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Pairing patterns in polarized unitary Fermi gases above the superfluid transition
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We nonperturbatively study pairing in the high-temperature regime of polarized unitary two-component Fermi
gases by extracting the pair-momentum distribution and shot-noise correlations. Whereas the pair-momentum
distribution allows us to analyze the propagation of pairs composed of one spin-up and one spin-down fermion,
shot-noise correlations provide us with a tomographic insight into pairing correlations around the Fermi surfaces
associated with the two species. Assuming that the dominant pairing patterns right above the superfluid transition
also govern the formation of condensates in the low-temperature regime, our analysis suggests that the superfluid
ground state is homogeneous and of the Bardeen-Cooper-Schrieffer type over a wide range of polarizations.
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I. INTRODUCTION

In spite of the substantial progress in the field of ultracold
atoms, on the theoretical, computational, and experimental
fronts, the question of the existence of an inhomogeneous
superfluid phase in strongly coupled Fermi gases at low tem-
peratures remains an open and challenging area of research.
One of the most sought after cases is the unitary limit of non-
relativistic spin-1/2 fermions, where the attractive zero-range
interaction is tuned to resonance and the system is scale in-
variant. At low enough temperatures, the unpolarized system
displays a superfluid phase which, as the polarization is in-
creased, eventually disappears at some temperature-dependent
critical polarization [1–10] (see Refs. [11–14] for reviews).
Exactly how this happens, i.e., what exotic superfluid phases
are traversed as the polarization is increased and to what ex-
tent they are stable against thermal and quantum fluctuations,
remains an open question even for this simple system.

As the formation of a superfluid condensate necessarily
requires fermion pairing, the observation of a dominance in
a specific channel in correlation functions can be viewed as
a precursor for the formation of a corresponding condensate,
which may even be spatially inhomogeneous. To address the
issue of pairing, suitable four-point correlation functions need
to be investigated. So far, several correlation functions have
been analyzed with a variety of nonperturbative continuum
methods in different approximations [9,10,15], to gain a bet-
ter understanding of the finite-temperature phase diagram of
the spin-imbalanced unitary Fermi gas (UFG), summarized
in Fig. 1. In these studies, the pair-correlation function—
associated with the propagator of the pairing field—plays
an important role as distinct maxima in the momentum-
space representation of this correlator are expected to herald
the formation of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)

ground state [15], i.e., an inhomogeneous ground state with a
spatially oscillating order parameter (see also Refs. [16–18]
for corresponding studies of one-dimensional systems).

In this work, we aim to shed further light on the pair-
ing mechanisms of the polarized unitary Fermi gas by
approaching the problem from the high-temperature regime.
To this end, we track pairing through the aforementioned
pair-momentum distribution as well as density-density cor-
relations in momentum space, also known as the shot noise
[19]. Whereas the pair-momentum distribution provides us
with information on the propagation of potentially condensing
pairs of spin-up and spin-down fermions, the shot noise gives
a “tomographic” view of the structure of the fermion pairs.
In fact, it highlights which “spots” in momentum space are
(anti)correlated with each other. In this respect, the shot-noise
correlator may be regarded as the covariance matrix of the
momentum distributions of the two species.

In a similar way to earlier studies of one-dimensional
setups, where the shot noise very clearly revealed domi-
nant and even subdominant pairing patterns for spin- and
mass-imbalanced Fermi gases [16,20], we combine insights
from both correlation functions to further map out the re-
gions where off-center pairing associated with FFLO-type
phases may or may not be a relevant mechanism in the three-
dimensional UFG. Strikingly, noise correlations are accessible
in experiments as was recently demonstrated for two-
dimensional Fermi gases, where the shot-noise correlation
function was reconstructed via time-of-flight measurements of
the spin-selective momentum distributions [21].

II. MODEL AND METHOD

Two-component fermions in the uni-
tary limit are characterized by the following
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FIG. 1. Phase diagram of the unitary Fermi gas in the (T/TF , p)
plane, extended from Ref. [26]. The dark green hatched region rep-
resents the domain investigated in this work. The orange hatched
area marks where a recent Luttinger-Ward study predicts dominant
FFLO-type pairing fluctuations [15]. Stars mark parameter values of
the data sets presented below. For a detailed discussion of this phase
diagram, see Ref. [26].

Hamiltonian:

Ĥ =
∫

d3r ψ̂†
s (r)

(
− h̄∇2

2m

)
ψ̂s(r) −g

∫
d3rn̂↑(r)n̂↓(r) ,

where summation over s is assumed (s =↑,↓). Here, ψ̂†
s (r)

and ψ̂s(r) denote the creation and annihilation operators for
fermions of spin s at position r. On the microscopic level, the
fermion interactions assume a simple form and can be written
in terms of the density operators n̂↑,↓(r) = ψ̂

†
↑,↓(r)ψ̂↑,↓(r).

The interaction strength is controlled by the (bare) coupling
parameter g. In the following, we set m = 1 for the fermion
masses and also h̄ = kB = 1, which fixes the units in our
calculations.

In this work, we restrict ourselves to the dilute limit, such
that a zero-range interaction in the above Hamiltonian is ap-
propriate. Moreover, we only consider the so-called unitary
limit which requires to tune the system to resonance. On
a finite spacetime lattice, this implies a tuning of the bare
coupling (see Refs. [22–25] for details).

In the unpolarized many-body regime, the system
described by the above Hamiltonian displays a low-
temperature superfluid phase, continuously connecting the
weak-coupling (BCS) and strong-coupling [Bose-Einstein
condensate (BEC)] regimes, which is the well-known BCS-
BEC crossover [13]. As the polarization is turned on
(measured by a particle number or chemical potential dif-
ference between the two spin species), the superfluid phase
is expected to shrink and eventually disappear at a critical,
temperature-dependent polarization. Intriguingly, the struc-
ture of the ground state may change from a homogeneous
superfluid to an inhomogeneous superfluid state, also called
supersolid, when the polarization is increased [9,11–14].

To obtain the relevant correlation functions required to
shed light on the pairing mechanism at work, we employ the
complex Langevin (CL) method [27–31]. This nonperturba-
tive numerical approach circumvents the sign problem that

arises in the case of spin polarization in conventional Monte
Carlo approaches. In the following, we only recapitulate the
most important aspects of this approach; for details on the
method and the sign problem we refer to Refs. [32,33].

Our starting point is the grand-canonical partition function,
given by

Z = Tr[e−β(Ĥ−μ↑N̂↑−μ↓N̂↓ )] , (1)

where β is the inverse temperature, μs is the chemical poten-
tial for spin-s particles, and N̂s is the corresponding particle
number operator. Using a Suzuki-Trotter factorization, which
defines an imaginary-time lattice of spacing τ and extent Nτ

(such that β = τNτ ), followed by a density-channel Hubbard-
Stratonovich (HS) transformation, one obtains the following
path integral form of the partition function:

Z =
∫

Dσ det M↑[σ ] det M↓[σ ] . (2)

Here, σ is a real-valued spacetime varying HS field and Ms is
the Fermi matrix associated with spin-s particles. Whereas for
unpolarized systems det M↑ det M↓ = det M2

↑ is real and non-
negative since Ms is real valued (i.e., μ↑ = μ↓), there is no
guarantee that the product of the determinants is non-negative
at finite polarization, which results in one of the most im-
portant open problems in quantum many-body physics across
all areas: the aforementioned sign problem. This implies that
ordinary importance-sampling-based quantum Monte Carlo
methods, using the determinant product as a probability mea-
sure, only work in particular situations.

Instead of importance sampling with a repeated accept-
or-reject step, the CL method obtains a properly distributed
collection of HS fields by solving the appropriate set of two
Langevin equations

dσ

dt
= −δS[σ ]

δσ
+ η , (3)

where σ has been promoted to a complex quantity. Here,
t is a fictitious time parametrizing the configuration space
trajectory, S[σ ] = − ln(det M↑[σ ] det M↓[σ ]) is the effective
action, and η represents a (real) white noise term with van-
ishing autocorrelation. Although there are potential caveats
to this approach [34–36], this strategy has been successfully
applied to strongly coupled ultracold matter [20,26,37–40]
and thus is expected to faithfully represent the correlation
functions of interest for this work. Our numerical setup and
(hyper)parameters are as in Ref. [38] with a spacetime lat-
tice size of V × Nτ = 113 × 160, sufficient to study the UFG
down to temperatures slightly below the superfluid phase tran-
sition.

III. RESULTS

In this work, we aim at an investigation of the pairing
mechanisms in spin-polarized unitary Fermi gases. In terms
of spin polarization, we have restricted ourselves to the regime
βh < 2.0, where h = μ↑ − μ↓ is the so-called Zeeman field.
This corresponds to the polarizations p = (n↑ − n↓)/(n↑ +
n↓) marked with the dark green hatched area in Fig. 1. With
respect to the temperature, we focus on the regime above
the superfluid phase transition temperature, i.e., βμ � (βμ)c,
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where (βμ)c ≈ 2.5 is the phase transition temperature of the
balanced system [8,10,41–43]. In units of the Fermi tem-
perature of the spin-up fermions, this corresponds to the
temperature regime T/T ↑

F > (Tc/T ↑
F ) ≈ 0.16. Note that the

phase transition temperature is expected to decrease with
increasing polarization, as suggested by both mean-field stud-
ies and calculations taking fluctuation effects into account
[8,10,11,14]. With respect to an accurate determination of the
coordinates of regimes governed by inhomogeneous pairing
in the phase diagram spanned by the temperature and polar-
ization, however, it is of great relevance to take fluctuation
effects into account. For example, (Tc/T ↑

F ) ≈ 0.5 is obtained
for the phase transition temperature of the balanced gas in
the mean-field approximation [13], whereas (Tc/T ↑

F ) ≈ 0.16
is found in our present calculation, in good agreement with
experimental data [41]. At low temperatures and large polar-
izations, fluctuation effects are also relevant as can be seen
by a shift of the critical Zeeman field (associated with the
breakdown of homogeneous superfluidity) to larger values
compared to the mean-field result [8,9]. This shift appears to
be in accordance with experiments as well [3]. In any case, the
largest polarization considered in the present work is p ≈ 0.5
for T/T ↑

F ≈ 0.29.
Let us now turn to the correlation functions. The ↑-↓ two-

body density is defined as

ρ2,↑,↓(x′, x, y′, y) = 〈ψ̂†
↑(x′)ψ̂†

↓(y′)ψ̂↓(y)ψ̂↑(x)〉. (4)

To study pair correlations across a distance r, we simply
set x′ = x + r and y′ = y + r. The relative positions of the
particles in the pair is r̃ = y′ − x′ = y − x and the initial
center-of-mass location is R = (x + y)/2. As the latter is
arbitrary, one may average over it, leaving two variables r
and r̃ characterizing the pair correlations. To obtain the pair-
momentum distribution ρpair of tightly bound (on-site) ↑↓
pairs, we set r̃ = 0 and compute the Fourier transform of
Eq. (4) with respect to r. For the normalization of ρpair, we
choose

1

V

∫
d3q

(2π )3
ρpair(q) = n↑n↓ , (5)

where V denotes the spatial volume. Thus, ρpair is normalized
with respect to the total number of possible combinations of
↑ and ↓ fermions.

As mentioned above, the pair-momentum distribution has
already been employed in the past to search for FFLO-type
pairing, as a peak in this quantity at q 	= 0 points to un-
conventional pairing. On the other hand, a pair-momentum
correlation peaked around q = 0 is indicative of conventional
BCS pairing. In Fig. 2, our results for the pair-momentum
distribution evaluated at βμ = 2.0 (i.e., close to the superfluid
phase transition) for various values of βh are shown. We ob-
serve that this distribution indeed develops a clear maximum.
However, for all temperatures and polarizations considered in
this work, we only find a maximum at q = 0 which should
be viewed as a precursor for the formation of a conventional
BCS-type superfluid ground state at low temperatures. More-
over, we find that the height of the maximum of ρpair decreases
when the polarization is increased for a fixed value of βμ,
which is in accordance with the fact that the phase transition

FIG. 2. Pair-momentum distribution ρpair at fixed βμ = 2.0 for
βh = 0, . . . , 2.0. Inset: Zero-momentum component ρpair (q = 0) as
function of the chemical potential mismatch βh.

line decreases for increasing polarization. Thus, for a fixed
value of βμ, the system is farther away from the phase tran-
sition for larger polarizations and pairing correlations become
weaker. In any case, there is no indication of an FFLO-type
pairing signature in our results for the pair-momentum distri-
bution, in the entire regime of temperatures and polarizations
considered in this work, as illustrated in Fig. 1.

As the pair-momentum distribution does not allow to gain
an insight into the internal momentum structure of the two
fermions forming a pair, we extract this important aspect from
the aforementioned shot-noise correlations. In fact, even if
the pair-momentum distribution indicates that the formation
of pairs with a given momentum q is favored, we do not
know a priori whether the pair is formed out of, e.g., two
fermions with opposite momenta of the order of the respective
Fermi momentum of the two species. Whereas this is likely
to be the case for unpolarized systems, less is known about
this aspect in the presence of a finite polarization. In fact,
there is an infinite number of possible configurations for a
given center-of-mass momentum of the pair. All of them may
then build up a maximum in the pair-momentum distribu-
tion which may eventually be interpreted as a certain type
of pairing mechanism, e.g., conventional FFLO-type pairing.
For one-dimensional Fermi gases with a finite spin and mass
polarization, it has indeed been recently found that uncon-
ventional pairing patterns in terms of the internal momentum
structure of the pairs may be more likely than the conventional
FFLO-type pattern [20].

The momentum shot-noise correlation across different spin
species (not to be confused with the Fourier transform of the
density-density correlation in coordinate space, which would
give the structure factor) is given by

G↑,↓(k, k′) = 〈n̂↑(k)n̂↓(k′)〉 − 〈n̂↑(k)〉〈n̂↓(k′)〉 . (6)

Here, k and k′ refer to momenta and n̂s(k) is the momentum-
space representation of the density operator of the fermion
with spin s.

Our results for the shot-noise correlations at βμ = 2.0 are
shown in Fig. 3 for the unpolarized case (βh = 0, top row) and
for the polarized case (βh = 2.0, bottom row). For better visu-
alization, we present these correlations in the (kx, ky) plane at
kz = 0 for a test particle kept fixed at a given momentum in the
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FIG. 3. Density-density correlation in momentum space at fixed βμ = 2.0 as well as βh = 0.0 (top row) and βh = 2.0 (bottom row) in
the plane where kz = 0. Different panels correspond to different reference positions of an ↑ particle along the line k = (kx, 0, 0), indicated by
a black dot. Dashed lines correspond to the respective Fermi surfaces. The momenta kx, ky are given in units of the lattice spacing, and are
defined in the first Brillouin zone.

same plane, which is indicated by the black dot in the various
panels. For a detailed comparison, we additionally show cuts
of the same quantity along the kx axis in Fig. 4 (corresponding
to the central horizontal bins in Fig. 3).

In the balanced case, we observe the strongest correlation
between fermions with opposite momenta “sitting” right at
the Fermi surface, as also expected for a conventional BCS
superfluid. Moreover, we find that the correlation decreases
when we consider such pairs with momenta smaller than the

FIG. 4. Cuts along kx of the shot noise in momentum space for
βμ = 2.0 (top panel) and βh = 2.0 (bottom panel). The color coding
corresponds to the reference positions indicated in the inset. The cuts
correspond to the central horizontal bins in Fig. 3. The Fermi seas
of the two species are indicated by gray-shaded areas. Note that, for
βh > 0, the size of the two Fermi surfaces differ. The momentum
kx is given in units of the lattice spacing, and is defined in the first
Brillouin zone.

Fermi momentum. Thus, the Fermi sea is dismantled starting
from the Fermi surface down to the interior of the Fermi sea,
eventually leading to the formation of a superfluid condensate
of compound bosons composed of one spin-up and one spin-
down fermion at sufficiently low temperatures. In particular,
the shot-noise correlations suggest that the formation of pairs
with fermions coming with opposite momenta (but zero total
momentum) is energetically most favorable. Intriguingly, in-
creasing the polarization, we observe that this clear pairing
pattern is washed out and other pairing channels appear to
open up. In particular, we find that pairing channels with a
nonvanishing center-of-mass momentum become increasingly
favorable, although such patterns (e.g., FFLO-type maximum)
are not yet visible in the pair-momentum distribution. This
behavior may be viewed as a precursor for the formation of
unconventional condensates at even higher polarizations, as
suggested in a recent T -matrix study [15]. In any case, our
present ab initio study suggests that there is no indication for
the formation of inhomogeneous ground states emerging from
unconventional pairing patterns in the dark green hatched area
in Fig. 1.

IV. SUMMARY

In the present work, we have used the CL method to
elucidate the onset of pairing correlations in the polarized
regime of the unitary Fermi gas at high temperatures over a
wide range of polarizations. To that end, we analyzed the pair-
momentum distribution and shot-noise correlations. Based on
both of these, we are able to place nonperturbative, ab initio
bounds on the possible locations of exotic pairing phases such
as FFLO. More precisely, for the polarizations considered in
this work (cf. Fig. 1), we found only indications for the for-
mation of a conventional superfluid as indicated by standard
BCS-type pairing. However, while increasing the polarization,
the shot-noise correlations suggest that the clear BCS signa-
ture is washed out and other pairing channels become increas-
ingly favorable, which could be viewed as the precursor for
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the formation of inhomogeneous condensation at even higher
polarizations. Still, the pair-momentum distribution exhibits a
peak at vanishing momentum, indicating that the formation of
a homogeneous superfluid ground state is most favored in the
range of polarizations considered here. Of course, these find-
ings do not exclude the existence of an inhomogeneous phase
at larger polarizations and lower temperatures. However, an
ab initio analysis of this regime requires further developments
of our CL framework which is deferred to future work. As an
alternative to an extension of our present approach to lower
temperatures and higher polarizations, one may consider to
employ functional approaches to study unitary Fermi gases
at low temperatures and high polarizations, such as the func-
tional renormalization group approach and the Luttinger-Ward
approach. Indeed, these nonperturbative approaches do not
suffer from the sign problem and have already been set up
to search for inhomogeneous phases in nonrelativistic Fermi
gases [9,10,15,44]. However, since these approaches rely on
approximations for correlation functions, it may be worth-
while to use our present results for correlation functions for
0 � p � 0.5 to guide the construction of approximations in
future functional studies of this kind.

Finally, we emphasize that our results for the pair-
momentum distribution as well as the shot-noise correlations
represent experimentally accessible predictions. In fact,
shot-noise correlations have been just recently measured
in two-dimensional Fermi gases [21]. We expect that an
extension of our approach to two-dimensional systems or an

extension of these experiments to three-dimensional systems
analyzed in the light of corresponding results from theo-
retical studies will further push our understanding of pair
formation and condensation in strongly correlated systems
under extreme conditions of temperature and polarization.
Moreover, an analysis of the eigenvalues of the pair-
momentum distribution may allow to study the fate of FFLO
states in experiments, as already done for one-dimensional
systems [45].
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