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We consider the three-body problem in a generic multiband lattice, and analyze the dispersion of the trimer
states that are made of two spin-↑ fermions and a spin-↓ fermion due to an on-site attraction in between. Based
on a variational approach, we first obtain the exact solution in the form of a set of coupled integral equations,
and then reduce it to an eigenvalue problem. As an illustration we apply our theory to the sawtooth lattice, and
numerically show that energetically stable trimers are allowed in a two-band setting, which is in sharp contrast
with the single-band linear-chain model. In particular, we also reveal that the trimers have a nearly flat dispersion
when formed in a flat band, which is unlike the highly dispersive spectrum of its dimers.
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I. INTRODUCTION

The Hubbard model and its numerous extensions are
major playgrounds for studying central research problems
in solid-state, condensed-matter, and atomic and molecular
physics, particularly when the role played by the interactions
is indispensable [1–3]. Despite their drastic simplifications,
these models have been successfully used to elucidate and
predict complex phenomena ranging from quantum mag-
netism, superconductivity, and superfluidity to metal-insulator
transition, charge-density waves, superfluid-Mott insulator
transition, and supersolidity. There is no doubt that the sig-
nificance of Hubbard-type models to quantum many-body
physics is akin to that of the Ising model to statistical me-
chanics or the fruit fly to molecular biology [2,3].

Nowadays these models are routinely used to characterize
the ultracold-atom-based quantum simulators that are con-
structed by trapping a gas of atoms (that obey Fermi or
Bose statistics or a mixture of both) on optical lattice po-
tentials [4,5]. By designing tailor-cut experiments that mimic
Hubbard-type simplistic models, the ultimate hope in this field
is to gain a deeper understanding on specific problems that are
theoretically and sometimes numerically intractable. In con-
trast with the many-body problems where much of the phase
diagrams remain controversial, exactly solvable few-body
problems stand out as ideal test beds for new theoretical ideas
and approaches. For instance, the creation of long-sought
Efimov trimers with three identical bosons in continuum, i.e.,
without the lattice, is one of the major breakthroughs in mod-
ern atomic physics [6–12], which stimulated tons of trimer
research with fermions as well (e.g., see [10,11,13–16]).

Motivated by the recent creation of kagome [17–19] and
Lieb [20–22] lattices, and ongoing activity in strongly cor-
related electrons or atoms in a flat band [23–27], here we
consider the three-body problem in a generic multiband Hub-
bard model, and discuss the dispersion of the trimer states that
are made of two spin-↑ fermions and a spin-↓ fermion. This
is achieved through a variational approach and by reducing its

exact solutions to an eigenvalue problem. As an illustration we
apply our theory to the sawtooth lattice with a two-point basis,
and show that the trimer states are allowed in a broad range of
model parameters. This finding is in sharp contrast with the
single-band linear-chain model and it is in very good agree-
ment with the recent density matrix renormalization group
(DMRG) results [28]. In addition we find that the trimers
have a nearly flat dispersion with a negligible bandwidth when
formed in a flat band. This is quite peculiar given the highly
dispersive spectrum of the two-body bound states (dimers) in
the same system.

The rest of the text is organized as follows. In Sec. II
we first introduce the model Hamiltonian and the variational
ansatz for the three-body problem, and then derive a set of
coupled integral equations. In Sec. III we recast the integral
equations as an eigenvalue problem for the dispersion of the
bound states. In Sec. IV we apply our theory to the sawtooth
lattice and discuss the binding energy of its trimer states in a
broad range of model parameters. In Sec. V we end the paper
with a brief summary of our conclusions.

II. VARIATIONAL APPROACH

The Hubbard model is one of the simplest descriptions of
interacting fermions in a lattice with only two terms H =∑

σ Hσ + H↑↓ contributing to its Hamiltonian. The first term
Hσ = −∑

Si;S′i′ tσ
Si;S′i′c

†
Siσ cS′i′σ describes the kinetic energy of

spin-σ fermions, where the operator c†
Siσ creates a spin-σ

fermion in the unit cell i at the sublattice S, and the hopping
parameter tσ

Si;S′i′ corresponds to the transfer energy that is
gained or lost by the particle when it hops from site S′i′ to
site Si. The second term H↑↓ = −U

∑
Si ρSi↑ρSi↓ describes

the potential energy, i.e., on-site attraction, between spin-
↑ and spin-↓ particles, where the operator ρSiσ = c†

Siσ cSiσ

counts the number of spin-σ fermions at site Si and the
interaction parameter U � 0 measures the strength of the
attraction.
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In order to take advantage of the discrete-translational sym-
metry of the lattice, it is convenient to express the Hamiltonian
in the first Brillouin zone (BZ) through the Fourier expansion
c†

Siσ = 1√
Nc

∑
k e−ik·rSi c†

Skσ . Here the integer Nc is the number
of unit cells in the lattice, the wave vector k ∈ BZ is the
crystal momentum (in units of h̄ = 1), the vector rSi is the
position of the site Si, and the operator c†

Skσ creates a spin-
σ fermion in the sublattice S with momentum k. The total
number of lattice sites is given by N = NbNc where Nb is the
number of basis sites (sublattices) in a unit cell. Since the
resultant Nb × Nb Bloch matrix is diagonal in the band rep-
resentation (for a given k), the spin-σ Hamiltonian can be
expressed as

Hσ =
∑
nk

εnkσ c†
nkσ cnkσ , (1)

where the operator c†
nkσ

creates a spin-σ fermion in the Bloch
band n with momentum k and energy εnkσ . We denote the cor-
responding Bloch state as |nkσ 〉 = c†

nkσ
|0〉, whose sublattice

projections nSkσ = 〈S|nkσ 〉 links the operators in different
basis, i.e., c†

nkσ = ∑
S nSkσ c†

Skσ . Here the state |0〉 corresponds
to the vacuum of particles. Similarly a compact way to express
the interaction Hamiltonian is [29]

H↑↓ = 1

Nc

∑
nmn′m′

kk′q

V nmk
n′m′k′ (q)b†

nm(k, q)bn′m′ (k′, q), (2)

where the operator b†
nm(k, q) = c†

n,k+q/2,↑c†
m,−k+q/2,↓

creates a pair of fermions with relative momen-
tum 2k and total momentum q, and V nmk

n′m′k′ (q) =
−U

∑
S n∗

S,k+q/2,↑m∗
S,−k+q/2,↓m′

S,−k′+q/2,↓n′
S,k′+q/2,↑

characterizes the long-range interactions in momentum
space.

In this paper we solve the Schrödinger equation H |�q〉 =
Eq

3b|�q〉, and obtain the exact solutions to the three-body
problem through a variational approach that is based on the
following ansatz:

|�q〉 =
∑

nm�k1k2

α
k1k2
nm� (q)c†

nk1↑c†
mk2↑c†

�,q−k1−k2,↓|0〉. (3)

This ansatz represents the three-body bound states for a given
total momentum q of the particles, and its complex variational
parameters α

k1k2
nm� (q) are determined through the functional

minimization of 〈�q|H − Eq
3b|�q〉. The q dependence of

α
k1k2
nm� (q) is suppressed in some parts of the text for the sim-

plicity of the presentation. For instance, the normalization
condition is 〈�q|�q〉 = ∑

nm�k1k2
[|αk1k2

nm� |2 − (αk2k1
mn� )∗αk1k2

nm� ].
By plugging Eq. (3) into the Schrödinger equation that is
governed by the Hamiltonians given in Eqs. (1) and (2), we
find

〈H↑〉 =
∑
nm�
k1k2

[∣∣αk1k2
nm�

∣∣2 − (
α

k2k1
mn�

)∗
α

k1k2
nm�

]
(εnk1↑ + εmk2↑),

〈H↓〉 =
∑
nm�
k1k2

[∣∣αk1k2
nm�

∣∣2 − (
α

k2k1
mn�

)∗
α

k1k2
nm�

]
ε�,q−k1−k2,↓,

〈H↑↓〉 = − U

Nc

∑
nm�n′m′
Sk1k2k3

× [(
α

k3k2
n′mm′

)∗
α

k1k2
nm� n′∗

Sk3↑m′∗
SQ32↓�SQ12↓nSk1↑

− (
α

k2k3
mm′n′

)∗
α

k1k2
nm� m′∗

Sk3↑n′∗
SQ23↓�SQ12↓nSk1↑

− (
α

k3k1
n′mm′

)∗
α

k1k2
nm� n′∗

Sk3↑m′∗
SQ31↓�SQ12↓mSk2↑

+ (
α

k1k3
nm′n′

)∗
α

k1k2
nm� m′∗

S,k3,↑n′∗
SQ13↓�SQ12↓mSk2↑

]
,

where we define Qij = q − ki − kj as a shorthand notation.
Thus, by setting ∂〈H − Eq

3b〉/∂ (αk1k2
nm� )∗ = 0 for a given q, we

obtain a set of coupled integral equations that must be satisfied
by Eq

3b and α
k1k2
nm� (q) simultaneously, i.e.,(

εnk1↑ + εmk2↑ + ε�Q12↓ − Eq
3b

)(
α

k1k2
nm� − α

k2k1
mn�

)

= U

Nc

∑
n′m′Sk3

(
α

k3k2
n′mm′n∗

Sk1↑�∗
SQ12↓m′

SQ32↓n′
Sk↑

− α
k3k1
n′nm′m∗

Sk1↑�∗
SQ12↓m′

SQ31↓n′
Sk↑

− α
k2k3
mn′m′n∗

Sk1↑�∗
SQ12↓m′

SQ23↓n′
Sk↑

+ α
k1k3
nn′m′m∗

Sk2↑�∗
SQ12↓m′

SQ13↓n′
Sk↑

)
. (4)

Here we note that the variational parameters must satisfy
α

k1k2
nm� (q) = −α

k2k1
mn� (q) because |�q〉 must be antisymmetric

under the exchange of ↑ particles. In addition, by introducing
a new parameter set γ

q
nS (k) = ∑

m�k′ αkk′
nm�(q)mSk′↑�S,q−k−k′,↓,

we bring Eq. (4) to its somewhat familiar form

γ
q
nS (k) = U

Nc

∑
m�S′k′

�∗
S′,q−k−k′,↓�S,q−k−k′,↓mSk′↑

εnk↑ + εmk′↑ + ε�,q−k−k′,↓ − Eq
3b

× [
m∗

S′k′↑γ
q
nS′ (k) − n∗

S′k↑γ
q
mS′ (k′)

]
. (5)

This is the multiband generalization of the three-body
problem: it requires the solution of N2

b coupled integral equa-
tions for γ

q
nS (k). The well-known one-band result is recovered

by setting the Bloch factors to unity and dropping the band
as well as sublattice indices, i.e., it requires the solution of a
single integral equation for γ q(k) [30–32].

In comparison the two-body bound states are determined
by a set of self-consistency relations [28,29,33]

β
q
S = U

Nc

∑
m�S′k

m∗
S′k↑�∗

S′,q−k,↓�S,q−k,↓mSk↑
εmk↑ + ε�,q−k,↓ − Eq

2b

β
q
S′ (6)

for a given total momentum q of the two particles. Note that
Eq. (6) is disguised in the first term of the second line in
Eq. (5), and can be revealed by setting k = 0 and εnk↑ = 0
there. It is relatively much easier to solve Eq. (6) by repre-
senting it as an Nb × Nb matrix for the β

q
S parameters, leading

to Nb bound-state solutions for a given q.

III. NUMERICAL IMPLEMENTATION

Even though Eq. (5) is in the form of a set of coupled
integral equations, we are interested only in Eq

3b as a function
of q but not the variational parameters αkk′

nm�(q) or γ
q
nS (k). For

this reason it is possible to extract Eq
3b from Eq. (5) without the

need of its explicit solutions. Here we describe our numerical
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recipe for those lattices with a two-point basis, i.e., a two-
band lattice with Nb = 2. Its generalization to arbitrary Nb is
obvious.

First we note that Eq. (5) has the generic form,
γ

q
nS (k) = ∑

S′ f qk
nS;nS′γ

q
nS′ (k) + ∑

mS′k′ gqkk′
nS;mS′γ

q
mS′ (k′), and its

coefficients f qk
nS;nS′ and gqkk′

nS;mS′ are stored as

f qk
nS;nS′ = U

Nc

∑
m�k′

�∗
S′,q−k−k′,↓�S,q−k−k′,↓mSk′↑m∗

S′k′↑
εnk↑ + εmk′↑ + ε�,q−k−k′,↓ − Eq

3b

, (7)

gqkk′
nS;mS′ = − U

Nc

∑
�

�∗
S′,q−k−k′,↓�S,q−k−k′,↓mSk′↑n∗

S′k↑
εnk↑ + εmk′↑ + ε�,q−k−k′,↓ − Eq

3b

. (8)

Then we define an N2
b -component vector γq(k) =

[γ q
1A(k) γ

q
1B(k) γ

q
2A(k) γ

q
2B(k)]

T
for a given q and

k, where n = {1, 2} refers to the band indices, S = {A, B}
refers to the sublattices, and T is the transpose, and recast
Eq. (5) as γq(k) = F qkγq(k) + ∑

k′ Gqkk′
γq(k′). Here F qk

and Gqkk′
are N2

b × N2
b matrices, e.g.,

F qk =

⎛
⎜⎜⎜⎝

f qk
1A;1A f qk

1A;1B 0 0
f qk
1B;1A f qk

1B;1B 0 0
0 0 f qk

2A;2A f qk
2A;2B

0 0 f qk
2B;2A f qk

2B;2B

⎞
⎟⎟⎟⎠, (9)

Gqkk′ =

⎛
⎜⎜⎜⎝

gqkk′
1A;1A gqkk′

1A;1B gqkk′
1A;2A gqkk′

1A;2B

gqkk′
1B;1A gqkk′

1B;1B gqkk′
1B;2A gqkk′

1B;2B

gqkk′
2A;1A gqkk′

2A;1B gqkk′
2A;2A gqkk′

2A;2B

gqkk′
2B;1A gqkk′

2B;1B gqkk′
2B;2A gqkk′

2B;2B

⎞
⎟⎟⎟⎠, (10)

when Nb = 2. Finally we define an NcN2
b component vec-

tor γq = [γq(k1) γq(k2) . . . γq(kNc )]T for a given q,
where k = {k1, k2, . . . , kNc} corresponds to the mesh points
in the first BZ, and recast Eq. (5) as

(Gq + Fq)γq = γq. (11)

Here Gq and Fq are NcN2
b × NcN2

b matrices, and they are
formed, respectively, from Gqkk′

and F qk matrices, i.e.,

Fq =

⎛
⎜⎜⎝

F qk1 0 · · · 0
0 F qk2 · · · 0
...

...
. . .

...

0 0 · · · F qkNc

⎞
⎟⎟⎠, (12)

Gq =

⎛
⎜⎜⎝

Gqk1k1 Gqk1k2 · · · Gqk1kNc

Gqk2k1 Gqk2k2 · · · Gqk2kNc

...
...

. . .
...

GqkNc k1 GqkNc k2 · · · GqkNc kNc

⎞
⎟⎟⎠. (13)

Note that both matrices are Hermitian because f qk
nS;nS′ =

( f qk
nS′;nS )∗ and gqkk′

nS;mS′ = (gqk′k
mS′;nS )∗.

Thus the three-body problem reduces to the solutions of
an eigenvalue problem defined by Eq. (11). It can be solved
numerically by iterating Eq

3b until one of the eigenvalues of
Gq + Fq becomes exactly 1. Here we use a hybrid root-
finding algorithm which combines the bisection and secant
methods. Depending on the initial choice of Eq

3b, the iterative
approach may converge to one of the higher-energy bound
state or scattering-state solutions. In this paper we are inter-
ested in the lowest bound state with minimum allowed Eq

3b for

B

A
k

1st BZ

π/a-π/a 0a tt

t'

(b)(a)

(c) (d) (e)

(a) (b)

FIG. 1. Sawtooth lattice is a linear-chain model with a two-point
basis (a), and its first Brillouin zone lies on a straight line (b). Typical
band structures (c)–(e) feature a flat band with energy ε−,k = −2t
when t ′ = t

√
2.

a given q. Thus, by choosing a lower and lower initial Eq
3b

value, we made sure that there does not exist a solution with
lower energy.

Having discussed the theoretical analysis of the three-body
problem in a generic multiband lattice, next we apply our
numerical recipe to the sawtooth lattice.

IV. SAWTOOTH LATTICE

In part due to its flat band and one-dimensional simplicity,
the sawtooth lattice (also called the one-dimensional Tasaki
lattice) is one of the well-studied lattice models in recent
literature [28,34–36]. It is a linear chain of equidistant lattice
points (with spacing a) that are attached with a two-point basis
(A and B sites) as shown in Fig. 1(a), and its first BZ lies
between −π/a and π/a as shown in Fig. 1(b).

In this paper we allow hopping processes between nearest-
neighbor sites only, and set tσ

A j;Ai = −t with j = i ± 1 and t �
0, tσ

B j;Bi = 0, and tσ
Bi;Ai = tσ

B j;Ai = −t ′ with j = i − 1 and t ′ �
0. It is called the zigzag model when tσ

B j;Bi 
= t ′′ for j = i ± 1.
Then the single-particle Hamiltonian can be written as

Hσ =
∑

k

(
c†

Akσ
c†

Bkσ

)( d0
k + dz

k dx
k − idy

k
dx

k + idy
k d0

k − dz
k

)(
cAkσ

cBkσ

)
,

(14)

where the wave vector k ∈ BZ, and the matrix el-
ements are d0

k = dz
k = t cos(ka), dx

k = t ′ + t ′ cos(ka), and
dy

k = t ′ sin(ka). Thus the single-particle energy bands dis-
perse as εskσ = d0

k + sdk where s = ± labels the upper and

lower bands, respectively, and dk =
√

(dx
k )2 + (dy

k )2 + (dz
k )2.

The corresponding eigenvectors are determined by sAkσ =
〈A|skσ 〉 = −dx

k +idy
k√

2dk (dk−sdz
k )

and sBkσ = 〈B|skσ 〉 = dz
k −sdk√

2dk (dk−sdz
k )

.

We illustrate typical band structures εsk = εskσ in Figs. 1(c)–
1(e). It is shown that while the lower band is flat with energy
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FIG. 2. (a) There are two distinct two-body bound states Eq
2b for

a given total momentum q of the two particles: upper branch (ub)
and lower one (lb). The lower branch plays an important role in the
stability of the trimers [see the discussion around Eq. (15)]. (b) The
energy of the lowest three-body bound state Eq

3b as a function of
total momentum q of the three particles. While Eq

3b of the flat-band
case has a small dispersion that is similar in shape to that of the√

1.5 case, it appears quite flat in the shown scale. (c),(d) E 0
2b and

E 0
3b as a function of interaction. In all figures green hollow circles,

red-filled circles, and blue-filled squares correspond, respectively, to
t ′/t = {√1.5,

√
2,

√
3} that are illustrated in Figs. 1(c)–1(e). They

are on top of each other in (c) and (d) except for the weak-coupling
limit. In addition we set U = 5t ′ in (a) and (b).

ε−,k = −2t when t ′/t = √
2, it has a positive (negative) cur-

vature when t ′/t is greater (lesser) than
√

2.
In Figs. 2(a) and 2(b), we set U = 5t ′, and present, respec-

tively, the corresponding solutions for the two-body (Eq
2b) and

the three-body (Eq
3b) bound states as a function of q. Here

q stands, respectively, for the total momentum of two and
three particles involved. Since Nb = 2, there are two distinct
Eq

2b solutions for a given q: upper branch (ub) and lower
branch (lb). The lower branch plays an important role in the
stability of the trimers as discussed below. We find that the q
dependencies of Eq

2b are qualitatively similar to each other for
all three hoppings considered in Figs. 1(c)–1(e). In contrast,
the q dependencies of Eq

3b are quite distinct: while it has a
positive (negative) curvature near the origin (edge) of the BZ
when t ′/t = √

3, it has a negative (positive) curvature near
the origin (edge) of the BZ when t ′/t = √

1.5. We also find
that Eq

3b of the flat-band case has a small dispersion that
is similar in shape to that of the

√
1.5 case, but it appears

quite flat in the shown scale. Its bandwidth ∼0.001 204t ′ starts
from −7.872 373t ′ at q = 0 and decreases to −7.873 577t ′
at q = π/a. In the low-qa limit we find the following fitting
functions for Fig. 2(b): Eq

3b/t ′ ≈ −8.021 633 − 0.0235a2q2 in

the range qa � 1 when t ′/t = √
1.5, Eq

3b/t ′ ≈ −7.872 373 −
0.000 635a2q2 in the range qa � 0.5 when t ′/t = √

2, and
Eq

3b/t ′ ≈ −7.833 807 + 0.0221a2q2 in the range qa � 1 when
t ′/t = √

3. All of these results are obtained with Nc = 100
mesh points in the BZ, and we checked that increasing it to
Nc = 200 makes minor changes. Thus the flatness of the Eq

3b

when t ′/t = √
2 is partly caused by the large effective mass

of the three-body bound states. In Figs. 2(c) and 2(d), we set
q = 0, and present, respectively, E0

2b and E0
3b as a function of

U . They appear on top of each other for different values of t
except for the weak-coupling limit.

In order to be observed, a three-body bound state (trimer)
must be energetically stable against two distinct dissociation
mechanisms [14]: (i) free-atom dissociation threshold where
the trimer decays into two free spin-↑ particles and a free spin-
↓ particle, and (ii) atom-dimer dissociation threshold where
the trimer decays into a two-body bound state (dimer) and
a free spin-↑ particle. Since the former mechanism requires
higher-energy processes in the parameter regime of interest
in our numerical calculations, it is the second mechanism
that determines the binding energy Eq

trimer of the trimers. For
this reason we define Eq

trimer with respect to the atom-dimer
dissociation threshold as

Eq
trimer = −Eq

3b + min
{
Eq′

2b + εn,q−q′,↑
}
. (15)

In Fig. 3(a) we set U = 5t ′, and present the resultant Eq
trimer

as a function of q for the corresponding data shown in
Figs. 2(a) and 2(b). We found very similar results for most
of the parameter regimes of interest here, e.g., U = 10t ′ is
shown in Fig. 3(b). In particular, in the flat-band case when
t ′/t = √

2, the atom-dimer dissociation threshold is given
by min{Eq′

2b + εn,q−q′,↑} = min{Eq′
2b} − 2t = E0

2b − 2t . This is
because the dimer ground state is at q = 0, and E0

2b is the
minimum of the lower branch in the two-body problem. Thus
while Eq

trimer of the flat-band case has a small dispersion with
a positive (upward) curvature coming from −Eq

3b, it appears
quite flat in the shown scale. To illustrate its dispersive nature
we present Eq

trimer − E0
trimer in Fig. 3(c) for U/t ′ = {2, 5, 10},

where E0
trimer/t ′ ∼ {0.023, 0.091, 0.20}, respectively. This fig-

ure suggests that Eq
trimer may have a sizable dispersion only in

the weak-coupling limit when E0
trimer is small. Unfortunately

our numerical accuracy becomes unreliable in this limit, and
we could not fully resolve this point. This is because as the
size of the trimers (in real space) is expected to increase dra-
matically in the E0

trimer/t ′ → 0 limit, their precise calculation
requires a much larger lattice size, i.e., one must choose larger
and larger number of unit cells Nc → ∞ as U/t ′ → 0.

Furthermore, Figs. 3(a) and 3(b) show that while the bind-
ing energy of the ground-state trimer is at q = π/a when
t ′/t = √

1.5, it is at q = 0 when t ′/t = √
2 or

√
3. The origin

of this difference can be traced back to the location of the
single-particle ground state, i.e., see the corresponding band
structures in Figs. 1(c), 1(d) and 1(e), respectively. In order
to reveal the fate of trimer states as a function of U , we set
q = 0, and present the resultant E0

trimer in Fig. 3(d) for the
corresponding data shown in Figs. 2(c) and 2(d). We also show
Eπ/a

trimer for the t ′ = t
√

1.5 case but it is barely visible since it
overlaps with the E0

trimer of t ′ = t
√

3 in most parts. In addition,
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FIG. 3. (a),(b) Binding energy of the three-body bound state
Eq

trimer as a function of total momentum q of the three particles when
U = 5t ′ and U = 10t ′, respectively. While Eq

trimer of the flat-band
case has a small dispersion with a positive (upward) curvature near
the origin, it appears quite flat in the shown scale. This is illustrated
in (c) where Eq

trimer − E 0
trimer is shown as a function of q for U/t ′ =

{2, 5, 10} when t ′ = t
√

2. (d) E 0
trimer as a function of interaction.

Eπ/a
trimer is also shown for t ′ = t

√
1.5 but it is barely visible since it

overlaps with the E 0
trimer of t ′ = t

√
3 in most parts. Note that E 0

trimer

of the flat-band case is consistent with the very recent DMRG results
(see their Fig. 10) [28]. In (a), (b), and (d) the green hollow circles,
red-filled circles and blue-filled squares correspond, respectively, to
t ′/t = {√1.5,

√
2,

√
3} that are illustrated in Figs. 1 and 2.

E0
trimer of the t ′ = t

√
1.5 case is shown for completeness. First

of all it is delightful to note that E0
trimer of the flat-band case

seems to be in very good agreement with the recent DMRG
results, i.e., compare it with Fig. 10 of [28]. In this case our
numerical findings suggest that there exist trimer states that
are energetically stable for all interaction strengths including
the weak-coupling limit no matter how small U/t ′ is.

On the other hand, when t ′/t deviates from
√

2, there
seems to be a finite threshold in the U/t ′ → 0 limit. For
instance, E0

trimer of the t ′/t = √
3 case is shown in Fig. 3(d),

and we also verified it to be the case for the t ′/t = √
6 case

but it is not presented. In addition, Eπ/a
trimer of the t ′/t = √

1.5
case is again shown in Fig. 3(d), and we also verified it to
be the case for the t ′/t = 1 case but is again not presented.
It is numerically challenging to pinpoint the exact location
of the interaction thresholds in the U/t ′ → 0 limit since the
binding energy of the ground-state trimers, i.e., E0

trimer or

Eπ/a
trimer, gradually approaches to zero with a long tail. However,

we observe that the thresholds tend to increase further and
further as a function of increasing deviation from the flat-band
limit t ′/t = √

2, i.e., the threshold for the t ′/t = 1 case is
considerably higher than that of t ′/t = √

1.5 and the threshold
for the t ′/t = √

6 case is considerably higher than that of
t ′/t = √

3. Our naive expectation is that the sawtooth model
must recover the linear-chain model in either (i) the t ′/t � 1
or (ii) the t ′/t � 1 limit. In fact, in agreement with our nu-
merical results, stable trimers are known not to be allowed
in a single-band linear-chain model [30–32]. Thus our results
establish that the formation of stable trimers is a genuine
multiband effect mediated by the interband transitions.

V. CONCLUSION

To summarize here we solved the three-body problem in
a generic multiband Hubbard model, and reduced it to an
eigenvalue problem for the dispersion of the trimer states. As
an illustration we applied our theory to the sawtooth lattice
with a two-point basis, and showed that the trimer states are
allowed in a broad range of model parameters. This finding
is in sharp contrast with the single-band linear-chain model
[30–32] and it is in very good agreement with the recent
DMRG results [28]. In addition we found that the trimers
have a nearly flat dispersion with a negligible bandwidth when
formed in a flat band, which is unlike the highly dispersive
spectrum of its dimers. As an outlook our generic results may
find direct applications in higher-dimensional lattices with
more complicated lattice geometries and band structures [37].
For instance, the fate of trimers in a kagome lattice could be
an interesting problem [33]. Such an analysis would reveal not
only the impact of higher bands on the trimer states but also
the role played by the lattice dimensionality. Furthermore, it
is a straightforward task to extend our approach and analyze
the nature of trimer states with three identical bosons in the
presence of multiple Bloch bands [30,38].

As a final remark we have recently generalized our ap-
proach to the (N + 1)-body problem in a generic multiband
lattice, and derived the integral equations for the bound states
of N spin-↑ fermions and a spin-↓ fermion due to an on-site
attraction in between [39]. Our numerical calculations for the
N = 3 case shows that the tetramer states are also allowed in
the sawtooth lattice, e.g., they also have a nearly flat disper-
sion with a negligible bandwidth when formed in a flat band. It
turns out larger cluster states, i.e., pentamers and beyond, are
also possible in this system but, unfortunately, one may have
to resort to a high-performance computer to solve the resultant
matrices when N � 4. They are numerically very expensive
and well beyond our current capacity.
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