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Phase separation and multistability of a two-component
Bose-Einstein condensate in an optical cavity
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We examine the multistability associated with miscibility-immiscibility conditions for a two-component Bose-
Einstein condensate coupled to the light field in an optical cavity. For a strongly immiscible condition, the system
exhibits a variety of density structures, including a separated state, a stripe state, and their coexistence. The
multistability arises from these spatial structures of the two-component condensate, which significantly alter the
hysteresis curve with respect to the intensity of cavity pumping. We present a variational approach to confirm
our numerical results.
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I. INTRODUCTION

Phase separation is a well-known phenomenon in nature,
and the immiscibility of oil and water is the most promi-
nent example. The experimental realization of two-component
Bose-Einstein condensates (BECs) [1–4] provided an ideal
platform to investigate the miscible-immiscible transition in
quantum systems. Later on, efforts were made to create
two-component BECs with different atomic species, e.g.,
41K - 87Rb [4], 7Li - 133Cs [5], 87Rb - 84Sr, and 87Rb - 88Sr [6].
In recent years, the interest in two-component BECs has
been revived by more controlled and more precise exper-
imental results demonstrating the phenomenon of phase
separation [7–10].

Preparing BECs in optical cavities has opened new fron-
tiers for exploring the light-matter interaction, where the
cavity field couples predominantly to cold atoms. Ultracold
atoms play a crucial role inside the optical cavity, in which the
atom-photon interaction induces an optical lattice for atoms,
while the induced matter-wave grating changes the cavity res-
onance. In recent years, BECs loaded in optical cavities have
been studied extensively [11–23]. Atom-photon interactions
in a cavity-BEC system generate highly nonlocal nonlinearity,
which gives rise to many interesting phenomena, such as
self-organization of atoms inside the optical cavity [24–26],
Dicke quantum phase transitions [27–31], optical bistabil-
ity [32–39], instability and chiral dynamics [40], and Floquet
dynamics [41,42].

In previous studies, the bistable behaviors of single-
component BECs in optical cavities have been exten-
sively studied both theoretically [35–39] and experimen-
tally [32–34]. Two-component and spinor BECs in cavities
have also been studied by many researchers [43–55]. How-
ever, most of these studies ignore the atom-atom interac-
tion [56], which determines the miscibility of multicomponent
BECs. Since bistability is strongly affected by the density dis-
tribution of the BEC, we expect that the miscible-immiscible

transition of a two-component BEC plays a vital role in
bistability and multistability, which the present paper focuses
on. We will show that the global structure of the condensate
changes abruptly when the transition occurs between multi-
stable branches. We find a variety of multistable phases, such
as a separated phase, an alternate stripe phase, and their coex-
istence. This multistability is sensitive to the intercomponent
interaction strength. We will also analyze the multistabil-
ity using a variational approach to confirm our numerical
results.

This paper is organized as follows. In Sec. II, we present
the mean-field description of the system based on coupled
Gross-Pitaevskii (GP) and cavity field equations. In Sec. III,
we present numerical results for the multistability in the
absence of a trapping potential. In Sec. IV, we propose a
variational method to understand the numerical results. In
Sec. V, we investigate a harmonically trapped system. Finally,
we summarize our results in Sec. VI.

II. MODEL

We consider a two-component BEC located inside a high-
Q single-mode optical cavity, as illustrated in Fig. 1. The
cavity mode frequency is ωc, and the transition frequency
of the two-level atoms is ωa j with components j = 1 and 2.
The coupled BEC-cavity system is coherently driven by the
external laser pump along the cavity axis with frequency ωp

and amplitude η, and the cavity field decays at a rate of κ . The
atom-pump detuning and the cavity-pump detuning are rep-
resented as �a j = ωa j − ωp and �c = ωc − ωp, respectively.
We will assume that the laser pump is detuned far from the
atomic transition ωa j to ensure that the electronic excitation
is sufficiently low and the upper atomic excited state can be
eliminated adiabatically.

In the mean-field description, the time evolution of macro-
scopic wave functions �1(r, t ) and �2(r, t ) of components
1 and 2 are described by the GP equation, including their
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FIG. 1. Schematic illustration of the two-component BEC-cavity
system driven by laser pumping along the cavity axis. The cavity field
is pumped at a rate of η and decays at a rate of κ . The cavity mode
near the BECs is approximated as cos(kx). The inset shows the
level scheme of the two components. The energy difference between
the two components does not affect the results, and is neglected in
Eqs. (1) and (2).

interaction with the cavity field. We assume that the cavity
mode at the location of the BECs can be approximated by
the one-dimensional sinusoidal function cos(kx), where k is
the wave number of the cavity mode. We also assume that the
cavity field can be treated as a classical field α = 〈â〉, where â
is the annihilation operator of the cavity photon. The coupled
GP equations for the macroscopic wave functions are then
given by

ih̄
∂�1

∂t
=

[
− h̄2

2m1
∇2 + V1(r) + U1|α|2 cos2(kx)

+g11|�1|2 + g12|�2|2
]
�1, (1)

ih̄
∂�2

∂t
=

[
− h̄2

2m2
∇2 + V2(r) + U2|α|2 cos2(kx)

+g22|�2|2 + g12|�1|2
]
�2, (2)

and the equation of motion for the cavity field has the form

dα

dt
= −i

[
�c + U1

∫
dr|�1|2 cos2(kx)

+U2

∫
dr|�2|2 cos2(kx)

]
α − κα + η, (3)

where g j j′ = 2π h̄2a j j′
mj j′

is the intercomponent interaction coeffi-

cient with mj j′ = (m−1
j + m−1

j′ )−1 being the reduced mass and
a j j′ being the s-wave scattering length between components
j and j′, Vj is the external potential for component j, and
Uj = −g2

0 j/�a j is the maximal light shift per photon that

an atom may experience, with g0 j being the atom-photon
coupling constant for component j. The wave function is
normalized as

∫
dr|� j (r, t )|2 = Nj , where Nj is the number

of atoms in component j.
In experiments, the cavity damping is much faster than the

mechanical motion of the condensate. We therefore assume
that the cavity field follows the condensate adiabatically. Set-
ting dα

dt = 0 in Eq. (3), the instantaneous photon number is
obtained as

|α(t)|2 = η2[
δc + ∑2

j=1
Uj

2

∫
dr|� j (r, t )|2 cos(2kx)

]2 + κ2
,

(4)
where δc = �c + N1U1

2 + N2U2
2 . Substituting Eq. (4) into

Eqs. (1) and (2), we obtain a nonlocal GP equation. The
nonlinearity arises not only from the atom-atom interaction
but also from the atom-photon interaction, which causes an
effective nonlocal interaction between atoms, leading to the
emergence of bistability. Bistability phenomena have already
been studied in the system of a single-component BEC and
optical cavity [32–39].

The miscibility of the two components is important in this
system, which is determined by the interaction coefficients
gi j . In the following study, we assume that all the atom-
atom interactions are repulsive, gi j > 0. In this case, for a
homogeneous system without a cavity field, the two com-
ponents are immiscible and phase separation occurs, when
g11g22 < g2

12 is satisfied [57]. In the presence of the cavity
field, the density distribution of the BEC is changed by the
optical potential and this miscibility condition is not simply
applicable.

We convert the coupled GP equations into their dimen-
sionless forms, and all the quantities in the following are
dimensionless. We normalize the length and time by k−1 and
(h̄k2/2m)−1, respectively, where we assume m1 = m2 ≡ m
for simplicity. We also assume g11 = g22 ≡ g to reduce the
parameter space. The wave function � j is scaled by

√
Nk3,

and
∫

dr|� j |2 = Nj/N is satisfied in the dimensionless unit,
where N = N1 + N2 is the total number of atoms. In the fol-
lowing study, we assume N1 = N2 = N/2.

III. NUMERICAL SIMULATION OF AN IDEAL SYSTEM

We consider an ideal system to focus on the multistability
of the system, where the trapping potential is absent, i.e.,
V1 = V2 = 0, and the periodic boundary condition is imposed.
For simplicity, we consider a two-dimensional system with
size (2π�)2 with � = 4, and the number of atoms per (2π )2

area is defined as Ñ = N/�2. We also define g̃ = gÑ and
g̃12 = g12Ñ . To obtain the stationary states, we propagate the
GP equations in imaginary time as −∂� j/∂t = Fj (�1, �2),
where Fj are the right-hand sides of Eqs. (1) and (2) with |α|2
being replaced by Eq. (4). The split-operator pseudospectral
method [58] is used, where the integral in Eq. (4) is calculated
in every step of the time evolution. In the numerical simula-
tions, we discretize the space into a 256 × 256 mesh, and the
time step is dt = 0.001. We add a small random number to
each mesh of the initial state to break the symmetry of the
system.
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FIG. 2. Steady-state intracavity photon number |α|2 as a function of laser pump intensity η, where η is increased from η = 0 to 6000
and then decreased to 0 in the imaginary-time evolution. The density profiles of the two components at points a, b, and c are shown in the
insets, where the size in the y direction is reduced to 1/2. The parameters are g̃ = 1000, U1 = 0.25, U2 = 0.125, δc = 1200, κ = 400, and
N = 16Ñ = 1.2 × 105. (a) g̃12 = 1000 and (b) g̃12 = 1020. See the Supplemental Material [59] for movies showing the η dependence of the
atomic density distributions.

First, in Fig. 2(a), we show the case of g̃ = g̃12, for which
the two components are miscible when η = 0. We prepare the
ground state for η = 0, and η is gradually increased with a
step of �η = 40. For each value of η, imaginary-time propa-
gation is performed for a long enough time (�T = 100) that
the system follows the steady state for each η. This process
mimics experiments in which the pump strength is changed
much more slowly than the relaxation time of the system.
After η reaches 6000, η is decreased with a step of �η = −40
to η = 0 to study the hysteresis. In Fig. 2(a), we find bistable
behavior; the system jumps from the lower to upper branches
at η � 2920 when η is increased, and the system jumps back
to the lower branch at η � 2220 when η is decreased. The two
components are mixed in the lower branch, while the alternate
stripe pattern is formed in the upper branch, as shown in the
insets in Fig. 2(a).

In Fig. 2(b), we show the result for g̃12 = 1020 and
g̃ = 1000, which satisfy the immiscibility condition for the
homogeneous system. When η = 0 [point a in Fig. 2(b)], the
two components are spatially separated along the y axis due
to the immiscible condition. When η is increased to 4400,
the density profile of each component becomes modulated by
the cavity field (inset b). At this value of η, the system jumps
from point b to point c, where the density profiles of the two
components suddenly change to the alternate stripe pattern.
The system then jumps back to the separated state, when η is
decreased, exhibiting hysteresis.

We note that the bistable region is significantly increased
from Fig. 2(a) to Fig. 2(b), whereas the parameters in Fig. 2(b)
are the same as those in Fig. 2(a) except for a small change
in the intercomponent interaction coefficient g̃12. This is
due to the miscibility-immiscibility transition, which alters
the global structure of the atomic density distribution; i.e.,
the density distributions in the lower branches in Figs. 2(a)

and 2(b) are quite different. The results in Figs. 2(a) and 2(b)
thus demonstrate that the bistability curve is sensitive to g̃12,
which can be used to control the optical bistability, since g̃12

can be controlled using the Feshbach resonance.
In Figs. 3(a) and 3(b), g̃12 is further increased, and we

observe the transition from bistability to multistability. In
Fig. 3(a), for g̃12 = 1030, we find a new branch around η �
3000, when η is decreased. In this branch, the stripe phase
and separated phase coexist, as shown in inset e in Fig. 3(a),
where the central region and outer region are occupied by
components 2 and 1, respectively, and the stripe regions lie
in between. This coexistence phase appears because it has
lower effective energy than the overall stripe phase (inset
c), which will be shown in Sec. V using the variational
method.

Figure 3(b) shows the case of g̃12 = 1040, where one can
see five stable branches. Initially, in the lower stable branch,
the two components are strongly separated, as shown in insets
a and b. At η � 4680, the system jumps from point b to point
c, where the two regions coexist along the y axis: the stripe
region and the region occupied only by component 2. This
coexistence phase continues up to η � 8000, at which the
region occupied by component 2 disappears and the whole
space becomes the stripe state. When η is decreased, the stripe
state continues to point d, and the transition occurs from point
d to point e, which is similar to the transition in Fig. 3(a) (d
to e). After that, further transition occurs from point f to point
g, where only the number of stripes changes. Such transition
is ascribed to the finite size of the system, and will become
continuous in an infinite system.

IV. VARIATIONAL APPROACH

In the previous section, we numerically showed that var-
ious multistable phases appear when the intercomponent
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FIG. 3. Steady-state intracavity photon number |α|2 as a function of laser pump intensity η for (a) g̃12 = 1030 and (b) g̃12 = 1040. The
density profile at each point is shown in the inset. Other parameters are the same as those in Fig. 2. See the Supplemental Material [59] for
movies showing the η dependence of the atomic density distributions.

repulsive interaction is increased. In order to understand this
result in more detail, we performed variational analysis. The
effective energy of the system can be written as [43]

Eeff =
∫

dr
(
|∇�1|2 + |∇�2|2 + g11N

2
|�1|4

+g22N

2
|�2|4 + g12N |�1|2|�2|2

)

+ η2

κ
tan−1

{
1

κ

[
δc + U1N

2

∫
dr|�1|2 cos(2kx)

+U2N

2

∫
dr|�2|2 cos(2kx)

]}
. (5)

This effective energy is defined in such a way that its func-
tional derivative δEeff/δ�

∗(r) gives the right-hand sides of

the GP equations (1) and (2) with Eq. (4), and therefore
minimization of Eeff globally or locally under the constraint
of the normalization of the wave functions gives the steady
states of the GP equations.

From the density distributions shown in the insets in Figs. 2
and 3, we find that the steady states consist of different spatial
regions (region occupied only by each component separately
and alternate stripe region), and therefore we divide the inte-
grals in Eq. (5) into

∑
β Iβ + ∑

ββ ′ Iββ ′ , where β = a, b, . . .
is the index of the regions. In this expression, Iβ denotes
the bulk part of the region β and Iββ ′ denotes the interface
part between the regions β and β ′. Since the interface part is
difficult to evaluate, we consider a sufficiently large system,
in which the bulk parts are dominant and the interface parts
can be neglected. The effective energy is then approximated
as

Eeff =
∑

β

∫
β

dr
(
|∇�1β |2 + |∇�2β |2 + g11N

2
|�1β |4 + g22N

2
|�2β |4 + g12N |�1β |2|�2β |2

)

+ η2

κ
tan−1

{
1

κ

[
δc + U1N

2

∑
β

∫
β

dr|�1β |2 cos(2kx) + U2N

2

∑
β

∫
β

dr|�2β |2 cos(2kx)

]}
, (6)

where � jβ represents the wave function of component j in
the region β and the integrals

∫
β

dr are taken only in each
region β.

Next, we introduce the two-mode approximation. The
ground state of the condensate in the absence of ex-
ternal pumping is homogeneous, with a zero-momentum
state in each region β. The effect of the intracavity field
is to diffract this ground state from the zero-momentum
state into a superposition 1√

2
(|p = +2h̄k〉 + |p = −2h̄k〉)

of the momentum states. In a weak interaction and weak
pump case, the state of the condensate is limited to these
two modes. We therefore approximate the wave function
as

� jβ (r) =
√

Njβ

Vβ

[a jβ +
√

2b jβ cos(2kx)], (7)

where Njβ is the number of component- j atoms in the
region β, Vβ is the volume of the region β, and a jβ
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and b jβ are real numbers satisfying a2
jβ + b2

jβ = 1. We
also define the atom number ratio njβ = Njβ/Nj and the
volume ratio vβ = Vβ/V , where V is the total volume.

These ratios must satisfy
∑

β n jβ = ∑
β vβ = 1. Substitut-

ing Eq. (7) into Eq. (6), we obtain the variational energy
as

Eeff

N
= 4

∑
j=1,2

∑
β

n jβb2
jβ +

∑
j=1,2

∑
β

g j jN

V

n2
jβ

vβ

(
1 + 4a2

jβb2
jβ + 1

2
b4

jβ

)

+ g12N

V

∑
β

n1βn2β

vβ

(
1 + 4a1βb1βa2βb2β + 1

2
b2

1βb2
2β

)
+ η2

κN
tan−1

[
1

κ

(
δc +

∑
j=1,2

∑
β

1√
2

NUjn jβa jβb jβ

)]
, (8)

where the variational parameters are n jβ , vβ , and b jβ =
±

√
1 − a2

jβ . To compare the variational results with those in

Sec. III, we use the same parameters g, Uj , δc, κ , and N . As in
Sec. III, we define g̃i j = gi jN/4 and we set V = (8π )2. The
thermodynamic limit N,V → ∞ can be taken with UjN and
η2/N being kept constant.

To find the stationary conditions of the variational param-
eters, we first minimize Eq. (8) by the Monte Carlo method,
in which the initial values of variational parameters are set
to random numbers, and they are changed in a random-walk-
like manner in the parameter space to reach the minima. By
this method, we obtain an initial guess of possible station-
ary phases, which are summarized in Table I. There are five
phases as follows:

Phase 1. Two components are separated in two spatial
regions β = a and b, and therefore n1a = n2b = 1 and n1b =
n2a = 0.

Phase 2. The alternate stripe pattern is formed in the whole
space, and there is only a single region β = a.

Phase 3. There are two regions β = a and b. Region a
is the alternate stripe state and region b is occupied only by
component 2, and hence n1a = 1 and n1b = 0.

Phase 4. This phase is similar to phase 3, but the region b
is occupied only by component 1.

Phase 5. We have three regions β = a, b, and c. Re-
gion a is the alternate stripe state, region b is occupied
only by component 2, and region c is occupied only by
component 1.

By the Monte Carlo search, no other phases are found, and
three spatial regions are sufficient. From the initial guess of
the stationary states, we can obtain the complete stationary
curves by an iteration method such as the Newton-Raphson
method. The energetically stable states can be obtained by
both Monte Carlo and iteration methods, while unstable states

are obtained only by the iteration method. These results are
shown in Fig. 4.

Figure 4(a) shows the case of g̃12 = 1010. Unlike the single
bistable curve in a usual single-component BEC-cavity sys-
tem, there are two bistable curves in Fig. 4(a), which arise
from the separated phase and alternate stripe phase, respec-
tively. For small η, the only stable branch is the separated
phase (phase 1). Increasing η, the lower stable branch of
phase 1 disappears at η � 5400, above which the state can
jump to either upper branch of phase 1 or phase 2. Since
the effective energy of phase 2 is lower than that of phase 1
around this value of η [see Fig. 5(a)], phase 2 is chosen at this
jump, i.e., the stripe state is realized. When η is decreased to
η � 2280, the upper stable branch of phase 2 disappears and
the state jumps back to phase 1. Thus, Fig. 4(a) can explain the
behavior of the numerical result in Fig. 2(b), and reveals that
the bistable behavior in Fig. 2(b) arises from double S-shaped
curves, not from a single S-shaped curve as usual.

By contrast, for the miscible case, the separated state
(phase 1) becomes totally unstable, and the only stable branch
is phase 2. We found that the S-shaped curve of phase 2 for
g̃12 = 1000 (data not shown) is almost the same as that in
Fig. 4(a), where the lower branch is stable and goes to the uni-
formly mixed state for η → 0. In the miscible case, thus, there
is only a single S-shaped curve, and for the immiscible case,
the two S-shaped curves are involved in the hysteresis. Thus,
the miscibility transition enriches the bistability phenomena
in the BEC-cavity system.

We increase g̃12 to 1030 and 1050, which are shown in
Figs. 4(b) and 4(c), respectively. Phases 3, 4, and 5 addition-
ally appear as stable phases, which leads to multistability.
One can see that the stable parts of phases 3 and 4 con-
nect to phase 2, and the stable part of phase 5 connects
to phase 3, exhibiting complicated structures. In the nu-
merical result in Fig. 3(a), the coexistence state appeared

TABLE I. Variational parameters for the five phases.

Phase n1a n2a n1b n2b n1c n2c va vb vc

1 1 0 0 1 0 0 variable 1 − va 0
2 1 1 0 0 0 0 1 0 0
3 1 variable 0 1 − n2a 0 0 variable 1 − va 0
4 variable 1 1 − n1a 0 0 0 variable 1 − va 0
5 variable variable 0 1 − n2a 1 − n1a 0 variable variable 1 − va − vb
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Phase 1 Phase 2 Phase 3

Phase 4 Phase 5

|
|2

|
|2

|
|2

g12 = 1010

g12 = 1030

(a)

(b)

g12 = 1050(c)

FIG. 4. Steady-state intracavity photon number |α|2 as a function
of laser pump intensity η for (a) g̃12 = 1010, (b) g̃12 = 1030, and
(c) g̃12 = 1050. The solid and dashed lines indicate energetically
stable and unstable states, respectively. The insets provide mag-
nification. Other parameters are g̃11 = g̃22 = 1000, N = 1.2 × 105,
U1 = 0.25, U2 = 0.125, δc = 1200, and κ = 400.

(a)

E
ef

f

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

(b)

v b

FIG. 5. (a) Effective energy Eeff as a function of laser pump in-
tensity η. (b) Volume ratio of region b, vb, as a function of laser pump
intensity η. The intercomponent interaction strength is g̃12 = 1030.
Other parameters are the same as those in Fig. 4. Curves of stable
states are only shown.

(inset e) in a narrow range of η, which corresponds to phase
5. This is consistent with Fig. 4(b), where the stable part
of phase 5 only appears in a narrow range of η. The emer-
gence of phase 5 can also be understood from Fig. 5(a),
which shows that phase 5 has lower effective energy than
phase 2.

The behavior in Fig. 3(b) is also consistent with the
variational result in Figs. 4(b) and 4(c). In Fig. 3(b), the
jump occurred from point b to point c, which corresponds
to the jump from phase 1 to phase 3. This is consistent
with Fig. 4, i.e., the stable range of phase 3 is increased
by an increase of g̃12, which enables the jump from the
lower edge of phase 1 to phase 3. As η is increased,
phase 3 merges into phase 2 in Figs. 4(b) and 4(c), which
also agrees with the behavior in Fig. 3(b). The volume
ratio of region b decreases with increasing η as shown
in Fig. 5(b).

Figure 6 shows the δc dependence of the photon num-
ber with η fixed. When the pump intensity is η = 1000, the
stationary curves of phases 1 and 2 are nearly Lorentzian,
as shown in Fig. 6(a). When the pump increases, the atoms
collectively act as a dispersive medium shifting the cavity
resonance, and the system exhibits multistable behavior above
a critical value, as shown in Fig. 6(b) for η = 4000, where
the Lorentzian-like curves shift rightward. Furthermore, the
stationary curves of phases 3, 4, and 5 also emerge, which
connect to those of phases 1 and 2, forming complicated
structures.
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|

|2
|

|2

(b)

(a)

 = 4000

 = 1000

Phase 1 Phase 2 Phase 3

Phase 4 Phase 5

c

c

FIG. 6. Steady-state intracavity photon number |α|2 as a function
of effective detuning δc for (a) η = 1000 and (b) η = 4000. The value
of intercomponent interaction is g̃12 = 1050. Other parameters are
the same as those in Fig. 4.

V. TRAPPED SYSTEM

We have so far considered a two-dimensional system with-
out an external potential. Here we examine the multistability
for a more realistic three-dimensional system confined in
a harmonic potential. We consider a two-component BEC
with different hyperfine states of 87Rb in a trap potential
V1(r) = V2(r) = m(ω2

x x2 + ω2
y y2 + ω2

z z2)/2, where the trap
frequencies are ωx = 2π × 800 Hz, ωy = 2π × 8000 Hz, and
ωz = 2π × 800 Hz. We normalize the length and time by
k−1 and (h̄k2/2m)−1 with 2π/k = 780 nm. We solve the
imaginary-time evolution of the GP equation with increasing
and decreasing η by the step �η = ±80 and obtain the sta-
tionary state for each η, as in Sec. III.

Let us first consider the case of g � g12. In Fig. 7, we
show the stationary states as a function of η. For η = 0, the
two components are mixed. As η is increased, the system
follows the lower branch, and jumps to the upper branch at

 0

 100

 200

 300

 400

 500

 0  4000  8000  12000  16000

x

z

a

b

c

(a)

(b)

Density

FIG. 7. (a) Steady-state intracavity photon number |α|2 as a func-
tion of laser pump intensity η for g12 = 0.9g. (b) Density profiles
of two components on the y = 0 plane. The size of each panel is
115.2 μm × 115.2 μm and the color bar ranges from 0 to 5 × 10−5

in units of Nk3. Each colored point in (a) corresponds to the density
profile in (b) for each value of η. The parameters are a11 = 100a0,
with a0 being the Bohr radius, U1 = 0.025, U2 = 0.0125, δc = 1200,
and N = 6 × 105.

η � 10400, where the alternate stripe pattern emerges. When
we decrease η, the system jumps from the upper to lower
branches at η � 7880, resulting in the bistable region. Such
bistable behavior is similar to that in the ideal system in
Fig. 2(a).

Figure 8 shows the immiscible case, g12 > g. In this case,
the lower branch starting from η = 0 is the separated state.
At η � 12000, the system jumps to the upper branch, and
the condensate sharply changes to a state in which the al-
ternate stripe region and the regions occupied only by either
component separately coexist. In this branch, the inner and
outer regions are partially occupied by component 2 and 1.
This phase is maintained up to η = 16000. When η is de-
creased from 16000, the system follows a different branch in
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FIG. 8. (a) Steady-state intracavity photon number |α|2 as a
function of laser pump intensity η for g12 > g. (b) Density profiles
of two components on the y = 0 plane. The size of each panel is
115.2 μm × 115.2 μm and the color bar ranges from 0 to 5 × 10−5

in units of Nk3. Each colored point in (a) corresponds to the density
profile in (b) for each value of η. The intercomponent scattering
length is a12 = 110a0, where a0 is the Bohr radius. All other param-
eters are the same as those in Fig. 7.

a manner similar to Fig. 3(b). At η � 11720, another jump
occurs, and the stripe region appears around the center. Sub-

sequently, two jumps occur in which the central stripe region
decreases, resulting in the totally separated state at η � 9800.
By further decreasing η, the system jumps back to the lower
branch, which is separated in the x direction.

Thus, in the trapped three-dimensional system as well,
bistability and multistability emerge, which is significantly
altered by the miscibility of the two-component BEC.

VI. CONCLUSIONS

We have investigated a two-component BEC coupled to
a single-mode optical cavity. We showed that this coupled
BEC-cavity system exhibits a variety of density structures and
optical multistability, which is sensitive to the intercomponent
interaction strength. This sensitivity arises from the miscible-
immiscible transition of the two-component BEC, by which
the global structure of the density distribution changes, al-
tering the effective BEC-cavity coupling significantly. We
found a variety of stable phases, such as the separated phase,
alternate stripe phase, and their coexistence, which exhibit
multistability. Using a variational method, we classified these
phases, and explained the results of the numerical simulations.

In contrast to the single-component BEC-cavity system,
such a two-component BEC-cavity system allows one to con-
trol the optical bistability width by changing the condition of
miscibility. Experimentally, the miscibility transition can be
controlled by adjusting the s-wave scattering length through a
Feshbach resonance. Thus, the present system may provide a
candidate for a controlled optical switch using the miscibility
transition. The hydrodynamic properties of quantum fluids,
such as their miscibility, will yield other interesting phenom-
ena in the BEC-cavity system, which merit further study.
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