk ]†u(N )

νk dx = 1.
If the superlattice spectrum ε(N )

ν (k) is computed, the eigen-
values and eigenvectors of the eigenvalue problem (5) with
periodic boundary conditions (7) can be obtained as E (N )

ν =
ε(N )
ν (0) and ψ(N )

ν (x) = ϕ
(N )
ν0 (x). In other words, each solution

of (5)–(7) is a Bloch state at k = 0 of the effective periodic
lattice defined on the whole real axis by the given BRA. More-
over, using the superlattice band structure, the spatial position
of localized modes ψ(N )

ν (x) defined in (10) can be estimated
from the topology of the corresponding band. Indeed, for each
band of the superlattice one can compute the Zak phase [26]

γ (N )
ν =

∫ 1/N

−1/N
�(N )

ν (k)dk, (12)

where

�(N )
ν (k) = i

∫
I (N )

[
u(N )

νk (x)
]† ∂

∂k
u(N )

νk (x)dx (13)

is the Berry connection. In terms of the Wannier functions [29]

w(N )
ν (x − πmN ) = N

2

∫ 1/N

−1/N
e−iπkmNϕ

(N )
νk (x)dk, (14)

the Zak phase can be expressed as

γ (N )
ν = 2

N

∫ ∞

−∞
x[w(N )

ν (x)]†w(N )
ν (x)dx. (15)

Those eigenstates which are well localized inside the interval
I (N ) can be approximated by the Wannier functions computed
from the respective superlattice bands, i.e., ψ(N )

ν (x) ≈ w(N )
ν (x)

for x ∈ I (N ), and therefore, we obtain the relations

X(N )
ν ≈ x(N )

ν ≈ N

2
γ (N )

ν . (16)

To conclude this section, we emphasize that while periodic
boundary conditions are used and the effective periodic exten-
sion of the potential is exploited, the physical applications of
the results remain meaningful only inside the interval I (N ).

III. NUMERICAL RESULTS

A. Rational approximations

To perform a numerical study, we have chosen the π -
periodic SOC lattice in the form

a(x) = α cos(2x), (17)

where α is the lattice depth, and the πN-periodic Zeeman
lattice

�(N )(x) = �0 sin
(

2
M

N
x + θ

)
, (18)

where the fraction M/N is one of the BRAs to κ =√
2. The function �(N )(x) is an approximation to �(x) =

�0 sin(2
√

2x + θ ) in the quasiperiodic Hamiltonian (1). In the
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explicit form, several first BRAs for
√

2 are given as [30]

M

N
= 1

1
,

3

2
,

7

5
,

17

12
,

41

29
,

99

70
,

239

169
,

577

408
,

1393

985
, · · · . (19)

We emphasize, however, that our analysis, as well as the
main conclusions, remains valid for any irrational number.
Nowhere in the subsequent analysis is the specificity of the
above choice used; only the set of fractions M/N (19) giving
the best rational approximation will be modified for another
choice of κ . A specific choice of the phase shift between the
SOC and Zeeman lattices, i.e., angle θ in (18), also has no
significant impact on the results presented below, except for
certain particular values of θ at which the system acquires an
additional symmetry (see Sec. III E).

Before we proceed with our main results, it is instructive
to compare the band structure corresponding to the two least
accurate BRAs in (19). For M/N = 1 the periods of both
lattices are equal to π . In Fig. 1(a) we compare the few lowest
energy bands of the resulting π -periodic Hamiltonian with
the band structure of the 2π -periodic system obtained for
M/N = 3/2. We observe the standard splitting of the bands of
the π -periodic lattice into the N = 2 minibands. In Figs. 1(b)
and 1(c) we show the distribution of the spin densities 〈σ j〉 =
ψ†σ jψ ( j = 1, 2, 3) at k = 0.

Although the eigenvalue problem (5) with the periodic
boundary conditions (7) has a purely discrete spectrum E (N )

ν

(ν = 1, 2, . . . ), defining the difference between the adjacent
energies, �(N )

ν = E (N )
ν+1 − E (N )

ν , and bearing in mind the pe-
riodic continuation described above, one can employ the
terminology of periodic potentials, considering “gaps” (rel-
atively large �(N )

ν ) and “minigaps” (relatively small �(N )
ν ).

Let us choose one of the BRAs from (19), say, M/N =
239/169. In view of the variety of the parameters, we first
focus on the effect of the increasing constant Zeeman splitting
� with all other parameters being fixed. For a few differ-
ent values of � we have computed several hundreds of the
smallest eigenvalues E (N )

ν . The eigenvalue problem (5)–(7)
has been solved numerically using a Floquet-Fourier-Hill-type
method [31,32]. In Fig. 2(a) we plot the differences �(N )

ν for
several values of constant Zeeman field �. The distinctive
pattern that can be observed from this plot indicates that,
irrespective of the value of �, the gaps are situated between
the modes with certain numbers determined by the BRAs
(which are discussed in Sec. III C).

B. Localized modes and the mobility edge

Next, we examine the localization, the existence of a ME,
and the spatial distribution of localized modes. In Fig. 2(b) we
plot the IPR χ (N )

ν versus the mode number for several values of
the constant Zeeman field �. At � = 0, all eigenfunctions are
delocalized (with the IPR χ (N )

ν not exceeding 0.02, not shown
in Fig. 2), which can be partially explained by an additional
symmetry that the system acquires at � = 0 (see below in this
section). For sufficiently small values of � [see � = 0.5 in
Fig. 2(b)], the IPR remains small for all eigenfunctions. At
larger values of � a sharp ME emerges [see � = 3 and 4
in Fig. 2(b)] which separates a fraction of localized modes
with lower energies from the rest of the spectrum. Comparing
the two panels in Fig. 2, we observe that the location of the

FIG. 2. (a) Difference �(N )
ν between the adjacent eigenenergies

vs the mode number ν for several values of the constant Zeeman
splitting �. (b) IPR χ (N )

ν for the same eigenvalues. Here N = 169
(M/N = 239/169), θ = π/3, �0 = 2, and α = 2. For each value
of �, the corresponding plots are obtained from the 700 smallest
eigenvalues.

ME (when the latter exists) coincides with the position of
one of the gaps in the discrete spectrum (corroborating previ-
ous studies on the one-component Schrödinger equation with
quasiperiodic potential [13]). This implies that the chosen
BRA determines not only the position of the gaps in the
spectrum of eigenenergies but also the number of localized
eigenstates. In Fig. 2 this number is equal to 239 and 338
for � = 3 and 4, respectively. In the meantime, the further
increase of �, formally to the limit � → ∞, results in the
degradation of the sharp ME and in the general decrease in
the values of the IPR [see � = 7 in Fig. 2(b)]. This is a
manifestation of the Paschen-Back effect, also known as the
nonlinear Zeeman effect [33–35] (we notice that delocaliza-
tion of particles caused by strong random SOC was recently
described in [36]). A large Zeeman field � results in a strong
imbalance between the components (for a large positive �

one has |ψ2| � |ψ1|), which means that the effect of the SOC
lattice becomes essentially perturbative, and the behavior of
the system is dominated by the periodic Zeeman lattice, which
alone is not sufficient for the localization.

We notice that the dimensionless x is measured in units
of λ/π , where λ is the dimensional physical period of the
Zeeman lattice, while the lattice amplitude is measured in
units of 2Er , where Er = h̄2π2/(2λ2m) is the recoil energy
(m is the atomic mass). Thus, �0 = 2 corresponds to a lattice
with amplitude 2Er (i.e., not too deep). The length Nπ corre-
sponds to 500 μm for N = 169 and for the physical period of
λ = 3 μm.

The fact that all eigenstates shown in Fig. 2 are delocalized
for zero and small values of the constant Zeeman field, � = 0,
can be, to some extent, explained by analyzing symmetries
of the system. We notice that for any � both the quasiperi-
odic Hamiltonian H and its superlattice approximation H (N )
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FIG. 3. Centers X(N )
ν (red circles) and γ (N )

ν N/2 (blue stars) for
all modes with energies below the ME. Here N = 169 (M/N =
239/169), � = 3, θ = π/3, �0 = 2, and α = 2. There are 239 lo-
calized modes below the ME.

feature a time-reversal symmetry σ3K (K is the operator of
complex conjugation): [H, σ3K] = [H (N ), σ3K] = 0, mean-
ing that any nondegenerate state is σ3K symmetric and thus
can be represented in the form ψ = (ψ1(x), iψ2(x))T , where
ψ1,2(x) are real. At the same time, for � = 0 the Hamilto-
nian H (N ) with lattices given by (17) and (18) acquires an
additional symmetry. Introducing the translation over the half
period T (N ) : x → x + πN/2, we find that [H (N ), σ1T (N )] = 0
for even N and [H (N ), σ1T (N )K] = 0 for odd N . This addi-
tional symmetry implies that any localized state that exists
at � = 0 is generically degenerate and consists of two peaks
spatially separated by the half period L(N )/2.

At the same time, the half-period translation symmetry
does not completely forbid the localization at � = 0: we
found that the simultaneous increase of SOC-lattice and
Zeeman-lattice depths (starting with approximately �0 � 4
and α � 4) eventually enables the existence of states com-
posed of two localized peaks spatially separated by the half
period (more precisely, there are two peaks in each compo-
nent, ψ1 and ψ2, of the spinor eigenstate ψ). Localization for
a small, but nonzero, � is also illustrated in Fig. 5(c) below.

As established above in Eq. (16), the periodic continua-
tion of the superlattice Hamiltonian over the entire real axis
provides a connection between the spatial distribution of lo-
calized eigenstates and the Zak phases of the bands of the
corresponding superlattice. In order to illustrate this obser-
vation, in Fig. 3 we compare the values Nγ (N )

ν /2 computed
numerically from the superlattice band spectrum with the
centers of localized states obtained directly by substituting
the numerically found eigenvectors of (5) into the definition
in Eq. (10). The validity of approximation (16) is verified for
all localized modes, except for a few states situated at the
boundaries of the interval I (N ).

C. Memory effect

Figure 3 reveals several other interesting traits. For the
chosen parameters, the localized modes are clustered in the
two lowest bands, and the centers of modes form a quasiperi-
odic pattern in each band. The energy distribution of the
modes is not uniform within each band: the localized modes
tend to accumulate near the energy band edges, revealing an

expectable increase of the density of states near the band
edges. At the same time, the distribution of the centers of
the localized modes along the interval I (N ) is nearly uniform.
This suggests an intuitive explanation of the fact that the
spectrum computed for the given BRA “remembers” some
information about the previous (i.e., less accurate) BRAs.
Indeed, let M1/N1 and M2/N2 be two BRAs with N1 < N2 (i.e.,
the second BRA is more accurate). Then the corresponding
superlattice period I (N2 ) can be represented as I (N2 ) = I− ∪
I (N1 ) ∪ I+, where I− and I+ are intervals [−πN2/2,−πN1/2)
and [πN1/2, πN2/2), respectively. Both intervals I (N1 ) and
I (N2 ) are uniformly covered by localized states. At the same
time, if N1 and N2 are large, then the states inside the interval
I (N1 ) located sufficiently far from its boundaries are weakly
affected by the replacement of �(N1 )(x) by �(N2 )(x) be-
cause δ�(x) = �(N2 )(x) − �(N1 )(x) ∼ ( M2

N2
− M1

N1
)�0x is small

enough. In other words, passing from the less accurate BRA
to the more accurate one, one does not significantly affect
the states localized within I (N1 ), i.e., obtained under the less
accurate approximation. Notice that |δ�(x)| is a very small
quantity: After a few first approximations, say, for N1 = 70
and N2 = 169, even at the boundaries of I (N1 ) one has δ�(x) ≈
9 × 10−3�0. Thus, the localized states in the interval I (N2 ) can
be viewed as the weakly deformed states of the previous ap-
proximation in I (N1 ) complemented by the “new” states which
are located mainly in the intervals I±. Since the localized
states are uniformly distributed, the number of localized states
n(N1,2 ) for BRAs with N1 and N2 are interrelated as

n(N2 ) ≈ n(N1 ) + n(N1 ) N2 − N1

N1
= n(N1 ) N2

N1
. (20)

In other words, considering a sequence of BRAs N1 < N2 <

N3 < · · · , one obtains a nested structure of I (N ) intervals:
I (N1 ) ⊂ I (N2 ) ⊂ I (N3 ) ⊂ · · · . The memory that the Nj th approx-
imation has about its Nj−1th predecessor consists of the modes
located inside I (Nj ) and hence inside I (Nj−1 ) as well, i.e., of the
modes that belong to both intervals. To illustrate this memory
effect, in Fig. 4 we juxtapose the energies and centers of
localized modes obtained under two subsequent BRAs with
N1 = 169 an N2 = 408. In Fig. 4 we observe that within the
smaller interval I (169) the centers and energies computed for
both BRAs coincide for almost all localized modes, except
for a few modes situated near the boundaries of this interval;
that is, the more accurate BRA retains the information about
the localized modes that exist under the previous BRA.

The memory effect can also be observed from the position
of the gaps in the miniband spectra plotted in Fig. 2(a) (for
the stationary Schrödinger equation with an incommensurate
bichromatic lattice potential, this phenomenon was discussed
in [8]). Trying to understand why the largest gaps �(N )

ν occur
exactly at certain positions ν, let us go back to the band
structure of the π -periodic lattice [shown in Fig. 1(a)] that
corresponds to the least accurate BRA with N = M = 1. Pass-
ing to a more accurate BRA with M, N > 1, each band of
the former lattice splits into N minibands [this is illustrated
in Fig. 1(a) for M/N = 3/2]. It is natural to expect that the
emerging minibands are situated close to bands of the original
lattice. This anticipation would imply that the largest gaps
between the minibands, i.e., the largest values of �(N )

ν corre-
spond to ν = N, 2N, 3N, . . .. However, already from Fig. 1(a)
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FIG. 4. (a) Centers X(N )
ν for all modes with energies below the

ME for two rational approximations: M/N = 239/169 (solid blue
circles) and M/N = 577/408 (open red circles). There are 239 and
577 localized modes below the ME, respectively. Vertical dotted lines
correspond to the edges of the intervals I (169) and I (408), I (169) ⊂ I (408).
(b) Dependence of IPR χ (N )

ν on energies E (N )
ν for the two rational

approximations. Only the low-energy eigenstates E (N )
ν < −1.95 are

shown in this panel. Here � = 5, �0 = 2, θ = π
√

3, and α = 2.

it is evident that this first expectation is only partially cor-
rect: some of the minibands are situated close to each other
even though they emerge from different bands of the original
lattice. Nevertheless, the expected pattern still manifests: Ana-
lyzing the location of the gaps in Fig. 2(a), we can see that the
largest value of �(N )

ν appears at ν = 338, thus corresponding
to 169 + 169 (i.e., to the chosen 2N). In the meantime, the
second-largest gap in Fig. 2 appears at ν = 239; that is, the
relation 239 = 169 + 70 is verified. Other large gaps are situ-
ated at ν = 99, 140, 478, 577, 676. Each of these numbers
can be represented as a sum of two (or four) denomina-
tors in the sequence (19): 99 = 70 + 29, 478 = 2(70 + 169),
577 = 3 × 169 + 70, 676 = 4 × 169. Thus, in this picture the
positions of the gaps in the discrete spectrum are determined
not only by the particular BRA, which is M/N = 239/169
in the numerical simulations, but also by the previous BRAs
in the series (19). In other words, the spectrum obtained for
some particular BRA preserves certain information about the
previous, less accurate approximations in the sequence (19).

D. Global picture

The above study focused on isolated values of the con-
stant Zeeman splitting �. Now we fulfill a more thorough
examination of the eigenspectrum of problem (5) scanning
a finite interval of �. In Fig. 5(a) we plot the computed
points (�, E (N )

ν ). The pseudocolor represents the value of
the IPR for each computed eigenvector. The obtained gen-
eral picture agrees with the previous considerations. Namely,
we observe that for small and large values of � the spec-
trum is poorly localized, i.e., characterized by relatively small

FIG. 5. Pseudocolor plot of IPR vs (a) the amplitude of the con-
stant Zeeman splitting �, (b) and (c) the amplitude of the Zeeman
lattice �0, and (d) the amplitude of the SOC lattice α. Other parame-
ters are chosen as α = 2, �0 = 2 in (a), α = 2, � = 2 in (b), α = 4,
� = 0.1 in (c), and � = 3, �0 = 2 in (d). All panels are obtained for
θ = π/3, and M/N = 239/169 in (a), (b), and (d) and M/N = 99/70
in (c).

IPRs corresponding to wave-packet widths comparable to the
size of the system L(N ) . A sharp ME, i.e., one separating
energies of delocalized states and the states whose local-
ization domain is much lower than the size of the system,
exists for 2 � � � 6. The location of the ME coincides with
the upper edge of the higher band in which the states are
localized.

In Fig. 5(b) we show a pseudocolor diagram obtained for
a situation in which the value of the constant Zeeman field �

is fixed but the amplitude of the Zeeman lattice �0 increases
gradually from zero. As one can expect, all states are delo-
calized in a Zeeman lattice with zero and small amplitudes
(�0 � 2). The localization of states from the lowest gaps is
gradually enhanced with the increase of �0. Moreover, for
sufficiently large �0, one observes several MEs emerging
between the groups of energies associated with localized and
delocalized eigenstates. In this last case clusters of localized
states have energies bigger than those of delocalized states [in
Fig. 5(b) this is clearly seen for �0 � 6].

In Fig. 5(c) we illustrate the possibility of localization in
the Zeeman field with the small mean value � = 0.1. We
observe that in this case the localization is also possible but
requires the presence of deeper lattices compared to the local-
ization under intermediate values of � [compare the values
of α and �0 in Figs. 5(a) and 5(c)]. Finally, in Fig. 5(d) we
present the localization diagram for the increasing SOC lattice
amplitude α. Localization is observed only for a finite interval
of the SOC strength and is characterized by the inhomoge-
neous dependence of the ME on α: For the parameters in
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Fig. 5(d) the localization domain is 2 � α � 6.5, while the
ME is much lower for the central part of this interval.

E. Degenerate modes

In the generic situation the spectrum in (5) is nondegener-
ate, i.e., E (N )

ν < E (N )
ν+1 for all (or almost all) ν. However, for

special values of the phase shift θ [see Eq. (18)] between the
SOC and Zeeman lattices, certain BRAs may enable addi-
tional symmetries that result in degeneracies, i.e., in a large
number of double eigenenergies E (N )

ν = E (N )
ν+1 emerging in the

spectrum. To look for an additional symmetry, let us consider
a phase shift of the form θ = Q1π/Q2, where Q1,2 are co-
prime integers. Then we can observe that the transformation
x → Pπ/2 − x, where integer P satisfies the condition

2
Q1

Q2
+ P

M

N
= odd integer, (21)

transforms the superlattice Hamiltonian H (N ) with the SOC
and Zeeman lattices given by (17) and (18) either to itself
(if P is odd) or to its complex conjugate (if P is even).
If ψ(N )

ν (x) is an eigenvector corresponding to the energy
E (N )

ν , then, depending on the parity of P, ψ(N )
ν (Pπ/2 − x) or

Kψ(N )
ν (Pπ/2 − x) is also an eigenstate corresponding to the

same eigenenergy E (N )
ν . If the original and transformed eigen-

vectors are linearly independent (which is true for most of
the modes), then Eν = Eν+1 is a double eigenvalue which has
a two-dimensional invariant subspace spanned by the found
eigenvectors.

Considering (21) as an equation for an unknown P with
Q1/Q2 and M/N being fixed, we observe that this equa-
tion does not always have a solution. For example, for
Q1/Q2 = 1/3 (this is the case considered above) the BRA
M/N = 239/169 does not allow for an integer solution P.
However, for the next BRA from the sequence (19), i.e.,
for M/N = 577/408, one finds a solution P = 136. Thus,
different BRAs can be “nonequivalent” with respect to this
spontaneous symmetry. In the case when the symmetry is
present, we have verified numerically that a large number
of double eigenenergies E (N )

ν = E (N )
ν+1 emerge in the spec-

trum. Each double eigenvalue is associated with a two-peaked
eigenvector, and the distance between the two peaks is equal
to Pπ/2.

IV. DYNAMICS

Finally, we briefly discuss the evolution of a time-
dependent spinor �(x, t ) described by the Schrödinger
equation i�t (x, t ) = H (N )�(x, t ) considered subject to the
periodic boundary conditions (7). Aiming at a qualitative pre-
liminary study, here we present several explicit simulations
of the dynamics which illustrate the effect that the pres-
ence of localized modes has on the temporal dynamics. The
time-dependent equation has been integrated with the σ3K-
symmetric initial condition �(x, t = 0) = (1, i)T �(x), where
�(x) is a real-valued Gaussian wave packet [the IPR of the
initial pulse was χ (t = 0) = 0.2]. Since the localized modes
are distributed uniformly on the interval I (N ), the qualitative
dynamics does not depend significantly on the position of the
initial wave packet. We created the initial state at the center

FIG. 6. (a) and (b) Pseudocolor plots of the temporal evolution
�†� below and above the delocalization-localization transition [� =
0 and � = 3 in (a) and (b), respectively]. Only the central part, x ∈
[−100, 100], of the entire interval I (N ) is shown in the plots. (c) The
corresponding evolution of the IPR χ (t ). (d) A log-log plot of the
widths in units of the full superlattice period L(N ) = πN , plotted for
t ∈ (0, 50). Black dashed lines correspond to the square-root (∝ √

t)
and linear (∝ t) laws. (e) and (f) show �†� at � = 3 and different
moments of time t in linear and log scales. Here M/N = 239/169,
�0 = 2, α = 2, and θ = π/3.

of the interval I (N ). The numerical solution �(x, t ) was then
used to find the time-dependent IPR χ (t ) and the mean width.

In the presence of localized states, the initial wave packet
excites those situated along the width of the distribution �(x),
leading to a nondispersing part of the wave packet. Addition-
ally, higher-energy extended sates are excited, which results
in partial dispersion. The qualitatively different dynamics in
the extended and localized phases are illustrated in Figs. 6(a)
and 6(b). Comparing the pseudocolor plots of �†�, we ob-
serve that in the case when the localized modes are present in
the spectrum, the atom is dominantly localized in the central
region [Fig. 6(b)]. Meanwhile, even in the absence of local-
ized states, the dispersion of the wave packet is slowed down
by the quasiperiodicity [Fig. 6(a)]. For the characterization of
the evolution of the localized modes the time-dependent IPR
appears to be the most appropriate quantity [exemplified in
Fig. 6(c)], while dispersive spreading at early stages of the
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dynamics is more adequately described by the mean-square
width of the wave packet w(t ) = {∫I (N ) [x − x0(t )]2�†�dx}1/2,
where x0(t ) = ∫

I (N ) x�†�dx, as shown in Fig. 6(d). In the
presence of localized modes, the time evolution of the IPR re-
veals relatively strong oscillations [see the red line in Fig. 6(c),
which shows a superposition of fast and slow oscillations of
χ (t )]. Taking into account that the distribution of energies of
localized states is nonuniform, the oscillations can be viewed
as a manifestation of quantum revivals, typical of a trapped
quantum particle.

Figure 6(d) shows the log-log plot for the short-time evolu-
tion of the mean width w(t ) of the solutions. We observe the
w(t ) ∝ tβ law, with β varying between β = 1/2 at the begin-
ning of the evolution and β = 1 at larger times [see the dashed
lines in Fig. 6 (d)]. It should be mentioned that the exponent
β in the nontrivial tβ dependence is likely to be related to
the fractal spectrum of the quasiperiodic Hamiltonian (1), as
suggested by earlier studies [37] (the investigation of such a
relation, however, is left for future investigation).

The atomic density distribution at t = 1000 is illustrated in
Fig. 6(e). Although the initial shape of the cloud at t = 1000
is strongly modified, the localization domain remains nearly
the same as that at t = 0. This is also confirmed in the loga-
rithmic plot in Fig. 6(f), where we also show the intermediate
distribution at t = 50, when the spreading wave packet still
does not attain the boundaries of the spatial domain L(N )

used in the numerics. We verify that while the boundaries do
affect the decay of the wave-packet tails, they do not have
a significant impact on the atomic cloud distribution in the
localization region located in the center of the interval L(N ),
even at sufficiently large times.

V. CONCLUSION

In this paper, we have considered the properties of the
atomic spinor under the effect of a lattice with incommensu-
rate periodic spin-orbit coupling and a Zeeman lattice. When
the constant Zeeman splitting is zero, the system acquires
an additional symmetry which constraints the shape of the
eigenfunctions and therefore inhibits the localization, i.e.,

requires stronger lattice depths for the localization to occur.
At sufficiently large constant Zeeman field all modes become
delocalized, thus manifesting the well-known Paschen-Back
effect. Using the best rational approximations, the considera-
tion of the quasiperiodic Hamiltonian has been reduced to an
effective periodic superlattice. When the mobility edge exists,
the exact number of localized eigenstates is determined by the
chosen rational approximation. Moreover, considering best ra-
tional approximations with different accuracies, we found that
the more accurate approximation preserves certain informa-
tion about the rougher one, which we interpreted as a memory
effect. Furthermore, spatial positions of localized eigenmodes
can be obtained from the Zak phases of minibands of the
effective superlattice, revealing the relation between the dis-
tribution of the modes in the space and the topology of the
effective superlattice. In the presence of localized modes,
simulations of the evolution of initially localized wave packets
reveal the signature of quantum revivals.

The obtained results are directly applicable to noninter-
acting spin-orbit-coupled Bose-Einstein condensates. It may
therefore be relevant to extend the present study to conden-
sates with nonzero interatomic interactions, which is expected
to further enrich the host of features resulting from the com-
bination of the two incommensurate lattices.

We finally mention that, while the presented results
for temporal simulations uncovered a qualitatively different
wave-packet dynamics in the extended and localized phases, a
comprehensive and accurate description of different stages of
long-time dynamics requires a separate thorough study.
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