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Faraday patterns in spin-orbit-coupled Bose-Einstein condensates
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We study the Faraday patterns generated by spin-orbit-coupling induced parametric resonance in a spinor
Bose-Einstein condensate with repulsive interaction. The collective elementary excitations of the Bose-Einstein
condensate, including density waves and spin waves, are coupled as the result of the Raman-induced spin-
orbit coupling and a quench of the relative phase of two Raman lasers without the modulation of any of the
system’s parameters. We observed several higher parametric resonance tongues at integer multiples of the driving
frequency and investigated the interplay between Faraday instabilities and modulation instabilities when we
quench the spin-orbit-coupled Bose-Einstein condensate from zero-momentum phase to plane-wave phase. If
the detuning is equal to zero, the wave number of combination resonance barely changes as the strength of
spin-orbit coupling increases. If the detuning is not equal to zero after a quench, a single combination resonance
tongue will split into two parts.
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I. INTRODUCTION

Spontaneous pattern formation is an important universal
phenomenon in chemistry, biology, and physics [1]. The pat-
tern formation in a classical driving system was studied by
Faraday in 1831 [2] using different kinds of liquid. He found
that when the driving frequency exceeds the critical value,
the surface of the liquid becomes spatially modulated, which
is related to the parametric instability. Since the realization
of Bose-Einstein condensate (BEC), one can study hydrody-
namics of quantum fluid in experiments. This new type of
nonlinear quantum fluid shows some different features from
the classical counterpart. A BEC of the cold atoms manifests
much more interesting nonlinear phenomena due to its quan-
tum nature, such as solitons [3,4], vortices [5–9], and Faraday
waves [10–12]. The tunable cold atom system provides a
promising platform to investigate these fascinating phenom-
ena. The nonlinear dynamics of BECs stem from the collision
interaction between the atoms, which can be adjusted by ex-
ploiting the Feshbach resonances [13]. The Faraday patterns
of a BEC will emerge if one periodically drives the strength
of nonlinearity [10,12,14–17], or if the trap confinement of
the BEC is periodically modulated [11,18–20], in which the
nonlinear interaction is effectively oscillated.

Realization of the synthetic spin-orbit (SO) coupled BEC
[21,22] enables study of some interesting phenomena in con-
densed matter systems, such as spin-Hall effect, supersolidity,
and topological insulators [23]. Raman-induced SO coupling
can be generated by two counterpropagating beams of laser
light along the x direction of an initially confined BEC in
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a typical experiment. By tuning the system’s parameter, the
ground state of the SO-coupled BEC will be in different
phases, such as plane-wave phase, zero-momentum phase,
or stripe phase. The spontaneous pattern formation of the
SO-coupled BEC has been studied in Refs. [24–27], where
the patterns are induced by modulation instabilities, a moving
barrier, the Kibble-Zurek mechanism, etc. However, investi-
gation of spontaneous pattern formation induced by Faraday
instabilities in the SO-coupled BEC is still lacking.

In a recent paper [28], the authors found that the Faraday
patterns can also be excited from a quench of the phase of
the Rabi coupling without any modulation of the system’s
parameters. The effective modulation of interaction can be
realized when the interaction coefficients satisfy g2

12 �= g11g22
and the average populations of two hyperfine states of the
spinor BEC experience Rabi oscillation. However, according
to the simulation in Ref. [28], it takes a long time for the
Faraday patterns to emerge and. in a practical experiment,
the tuning range of |g2

12 − g11g22| is limited. Motivated by
Ref. [28], here we show that the Faraday patterns in a SO-
coupled BEC (gi j[i, j = 1, 2] = g) can be induced by the
Raman-induced SO coupling and a quench of relative phase
of two Raman lasers without modulating any of the system’s
parameters such as the external potential, effective interaction,
etc. In a typical experiment, the strength of SO coupling is
highly tunable and can be adjusted by changing the angle
between the two incident Raman lasers. One can also effec-
tively tune the strength of SO coupling by periodic modulation
of the power of the Raman lasers [29,30]. The spontaneous
formation of the Faraday patterns is the direct consequence of
the coupling of two types of collective elementary excitations
(spin waves and density waves) due to the SO coupling and
the Rabi oscillation induced by the quench. In our numerical
simulation, we can observe the Faraday patterns emerge in
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a much shorter time. In the resonance diagram, we observed
several higher resonance tongues at integer multiples of the
driving frequency. If the detuning is not equal to zero after
the quench, the resonance tongues will split into two parts as
the strength of SO coupling increases. After quenching the
SO-coupled BEC from zero-momentum phase to plane-wave
phase, we can observe the coexistence of modulation instabil-
ities and Faraday instabilities.

Our paper is organized as follows. In Sec. II we derive
the coupled Gross-Pitaevskii (GP) equations of the SO-
coupled BEC and its analytical solutions. In Sec. III we
derive the resonance conditions of our system. Section IV
presents the instability analysis and the numerical results of
integrating the GP equations. In Sec. V we discuss more
general cases. Section VI is our conclusion.

II. SYSTEM MODEL

We consider a two-dimensional homogeneous BEC with
Raman-induced SO coupling along the x direction at zero
temperature under the mean-field description. This two-
dimensional geometry can be realized by applying a strong
harmonic trapping potential of frequency ωz in the z direc-
tion. As we focus on the homogeneous case, the external
potential in two dimensions is V (x, y) = 0. The two incident
counter propagating lasers act on the atoms at some angle
with the x direction to synthesize the Rashba [31] and the
Dresselhaus [32] SO-coupling interaction with equal contri-
butions. Using the rotation approximation, the single particle
Hamiltonian of interacting SO-coupled BEC can be writ-
ten as [21] Hsp = p̂2/(2m) + δEσz/2 + h̄� cos(2krx − δωt +
φ)σx/2 − h̄� sin(2krx − δωt + φ)σy/2, where p̂ is the two-
dimensional momentum operator, m is the mass of the cold
atoms, δE is the energy level splitting, � is the strength of
Raman coupling, δω is the detuning of two Raman lasers,
kr is the projected wave number of Raman lasers in the x
direction, and φ is the relative phase of two Raman lasers.
In the corotating frame of the effective field, under the uni-
tary rotation U = exp[i(krx − δωt/2)σz], Hr

sp = U †HspU −
ih̄U †∂U/∂t [29]. The total mean field Hamiltonian becomes

H = Hr
sp + Hint, (1a)

Hr
sp =

(
(p̂+h̄kr êx )2

2m + h̄�
2

h̄�
2 eiφ

h̄�
2 e−iφ (p̂−h̄kr êx )2

2m − h̄�
2

)
, (1b)

Hint =
(

g11|Ψ1|2 + g12|Ψ2|2 0

0 g21|Ψ1|2 + g22|Ψ2|2
)

, (1c)

where � = δE/h̄ − δω is the two-photon detuning, gi j (i, j =
1, 2) is the interaction coefficients, Ψ1 = Ψ1(r) and Ψ2 =
Ψ2(r) represent the macroscopic condensate’s wave functions
where r = (x, y) is the two-dimensional spatial vector, and �

is the strength of Raman coupling. The strength of SO cou-
pling is h̄kr/m. Diagonalizing the single particle Hamiltonian
(1b), we can obtain the dispersion relationship

E± = p2

2m
+ h̄2k2

r

2m
±

√(
h̄kr px

m
+ h̄�

2

)2

+ h̄2�2

4
, (2)
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FIG. 1. Dimensionless dispersion relation Ẽ (� = 0)− =
k2

x /2 − √
γ 2k2

x + �2/4 with � = �i (solid line) and � = � f (dash
line) corresponding to situations of before and after a quench,
respetively. Circles in the figure mean the initial states before a
quench located at kx = 0 before the quench, which indicates the
SO-coupled BEC is in zero-momentum phase. (a) An example of
both �i and � f are larger than �c. (b) An example of �i > �c and
� f < �c.

where E− is the ground state energy of the SO-coupled BEC.
The corresponding eigenfunctions are

φ+ = eip+·r/h̄

(
cos(θ/2)

sin(θ/2)

)
, φ− = eip−·r/h̄

(
sin(θ/2)

− cos(θ/2)

)
,

(3)
where sin θ = h̄�/

√
4(h̄pxkr/m − h̄�/2)2 + h̄2�2.

The time evolution of the spinor BEC is governed by the
Schrödinger equation

ih̄
∂

∂t

(
Ψ1(r, t )

Ψ2(r, t )

)
= H

(
Ψ1(r, t )

Ψ2(r, t )

)
. (4)

Substituting Eqs. (1) into Eq. (4), using the length unit x0 =√
h̄/mωz, the time unit t0 = 1/ωz, and the energy unit e0 =

h̄ωz, we can obtain the coupled dimensionless GP equations

i
∂Ψ̃1(r̃, t̃ )

∂ t̃
= −∇̃2Ψ̃1(r̃, t̃ )

2
− iγ

∂Ψ̃1(r̃, t̃ )

∂ x̃

+g̃11|Ψ̃1(r̃, t̃ )|2Ψ̃1(r̃, t̃ ) + g̃12|Ψ̃2(r̃, t̃ )|2Ψ̃1(r̃, t̃ )

+�̃

2
Ψ̃1(r̃, t̃ ) + �̃

2
eiφΨ̃2(r̃, t̃ ), (5a)

i
∂Ψ̃2(r̃, t̃ )

∂ t̃
= −∇̃2Ψ̃2(r̃, t̃ )

2
+ iγ

∂Ψ̃2(r̃, t̃ )

∂ x̃

+g̃22|Ψ̃2(r̃, t̃ )|2Ψ̃2(r̃, t̃ ) + g̃21|Ψ̃1(r̃, t̃ )|2Ψ̃2(r̃, t̃ )

−�̃

2
Ψ̃2(r̃, t̃ ) + �̃

2
e−iφΨ̃1(r̃, t̃ ). (5b)

Here ∇̃ denotes dimensionless two-dimensional derivative
and γ = krx0 is the dimensionless strength of SO coupling;
other variables and parameters with tilde are also dimen-
sionless. We will omit all tildes in the equations (5) for
convenience in our following discussions. After above treat-
ment, the dimensionless dispersion relation Ẽ−(� = 0) =
k2

x /2 − √
γ 2k2

x + �2/4 is shown in Fig. 1.
In the case of � = 0, when � > �c = 2γ 2, the ground

state of the SO-coupled BEC is in zero-momentum
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phase; while if � < 2γ 2, the ground state of the SO-
coupled BEC is in plane-wave phase, which corre-
sponds to the dressed spin states |↓′〉 = cos(θ/2) |↑〉 −
sin(θ/2) |↓〉 and |↑′〉 = sin(θ/2) |↑〉 − cos(θ/2) |↓〉, where
sin θ = �/

√
4γ 2k2

x + �2, |↑〉 and |↓〉 are the bare spin states
of SO-coupled BEC.

We consider two kinds of quenching scenarios in the fol-
lowing: (1) When t = 0, we prepare the ground state of the
SO-coupled BEC in the zero-momentum phase (�i > �c)
and the relative phase of two lasers φ = π . When t > 0, we
suddenly quench the system by shifting the relative phase of
two lasers to φ �= π and keep the strength of Raman coupling
unchanged (� f = �i ). (2) We can quench both the relative
phase of two lasers to φ �= π and the strength of Raman cou-
pling to � f < �c simultaneously, after which the SO-coupled
BEC will enter the plane-wave phase. After the quench, the
initial state will not be in the ground state of the new Hamil-
tonian, it will start to evolve. Figure 1 shows two kinds of
scenarios before and after the quench. In the present paper,
we set gi j (i, j = 1, 2) = g = 1.0.

In the following sections, we set the detuning � to zero
and Ψ1(r, 0) = Ψ2(r, 0) = const but quench the relative phase
of two lasers from φi = π to φ f = −π/2 at t > 0 for con-
venience in our discussions. We can obtain the following
uniform solution from the coupled equations (5)

Ψ1(t ) = e−igtψ1(t ), (6a)

Ψ2(t ) = e−igtψ2(t ), (6b)

where

ψ1(t ) = 1√
2

[cos(� f t/2) − sin(� f t/2)], (7a)

ψ2(t ) = 1√
2

[cos(� f t/2) + sin(� f t/2)]. (7b)

More general cases will be discussed in Sec. V.

III. PARAMETRIC RESONANCE INDUCED
BY SPIN-ORBIT COUPLING

In order to investigate the dynamics of excitations, we can
add small fluctuations δΨ1 and δΨ2 to the uniform solution (6)
and obtain

Ψ
f

1 (t ) = e−igt [ψ1(t ) + δΨ1], (8a)

Ψ
f

2 (t ) = e−igt [ψ2(t ) + δΨ2]. (8b)

Here we use the transformation in Ref. [28] and define(
δΨd

δΨs

)
=

(
ψ1(t ) ψ2(t )

−ψ2(t ) ψ1(t )

)(
δΨ1

δΨ2

)
, (9)

where δΨd and δΨs are the density and the spin fluctuations,
respectively. Substituting Eqs. (8) and (9) into the coupled GP
equations (5) and neglecting the second-order and the third-
order terms of δΨd and δΨs, we obtain

i
∂ (δΨd )

∂t
= −∇2

2
δΨd + iγ sin(� f t )

∂ (δΨd )

∂x

+iγ cos(� f t )
∂ (δΨs)

∂x
+ g(δΨd + δΨ ∗

d ), (10a)

i
∂ (δΨs)

∂t
= −∇2

2
δΨs + iγ cos(� f t )

∂ (δΨd )

∂x

− iγ sin(� f t )
∂ (δΨs)

∂x
. (10b)

It is now clear that the equations of fluctuations of density
waves and spin waves become coupled with each other due to
the SO coupling even if gi j (i, j = 1, 2) = g > 0 with driv-
ing frequency � f . If the strength of SO coupling is zero,
Eqs. (10) become decoupled, which is the same as the result
in Ref. [28], where the Faraday pattern is absent although
the relative phase of two Raman lasers is not equal to zero.
In Ref. [28], the interatomic interaction effectively oscillates
in time when the population of two states |↑〉 and |↓〉 oscil-
lates since g2

12 �= g11g22. In our case, if the system is in the
zero-momentum phase, the interatomic interaction need not
oscillate with time and the Faraday patterns will be introduced
by SO coupling.

For convenience, in the following discussion we set ky = 0
and γ = 0. The Bogoliubov–de Gennes (BdG) Hamiltonian
in momentum space becomes

ĤBdG =

⎛
⎜⎜⎜⎜⎝

k2
x /2 + g g 0 0

−g −k2
x /2 − g 0 0

0 0 k2
x /2 0

0 0 0 −k2
x /2

⎞
⎟⎟⎟⎟⎠. (11)

The positive eigenvalues of the matrix are ωd =√
εk (εk + 2g), ωs = εk , where εk = k2

x /2. Assume X to
be the fundamental solution of the differential equation
iẋ = ĤBdG x, where x = (δΨd , δΨ

∗
d , δΨs, δΨ

∗
s )T. Then

X = exp(−iĤBdG t ). The monodromy matrix F0 = X(T) =
exp(−iHBdG T ), where T = 2π/� f is the period of driving.
The multipliers ρh are the eigenvalues of the monodromy
matrix F0,

ρh(h = d, s) = exp(±iωhT) = exp(±i2πωh/� f ). (12)

The parametric resonance conditions are

2ωd = n� f , n = 1, 2, 3, . . . , (13a)

2ωs = n� f , n = 1, 2, 3, . . . , (13b)

ωd ± ωs = n� f , n = 1, 2, 3, . . . . (13c)

The cases of (13a) and (13b) are called fundamental resonance
while the cases of (13c) are called combination resonance.
The solutions of Eqs. (13) are

kd = ±
√√

4g2 + n2�2
f − 2, n = 1, 2, 3, . . . , (14a)

ks = ±√
n� f , n = 1, 2, 3, . . . , (14b)

kd+s = ± n� f√
n� f + g

, n = 1, 2, 3, . . . . (14c)

Specifically, the case of ωd − ωs = n� f has no real solution
of kx. When 2ωh �= n� f or ωd ± ωs �= n� f (n = 1, 2, . . . ),
the multipliers are not double and are complex quantities
lying on the complex unit circle, i.e., |ρh| = 1. Therefore, the
system is stable when γ = 0. When ky = � = 0 and for small
γ > 0, we can expand the monodromy matrix near γ = 0
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[33] (see the Appendix). If at least one of the modules of the
multipliers |ρh| > 1, the system is dynamically unstable. If
both modules of the multipliers |ρd,s| < 1, the system will
be asymptotically stable. The instability will occur in the
vicinity of resonance points (14a), (14b), and (14c), at which
the multipliers are double.

IV. INSTABILITY ANALYSIS AND THE NUMERICAL
RESULTS (� = 0)

We investigate the formations of Faraday patterns of
the SO-coupled BEC numerically by integrating the two-
dimensional GP Eqs. (5) using a pseudospectral method [34].
The spatial size of our system is 409.6 × 409.6. The wave
function is discretized into a 2048 × 2048 mesh grid and the
periodic boundary condition is adopted [28]. The resolution
in real space is �x = �y = 0.2 and in momentum space it
is �k = 2π/409.6 ≈ 0.015 to ensure that the typical wave-
length and wave number of dynamics are larger than �x and
�k, respectively. The initial states are Ψ1(t = 0) = Ψ2(t =
0) = 1/

√
2 plus small Gaussian noise. The resonance peaks

can be recognized by the Fourier transformation of spatial
wave functions. The resonance regions can also be calculated
through Floquet analysis, by which we can calculate the un-
stable regions. Following the same procedure in Ref. [28], we
assume the uniform solution

Ψ j (t ) = e−iμt f j (t ) ( j = 1, 2), (15)

where μ is a constant and f (t ) is the complex periodic func-
tion with Rabi oscillation period T . We add small excitations
to the solution (15) and obtain

Ψ j (r, t ) = e−iμt [ f j (t ) + δΨ j (r, t )], (16)

δΨ j (r, t ) = u j (t )e−ik·r + v∗
j (t )eik·r. (17)

Here k is the wave vector of the excitations. Substituting
Eqs. (16) and (17) into GP equations (5), we can obtain the
coupled time dependent BdG equations

i

⎛
⎜⎜⎝

u̇1

v̇1

u̇2

v̇2

⎞
⎟⎟⎠ = L(t )

⎛
⎜⎜⎝

u1

v1

u2

v2

⎞
⎟⎟⎠. (18)

Here

L(t )=

⎛
⎜⎜⎜⎝

A1 + γ kx B1 C1 − i � f

2 C2

−B∗
1 −A1+γ kx −C∗

2 −C∗
1 − i � f

2

C∗
1 + i � f

2 C2 A2−γ kx B2

−C∗
2 −C1+i � f

2 −B∗
2 −A2−γ kx

⎞
⎟⎟⎟⎠,

(19a)

A1 = k2
x /2 + k2

y /2 − μ + 2g| f1(t )|2 + g| f2(t )|2, (19b)

A2 = k2
x /2 + k2

y /2 − μ + 2g| f2(t )|2 + g| f1(t )|2, (19c)

B1 = g f 2
1 (t ), (19d)

B2 = g f 2
2 (t ), (19e)

C1 = g f1(t ) f ∗
2 (t ), (19f)

C2 = g f1(t ) f2(t ). (19g)

FIG. 2. In the first column, t = 52.5 and γ = 0.8. In the second
column, t = 37.5 and γ = 1.2. In the third column, t = 22.5 and
γ = 1.5. (a)–(c) display the density distribution ln(|Ψ1(k)|2) in the
momentum space. (d)–(f) show the real part of Floquet exponent
max[Re(λ)] calculated by the time dependent BdG equations. The
plots are symmetric about kx and ky axis, so we only show the results
in the first quadrant. Here, � f = 2.

The monodromy matrix F = T exp[−i
∫ T

0 L(t )dt], where
T is the time-ordered operator. We calculate the monodromy
matrix F numerically using the fourth order Runge-Kutta
algorithm. The multipliers ρ = eλT are obtained by diago-
nalizing the matrix F. The real part of the Floquet exponent
is defined as max[Re(λ)]. If max[Re(λ)] > 0, the system is
unstable.

When � = 0 and � f = 2.0 the results of time evolution
of the GP equations are presented in Figs. 2(a)–2(c), which
display the density distribution of ln(|Ψ1(k)|2) in the first
quadrant of the momentum space, and in Fig. 3, which dis-
plays the real space density distribution of |Ψ1|2. The unstable
regions identified by the value of Re(λ)max are displayed in
Figs. 2(d)–2(f). We observe that the Faraday patterns ap-
pear earlier (t < 60t0) than that in Ref. [28] (t > 100t0). In
Figs. 3(a)–3(c), the resulting spatial modulations of density
in x direction are denser than that in the y direction due to
the larger wave number in the kx direction of the momentum
space. We can also see that the resonance regions in the first
row of Fig. 2 match very well with the unstable regions in
the second row of Fig. 2. We can clearly see four arcs in

-20 0 20

-20

0

20

0.96 0.98 1

-20 0 20

0.66 0.68 0.7 0.72

-20 0 20

0.06 0.08 0.1

(c)(b)(a)

FIG. 3. (a)–(c) are density distributions of |Ψ1|2 in real space
at t = 52.5, 37.5, and 22.5 corresponding to γ = 0.8, 1.2, and 1.5,
respectively. Here � f = 2.0.
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Figs. 2(a) and 2(b), where γ = 0.8 and γ = 1.2, respectively.
The Raman-induced SO coupling is set to be in the x direction
so the resonance peaks are diminished in the ky direction. We
can also understand this from the BdG Hamiltonian (A1), in
which the driving terms are all multiplied by γ and kx. In
the ky direction, kx = 0 and the driving terms become zero,
which indicates there is no coupling between the two types of
excitations. Therefore, there is no resonance in this situation.
The leftmost arcs in Figs. 2(a) and 2(b) correspond to the com-
bination resonance conditions ωd + ωs = � f and kd+s(n =
1) = 2/

√
3 ≈ 1.15. The other two fundamental resonance

arcs (n = 1) are too faint to be seen. This can be understood by
calculating max[Re(λ)]. The results are shown in Figs. 2(d)–
2(e), in which the other two fundamental resonance arcs (n =
1) are also extremely faint where max[Re(λ)] ≈ 10−4 − 10−2

at the resonance peaks. The rest three arcs correspond to the
resonance conditions (13a)–(13c) (n = 2). If we look at the
rightmost arcs in Figs. 2(d)–2(f) more closely, we can find
another very thin and dim resonance arcs intercepting with
the rightmost arcs. These thin arcs correspond to the higher
combination parametric resonance, i.e., ωd + ωs = 3� f . In
Figs. 2(b) and 2(c), the strength of SO coupling γ > 1, and
the system is in plane-wave phase. The modulation unstable
region will start to grow and merge with the Faraday unstable
region. In this case the SO-coupled BEC is in the dressed
spin state |↑′〉 and |↓′〉. The effective interspecies g1′2′ and
intraspecies g1′1′ , g2′2′ coefficients can be expressed in terms
of bare interaction coefficient g [35], i.e.,

g1′1′ = g, (20a)

g2′2′ = g, (20b)

g1′2′ = 2g − cos2 θ, (20c)

where cos θ = γ kx/
√

γ 2k2
x + �2

f . Now the miscibility condi-

tion becomes

η = (g2
1′2′ − g1′1′g2′2′ )

g2
1′1′

= (2g − cos2 θ )2 − g2

g2
. (21)

We set g = 1 in the present paper so η is always larger than
zero, which indicates the dressed spin states are immisci-
ble (modulation unstable) when the system enters into the
plane-wave phase. We also calculated the diagram of Floquet
exponent Re(λ)max about γ and kx (ky = 0). The result is
shown in Fig. 4. The dashed, solid, and dash-dot vertical lines
represent three combination resonances (n = 1, 2, 3), respec-
tively. We can see the three combination resonances coincide
with these vertical lines respectively, which indicates the com-
bination resonance wave numbers kx barely change when
the strength of SO coupling increases. The three resonance
regions merge with the modulation unstable region when γ

is around 1.5. The high resonance tongue (n = 3) intercepts
the spin-wave unstable region (n = 2); other much higher
resonance tongues (n > 3) are too dim to be seen. When the
value of γ is close to zero, the system is asymptotically stable
except near the first combination resonance (n = 1) (see the
Appendix), so the rightmost four resonance peaks (including
the n = 3 resonance) in Fig. 4 disappear (see the inset in
Fig. 4).

FIG. 4. The diagram of the real part of Floquet exponent
max[Re(λ)] with kx and γ when � = ky = 0. The dashed line rep-
resents combination resonance (n = 1) at kx = 2/

√
3 ≈ 1.15. The

solid line represents combination resonance (n = 2) at kx = 4/
√

5 ≈
1.79. The dash-dot line represents combination resonance (n = 3)
at kx = 6/

√
7 ≈ 2.27. Inset: The real part of Floquet exponent

max[Re(λ)] as a function of kx when γ = 0.1. Here, � f = 2.0.

In the limit of � f → 0, the dispersion relation of excita-
tions can be described by [36]

ω2
± = 1

2

(
�1 ±

√
�2

1 + 4�2
)
, (22)

where k2 = k2
x + k2

y and

�1 = 1

2
k2(k2 + 2g) + 2k2

x γ
2, (23a)

�2 = −k2

[
γ 2

(
γ 2k2

x − 1

2
k2(k2 + 2g)

)

+ k2

16
(k2 + 2g)2 − k2g2

4

]
. (23b)

If the solutions of Eq. (23) are complex numbers, the am-
plitude of excitation grows exponentially with time. We
can define |Im(ω±)|max as the growing rate. We calculate
|Im(ω±)|max as a function of kx(ky = 0) and γ numerically;
the result is displayed in Fig. 5. The location of modulation
unstable regions moves in the positive kx direction as the
strength of SO coupling γ increases, similar to the behavior
with the unstable region in Fig. 4 when γ > 1. The rightmost
region in Fig. 4 represents the spin wave excitation; it will

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0

0.1

0.2

0.3

0.4

FIG. 5. The diagram of |Im(ω±)|max about kx and γ when ky = 0,
g = 1, and � f → 0.
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FIG. 6. The value of max[Re(λ)] as function of kx when γ = 2.5
and ky = 0 with different values of � f . The solid line represents the
analytical result of |Im(ω±)|max when � f → 0.

merge with the modulation unstable region when the strength
of Raman coupling � f → 0, as we can see in Fig. 6.

V. DISCUSSIONS OF GENERAL CASES

A. � �= 0

When � �= 0, the ground state of the SO-coupled BEC
will be in plane-wave phase. [In the present paper, we set
gi j (i, j = 1, 2) = g = 1, so the stripe phase is absent in our
system.] We assume Ψ1(r, 0) = Ψ2(r, 0) = const. We not
only follow the quenching scenarios in Sec. II but also quench
the detuning from � = 0 to � �= 0 simultaneously. Then we
can obtain the following uniform solution of the coupled
equations (5):

Ψ1(t ) = e−igtψ1(t ), (24a)

Ψ2(t ) = e−igtψ2(t ), (24b)

where

ψ1(t )= 1√
2

[
cos

(√
�2

f + �2t/2
)−eiξ sin

(√
�2

f + �2t/2
)]

,

(25a)

ψ2(t )= 1√
2

[
cos

(√
�2

f + �2t/2
)+eiξ sin

(√
�2

f + �2t/2
)]

,

(25b)

sin ξ = �√
�2

f + �2
. (25c)

Following the standard procedure in Sec. III, we generalize
the transformation in Eq. (9) and define(

δΨd

δΨs

)
=

(
ψ∗

1 (t ) ψ∗
2 (t )

−ψ2(t ) ψ1(t )

)(
δΨ1

δΨ2

)
, (26)

where δΨd and δΨs are the density and the spin fluctuations,
respectively. Substituting Eqs. (25) and (26) into the coupled
GP equations (5) and neglecting the second-order and third-
order terms of δΨd and δΨs, we obtain

i
∂ (δΨd )

∂t
= −∇2

2
δΨd + iγ cos ξ sin

(√
�2

f + �2t
)∂ (δΨd )

∂x

+iγ e−iξ
{
i sin ξ + cos ξ cos

(√
�2

f + �2t
)}

×∂ (δΨs)

∂x
+ g(δΨd + δΨ ∗

d ), (27a)
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0.25

FIG. 7. The diagram of real part of Floquet exponent max[Re(λ)]
with kx and γ when � = 0.4 and ky = 0. The dashed, solid and dash-

dot lines represent the resonance condition ωd + ωs =
√

�2
f + �2 ,

ωd + ωs = 2
√

�2
f + �2 , and ωd + ωs = 3

√
�2

f + �2 , respectively.
Here, � f = 2.0.

i
∂ (δΨs)

∂t
= −∇2

2
δΨs + iγ e−iξ

{
i sin φ

+ cos ξ cos
(√

�2
f + �2t

)}∂ (δΨd )

∂x

−iγ cos ξ sin
(√

�2
f + �2t

)∂ (δΨs)

∂x
. (27b)

The resonance conditions near γ = 0 are the same as Eqs. (13)

if we replace � f with
√

�2
f + �2. When the detuning � is

not equal to zero, the system is in the plane-wave phase. Its
unstable behavior has some new features. We plot the diagram
of the real part of Floquet exponent max[Re(λ)] with kx and γ

in Fig. 7. We observe that the combination resonance tongues
will split into two parts as the strength of SO coupling γ

increases. The first (n = 1) two fundamental resonance peaks
reappear, while they are absent when � = 0.

B. Arbitrary relative phase φ f

We assume � = 0, Ψ1(r, 0) = Ψ2(r, 0) = const and
quench the relative phase from φi = π to an arbitrary φ f �= π .
Then we can obtain the following uniform solution of the
coupled equations (5):

Ψ1(t ) = e−igtψ1(t ), (28a)

Ψ2(t ) = e−igtψ2(t ), (28b)

where

ψ1(t ) = 1√
2

[
cos

(
� f

2
t

)
− ieiφ f sin

(
� f

2
t

)]
, (29a)

ψ2(t ) = 1√
2

[
cos

(
� f

2
t

)
− ie−iφ f sin

(
� f

2
t

)]
. (29b)

Using the generalized transformation (26), following the same
procedures in Sec. V A, we can obtain the coupled equations

i
∂ (δΨd )

∂t
= −∇2

2
δΨd − iγ sin φ f sin(� f t )

∂ (δΨd )

∂x

+ iγ [cos(� f t ) + i cos φ f sin(� f t )]
∂ (δΨs)

∂x
+ g(δΨd + δΨ ∗

d ), (30a)
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FIG. 8. The diagram of real part of Floquet exponent max[Re(λ)]
with kx and φ when � = ky = 0 and γ = 0.4. The dashed line
represents combination resonance (n = 1) at kx = 2/

√
3 ≈ 1.15.

The dotted line represents combination resonance (n = 2) at kx =
4/

√
5 ≈ 1.79. Here, � f = 2.0.

i
∂ (δΨs)

∂t
= −∇2

2
δΨs + iγ [cos(� f t ) − i cos φ f sin(� f t )]

×∂ (δΨd )

∂x
+ iγ sin φ f sin(� f t )

∂ (δΨs)

∂x
. (30b)

When γ is close to zero, the corresponding resonance con-
ditions are the same as Eqs. (13). However, we should
bear in mind that the initial state is the ground state of
H[φ f = (1 + 2m)π ], m = 1, 2, 3, . . . . If φ f = (1 + 2m)π ,
m = 1, 2, 3, . . . , there will be no Faraday patterns. We plot the
diagram of real part of the Floquet exponent of max[Re(λ)]
with kx and φ f when � = ky = 0 and γ = 0.4 in Fig. 8.
The dashed line represents combination resonance (n = 1) at
kx = 2/

√
3 ≈ 1.15. The dotted line represents combination

resonance (n = 2) at kx = 4/
√

5 ≈ 1.79. Two fundamental
resonances (n = 1) and other higher resonance tongues (n >

2) are too faint to be seen. We can see that the resonance
regions are symmetric about φ = π . When the relative phase
φ = π , there is no resonance region in the diagram, which
means there is no pattern formation.

VI. CONCLUSION

We have investigated the Faraday instability of homoge-
neous spinor BEC with SO coupling by a quench. We found
that in the zero-momentum phase, the spatial patterns will
emerge even if the interspecies and intraspecies interactions
are the same. This is due to the fact that two fundamental
excitations (excitations of spin waves and density waves) will
be coupled with each other because of the SO coupling and
the Rabi oscillations of the two components. We observe
higher parametric resonance tongues at integer multiples of
the driving frequency. The system is asymptotically stable
except at the nearby of the first combination resonance. When
we quench the SO-coupled BEC from zero-momentum phase
to plane-wave phase, the modulation instability begins to play
the role of exponentially growing excitations. When the de-
tuning is equal to zero, the wave number of the combination
resonance barely changes as the strength of the SO coupling
increases and for changes of relative phase of the two lasers.
If the detuning is not equal to zero after a quench, a single

combination resonance tongue will split into two parts as the
strength of the SO coupling increases. Recently, the BEC
in an optical box potential was realized [37]; we hope our
theoretical calculation will inspire the observation of pattern
formation of SO coupling BEC in the box potential.
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APPENDIX: STABILITY OF THE SYSTEM NEAR γ = 0

When ky = � = 0 and γ �= 0, the Bogoliubov–de Gennes
Hamiltonian HBdG(γ , t ) in momentum space becomes⎛

⎜⎜⎜⎜⎜⎝

k2
x
2 + S + g g C 0

−g − k2
x
2 + S − g 0 C

C 0 k2
x
2 − S 0

0 C 0 − k2
x
2 − S

⎞
⎟⎟⎟⎟⎟⎠, (A1)

where

S = −γ kx sin(� f t ), (A2a)

C = −γ kx cos(� f t ). (A2b)

If 0 < γ � 1, we can expand the monodromy matrix F =
T exp[−i

∫ T
0 HBdG(γ , t )dt] near γ = 0 and keep the terms of

the first order of γ [33],

F = F0(I + Aγ ), (A3)

where I is the identity matrix and

F0 =

⎛
⎜⎜⎜⎜⎝

P(T ) Q(T ) 0 0

Q∗(T ) P∗(T ) 0 0

0 0 e−iωsT 0

0 0 0 eiωsT

⎞
⎟⎟⎟⎟⎠, (A4)

A =
∫ T

0
X−1 ∂HBdG(γ , t )

∂γ
Xdt . (A5)

After some calculation, we can reduce Eq. (A5) to a more
simple form,

A =

⎛
⎜⎜⎜⎝

0 0 M N1

0 0 N∗
1 M∗

M∗ N∗
2 0 0

N2 M 0 0

⎞
⎟⎟⎟⎠, (A6)

where

M = −
∫ T

0
kxP(t ) cos(� f t )e−iωst dt, (A7a)

N1 = −
∫ T

0
kxQ(t ) cos(� f t )eiωst dt, (A7b)

N2 = −
∫ T

0
kxQ(t ) cos(� f t )e−iωst dt, (A7c)
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FIG. 9. The maximum module of multipliers of the monodromy
matrix F as the function of wave number kx with different strengths
of SO coupling γ . Here, � f = 2.0.

P(t ) = cos(ωdt ) + i sin(ωdt )(εk + g)/ωd , (A7d)

Q(t ) = ig sin(ωdt )/ωd . (A7e)

The multipliers ρ are the eigenvalues of the matrix F. We
numerically calculate the maximum module of eigenvalues
|ρ|max with g = � f /2 = 1.0 and different values of γ . The re-
sult is presented in Fig. 9. kx = 2/

√
3 corresponds to the wave

number of combination resonance (n = 1). kx =
√

2
√

5 − 2
corresponds to the density waves’ fundamental resonance
(n = 2). In Eqs. (14), kd < kd+s < ks if g = � f = 1.0. Thus

when kx >
√

2
√

5 − 2, the multipliers are always smaller than
1 and the system is asymptotically stable.
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