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Dynamical fermionization in a one-dimensional Bose-Fermi mixture
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After release from the trap the momentum distribution of an impenetrable gas asymptotically approaches
that of a spinless noninteracting Fermi gas in the initial trap. This phenomenon is called dynamical fermion-
ization and, very recently, has been experimentally confirmed in the case of the Lieb-Liniger model in the
Tonks-Girardeau regime. We prove analytically and confirm numerically that following the removal of axial
confinement the strongly interacting Bose-Fermi mixture exhibits dynamical fermionization and the asymptotical
momentum distribution of each component has the same shape as its density profile at t = 0. Under a sudden
change of the trap frequency to a new nonzero value the dynamics of both fermionic and bosonic momentum
distributions presents characteristics which are similar to the case of single component bosons experiencing a
similar quench. Our results are derived using a product representation for the correlation functions which, in
addition to analytical considerations, can be implemented numerically very easily with complexity which scales
polynomially in the number of particles.
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I. INTRODUCTION

The realization that integrable systems do not thermalize is
one of the main reasons for the renewed interest in the study
of nonequilibrium dynamics of solvable many-body systems
[1–4]. A flurry of activity in the past decade has resulted in
the introduction of powerful methods like the quench action
[5,6] or generalized hydrodynamics [7,8], which were used
to theoretically investigate various nonequilibrium scenarios.
While a large body of knowledge has accumulated the vast
majority of the literature is focused on the case of single
component systems [9–28] with very few results reported in
the case of multicomponent models [29–34]. The need for re-
liable analytical results on the quench dynamics of integrable
systems with internal degrees of freedom cannot be overstated
when we take into account that such systems are now routinely
realized in laboratories and, in addition, they are expected
to present even more intriguing quantum dynamics due to
the interplay of the interaction, charge, and spin degrees of
freedom and statistics of their constituents [35,36].

The phenomenon of dynamical fermionization (DF) was
theoretically predicted in the case of the Tonks-Girardeau
(TG) gas (bosonic Lieb-Liniger model with infinite repulsion)
in [37], where it was shown that after the release of the trap
the momentum distribution evolved from bosonic to fermionic
(see also [38–43] and [44] for the anyonic TG gas). These
predictions were experimentally verified in a recent exper-
iment [45], which also confirmed the breathing oscillations
induced by a sudden change of the trap frequency [38,46].
While for the TG gas the wave functions are obtained via
the Bose-Fermi mapping [47,48], in the case of strongly in-
teracting multicomponent systems due to the decoupling of
the charge and spin degrees of freedom the wave functions
have a product form [49–56]. Using such wave functions

Alam et al., proved DF for the spinor Bose and Fermi gases
in [57]. We should point out another distinctive feature of
multicomponent systems. In the TG (impenetrable) regime the
ground state of such systems has a large degeneracy. Averag-
ing over all the degenerate states one obtains the correlators in
the spin-incoherent Luttinger liquid (SILL) regime [58–60],
which have completely different properties from their counter-
parts in the Luttinger liquid (LL) phase [61]. Computing the
correlators in the LL regime requires the identification of the
eigenstate which is continuously connected with the unique
ground state of the system at strong but finite interaction.
Analytical formulas or determinant representations for the
correlators of multicomponent systems in the LL regime are
exceedingly rare in the literature; one such example will be
provided in Sec. III.

In this article we investigate the nonequilibrium dynamics
of the harmonically trapped strongly interacting Bose-Fermi
mixture (BFM). We report on the derivation of analytical
formulas for the correlation functions in the LL regime, which
we use to investigate, both analytically and numerically, the
dynamics after (a) release from the trap and (b) sudden change
of the trap frequency. The formulas for the one-body reduced
density matrices, which constitute one of the main results of
this paper, can be implemented numerically very efficiently
due to the fact that their numerical complexity depends poly-
nomially in the number of particles and not exponentially
like in other approaches. From the analytical point of view
we will prove that if we remove the axial confinement the
following properties hold: (0) the density profiles at t = 0
are proportional to the density of spinless noninteracting
fermions (this is the fermionization of the mixture), (1) the
asymptotic momentum distribution of each component has
the same shape as its density profile at t = 0, and (2) the
total asymptotic momentum distribution will approach the
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momentum distribution of spinless noninteracting fermions
in the initial trap. Compared with the similar investigation
in the case of general bosonic and fermionic spinor gases
[57], our explicit expressions for the correlators allow for the
derivation of analytical expressions for the initial densities and
asymptotic momentum distributions of the individual compo-
nents (bosonic and fermionic) and not only for their sums.
The numerical investigation of the dynamics after a quench
of the trap frequency revealed, rather unexpectedly, that the
evolution of the fermionic momentum distribution has charac-
teristics similar to the case of the bosonic TG gas subjected to
a similar quench [38], i.e., oscillatory behavior with additional
minima when the gas is maximally compressed [22,23].

The plan of the article is as follows. In Sec. II we introduce
the model and its eigenstates and in Sec. III we present the
analytical formulas for the correlation functions. The deriva-
tion of the analytical formulas for the correlators, which is
based on a new parametrization of the wave functions, is
described in Secs. IV A and IV B. The time evolution of the
correlators for the nonequilibrium scenarios considered in this
paper is described in Sec. V. In Sec. VI we present the analyt-
ical derivation of dynamical fermionization and in Sec. VII
we investigate the nonequilibrium dynamics after a sudden
change of the trap frequency. We conclude in Sec. VIII. Some
examples of the wave functions, their orthogonality and nor-
malization, and other technical calculations are presented in
four Appendixes.

II. MODEL AND EIGENSTATES

We consider a one-dimensional mixture of bosons and
spinless fermions with contact interactions in the presence of
a time-dependent harmonic potential. The Hamiltonian is

H =
∫

dx

[ ∑
σ={B,F }

h̄2

2m
∂x�

†
σ ∂x�σ + V (x, t )�†

σ�σ

]

+ gBB

2
�

†
B�

†
B�B�B + gBF �

†
B�

†
F �F �B, (1)

with V (x, t ) = mω2(t )x2/2 the trapping potential,
ω(t ) the time-dependent frequency, m the mass of
the particles, and �B(x) and �F (x) the bosonic and
fermionic fields satisfying the commutation relations
(α, β = {B, F }), �α (x)�†

β (y) = hαβ�
†
β (y)�α (x) + δαβδ(x −

y), �α (x)�β (y) = hαβ�β (y)�α (x), where hαβ = 1 for α =
β = B; hαβ = −1 for α = β = F ; hαβ = −1 for α �= β. We
should point out that, while we have chosen that the bosonic
and fermionic fields anticommute an equally valid choice
would have been to choose commutation relations. Each
choice results in different wave functions but the final results
are the same. We will consider the case of impenetrable
particles (gBB = gFF = g = ∞) which is amenable to an
analytical description, but we mention that the Hamiltonian
(1) is also integrable in the homogeneous case, V (x, t ) = 0,
for any value of gBB = gBF [62,63].

At t = 0 the eigenstates of a system of N particles of which
M are bosons are [x = (x1, . . . , xN ), dx =∏N

i=1 dxi]

|	N,M ( j,λ)〉 =
∫

dx
[N,M]∑

α1,...,αN ={B,F }
χ

α1···αN
N,M (x| j,λ)�†

αN
(xN )

· · ·�†
α1

(x1)|0〉, (2)

where the summation is over all sets of α’s of which M are
bosonic and N − M are fermionic, constraint which is denoted
by [N, M], and |0〉 is the Fock vacuum satisfying �α (x)|0〉 =
〈0|�†

α (x) = 0 for all x and α. In this article
∫

dx will denote
the integral over the real axis. The eigenstates (2) are indexed
by two sets of unequal numbers (in each set separately) j =
( j1, . . . , jN ) and λ = (λ1, . . . , λM ), which describe the charge
(orbital) and pseudospin degrees of freedom. The normalized
wave functions are

χ
α1···αN
N,M (x| j,λ) = 1

N! NM/2

[∑
P∈SN

η
αP1 ···αPN
N,M (λ)θ (Px)

]

× det
N

[φ ja (xb)]a,b=1,...,N , (3)

where the sum is over all the permutations P of N elements,
θ (Px) = θ (xP1 < · · · < xPN ) =∏N

j=2 θ (xPj − xPj−1 ), and θ (x)
the Heaviside function, which is 1 when x � 0 and zero oth-
erwise. The determinant on the right side is defined in terms
of the quantum harmonic-oscillator wave functions

φ j (x) = 1

(2 j j!)1/2

(mω0

π h̄

)1/4
e− mω0x2

2h̄ Hj

(√
mω0

h̄
x

)
, (4)

with Hj (x) the Hermite polynomials, ω0 = ω(0), and we in-
troduce lHO = √

h̄/(mω0). The pseudospin wave functions are

η
α1···αN
N,M (λ) = det

M

(
einaλb

)
a,b=1,...,M, (5)

where λ = (λ1, . . . , λM ) is a subset of cardinality M of the
solutions of eiλaN = 1 and n = (n1, . . . , nM ) is a set of integers
na ∈ {1, . . . , N}, describing the positions of the bosons in the
ordered set {x1, . . . , xN } (for more details and examples, see
Appendix A).

The wave functions (3) represent the generalization of the
Bethe ansatz result from [63] in the case of harmonic trapping
and it was introduced in a slightly different form in [64].
Let us give some arguments supporting our choice. In first
quantization the quantum-mechanical Hamiltonian (1) is

H =
N∑

j=1

(
− h̄2

2m

∂2

∂x2
j

+ mω2
0x2

j

2

)
+ g

∑
i< j

δ(xi − x j ), (6)

where in the impenetrable case we have g = ∞. The wave
functions (3) are eigenfunctions of the Hamiltonian (6),
which by construction vanish when two coordinates coin-
cide (the hard-core condition) and it is easy to see that
they are symmetric (antisymmetric) under the exchange
of coordinates of two bosons (fermions). Exchanging the
coordinates of two fermions affects only the determinant
comprised of harmonic-oscillator functions and therefore
the wave functions acquire a minus sign. Exchanging the
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coordinates of two bosons affects both the charge and pseu-
dospin determinants and the two minus signs cancel leaving
the wave functions unchanged. In addition, the eigenstates
(2) are normalized (Appendix B) (we have δ j′ j′ = 1 if
the two sets j′ and j are equal modulo a permutation)
〈	N ′,M ′ ( j′,λ′)|	N,M ( j,λ)〉 = δN ′NδM ′Mδ j′ j′δλ′λ form a com-
plete set and satisfy H|	N,M ( j,λ)〉 = E ( j)|	N,M ( j,λ)〉 with
E ( j) =∑N

i=1 h̄ω0( ji + 1/2). We make an important observa-
tion. While in (3) we have chosen for the pseudospin sector the
wave functions of free fermions on the lattice (5) in analogy
with the Bethe ansatz solution of the homogeneous system
[63], we should point out that an equally valid choice would
have been any system of functions which ensures that (a) the
wave functions (3) have the correct symmetry and (b) (2) form
a complete set of states (for a pedagogical discussion in the
case of the Hubbard model in the strong-coupling limit which
is very similar to our case, see Appendix 3.G.1 of [65]).

It is also instructive to look at the wave functions (3) in
two limiting cases. When the system contains only fermions
(M = 0) the wave functions become

χF ···F
N,M=0(x| j) = 1

N!

[∑
P∈SN

θ (Px)

]
det

N
[φ ja (xb)], (7)

and using
∑

P∈SN
θ (Px) = 1 we recognize the Slater determi-

nant for N free fermions in a harmonic trap. In the opposite
case when there are no fermions in the system (M = N ) there
is only one pseudospin state λ = 2π

N (0, 1, . . . , N − 1) and the
wave functions are

χB···B
N,M=N (x| j,λ)

= detN (eiaλb )

N! NN/2

[∑
P∈SN

(−1)Pθ (Px)

]
det

N
[φ ja (xb)]. (8)

Now it is easy to see that [
∑

P∈SN
(−1)Pθ (Px)] detN [φ ja (xb)]

= [
∏

a<b sgn(xb − xa)] detN [φ ja (xb)], which is the wave func-
tion of N hard-core bosons. The pseudospin determinant
detN (eiaλb ) (which in this case is of Vandermonde type) is just
a constant factor and it can be showed (using the same meth-
ods as in Appendix B) that detN (e−iaλb ) detN (eiaλb )/NN = 1.

At zero temperature the ground state is highly degen-
erate and is characterized by j = 0, 1, . . . , N − 1 and any
λ = (λ1, . . . , λM ) with λi distinct solutions of eiλaN = 1, a =
1, . . . , M. Averaging over all the degenerate eigenstates would
produce results for the SILL regime [58–60]. In this article
we will consider the correlators in the LL regime, which are
computed by considering the state (M is odd) described by

j = (0, 1, . . . , N − 1), (9a)

λ = 2π

N

(
−M − 1

2
+ N

2
, . . . ,

N

2
, . . . ,

M − 1

2
+ N

2

)
. (9b)

The λ described by Eq. (9b) is the same as the one identified
by Imambekov and Demler for the LL ground state of the
homogeneous BFM in [63] and our choice is justified by
the fact that the description of the pseudospin sector in both
the homogeneous and inhomogeneous case is the same as in
(3).

III. ANALYTICAL FORMULAS FOR THE CORRELATION
FUNCTIONS

The field-field correlation functions, also known as one-
body reduced density matrices, are defined as

gσ (ξ1, ξ2) = 〈	N,M ( j,λ)|�†
σ (ξ1)�σ (ξ2)|	N,M ( j,λ)〉, (10)

with σ ∈ {B, F }. From the correlation functions we can obtain
the real-space densities ρσ (ξ ) ≡ gσ (ξ, ξ ) and the momentum
distributions

nσ (p) = 1

2π

∫
eip(ξ1−ξ2 )/h̄gσ (ξ1, ξ2) dξ1dξ2, (11)

which are important experimental quantities. Introducing α =
(B · · · BF · · · F ), cB = (N − M )!(M − 1)!, and cF = (N −
M − 1)!M!, the field-field correlation functions can be written
as

gB(ξ1, ξ2) = (N!)2

cB

∫ N∏
j=2

dx j χ̄
α
N,M (ξ1, x2, . . . , xN | j,λ)

×χα
N,M (ξ2, x2, . . . , xN | j,λ), (12a)

gF (ξ1, ξ2) = (N!)2

cF

∫ N−1∏
j=1

dx j χ̄
α
N,M (x1, . . . , xN−1, ξ1| j,λ)

×χα
N,M (x1, . . . , xN−1, ξ2| j,λ). (12b)

Because gσ (ξ1, ξ2) = gσ (ξ2, ξ1) (the bar denotes complex
conjugation) it will be sufficient to consider the case ξ1 � ξ2.
The details of the derivation, which are rather involved, will
be presented in Secs. IV A and IV B; here we only present the
results. For ξ1 � ξ2 and t = 0 the correlation functions of the
Bose-Fermi mixture can be expressed as sums of products of
pseudospin and charge functions

gσ (ξ1, ξ2) = 1

cσ NM

N∑
d1=1

N∑
d2=d1

Sσ (d1, d2)I (d1, d2; ξ1, ξ2),

(13)

where I (d1, d2; ξ1, ξ2) is the same for both correla-
tors, while the pseudospin functions SB,F (d1, d2) are
different. The charge functions have the form [CN =∏N−1

j=0 (2 j/π1/2 j!)1/2l
− j− 1

2
HO ]

I (d1, d2; ξ1, ξ2) = C2
N (−1)d2−d1 e

− ξ2
1 +ξ2

2
2l2HO

∫ 2π

0

dψ

2π
e−i(d1−1)ψ

×
∫ 2π

0

dφ

2π
e−i(d2−1)φ

× det
N−1

[c j+k (ψ, φ|ξ1, ξ2)] j,k=1,...,N−1,

(14)

with c j (ψ, φ|ξ1, ξ2) = ∫ t j−2[eiψ f 0(t ) + eiφ f 1(t ) + f 2(t )]dt
and f 0,1,2(t ) = 10,1,2 e−t2/l2

HO (ξ1 − t )(ξ2 − t ). Here 10,1,2

are the characteristic functions of three intervals
A0 = (−∞, ξ1], A1 = [ξ1, ξ2], A2 = [ξ2,+∞), i.e., 1i = 1
when t ∈ Ai and zero otherwise. The bosonic pseudospin
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functions are

SB(d1, d2) = (N − M )!(M − 1)!(−1)d2−d1 e
2π i
N ψ0(d2−d1 )

×
M∑

r1=1

M−r1+1∑
r2=1

e− 2π i
N ψ0(r2−1) f B

r1−1,r2−1, (15)

with ψ0 = −(M − 1)/2 + N/2 and f B
r1−1,r2−1 = ∫ 2π

0
dφ

2π

e−i(r1−1)φ
∫ 2π

0
dψ

2π
e−i(r2−1)ψ detM−1[sB(φ,ψ, l, j)]l, j=1,...,M−1,

where sB(φ,ψ, l, j) = eiφs0
B(d1, d2, j, l ) + eiψs1

B(d1, d2,

j, l ) + s2
B(d1, d2, j, l ) and s0,1,2

B (d1, d2, j, l ) are given by

s0
B(d1, d2, j, l ) =

d1−1∑
t=1

e− 2π i
N ( j−l )t

(
e− 2π i

N t − e− 2π i
N d1
)(

e
2π i
N t − e

2π i
N d2
)
, (16a)

s1
B(d1, d2, j, l ) = e− 2π i

N (l−1)
d2∑

t=d1

e− 2π i
N ( j−l )t

(
e− 2π i

N t − e− 2π i
N d1
)(

e
2π i
N (t−1) − e

2π i
N d2
)
, (16b)

s2
B(d1, d2, j, l ) =

N∑
t=d2+1

e− 2π i
N ( j−l )t

(
e− 2π i

N t − e− 2π i
N d1
)(

e
2π i
N t − e

2π i
N d2
)
. (16c)

In the case of the fermionic correlator we have

SF (d1, d2) = (N − M − 1)!M!(−1)d2−d1

M+1∑
r1=1

M−r1+2∑
r2=1

e− 2π i
N ψ0(r2−1) f F

r1−1,r2−1, (17)

with f F
r1−1,r2−1 = ∫ 2π

0
dφ

2π
e−i(r1−1)φ

∫ 2π

0
dψ

2π
e−i(r2−1)ψ × detM

[sF (φ,ψ, l, j)]l, j=1,...,M , where sF (φ,ψ, l, j) =
eiφs0

F (d1, d2, j, l ) + eiψs1
F (d1, d2, j, l ) + s2

F (d1, d2, j, l ) with
s0,1,2

F (d1, d2, j, l ) simple functions

s0
F (d1, d2, j, l ) =

d1−1∑
t=1

e− 2π i
N ( j−l )t , (18a)

s1
F (d1, d2, j, l ) = e− 2π i

N (l−1)
d2∑

t=d1+1

e− 2π i
N ( j−l )t , (18b)

s2
F (d1, d2, j, l ) =

N∑
t=d2+1

e− 2π i
N ( j−l )t . (18c)

Even though Eqs. (13), (14), (15), and (17) may seem cumber-
some they are in fact extremely efficient from the numerical
point of view due to the fact that their complexities scale
polynomially and not exponentially in the number of particles.
In addition, the pseudospin functions (15) and (17) do not
depend on the space separation so they need to be computed
only once for given N and M. The functions c j (ψ, φ|ξ1, ξ2)
appearing in the definition of the charge function Eq. (14)
can be expressed in terms of the complete and incomplete
Gamma functions and in fact we need only 2N − 3 evaluation
of these integrals for a given space separation because the
determinant appearing in the definition is of Hankel type of
dimension N − 1 (the numerical evaluation of a determinant
of dimension N takes N3 operations). Using the fractional fast
Fourier transform for the calculation of the double integrals
[66,67] the computation of the correlation functions for 30
particles and given ξ1 and ξ2 takes less than 4 s using an
interpreted language on a common laptop. For other methods
of numerically computing the correlators in multicomponent
systems see [32,68–76].

IV. NEW PARAMETRIZATION FOR THE WAVE
FUNCTIONS AND DERIVATION OF THE ANALYTICAL

FORMULAS FOR THE CORRELATORS

The method used to derive the product formulas for
the correlation functions presented in Sec. III can be un-
derstood as the generalization to the inhomogeneous case
of the technique used by Imambekov and Demler [63] in
their study of the homogeneous BFM. The main ingredient
is a new parametrization of the wave functions with α =
(B · · · BF · · · F ), called the canonical ordering, which appears
in the expressions (12) for the correlation functions. We intro-
duce a set of N ordered variables

Z = {−∞ � z1 � z2 � · · · � zN � +∞}, (19)

which describes the positions of the particles independent
of their statistics. For a given set of x = (x1, . . . , xN ) ex-
changing the position of any pair of particles means they
will be described by the same ordered set z = (z1, . . . , zN ).
Because originally the wave function was defined in RN and
the z variables belong to (19) we need to introduce an addi-
tional set of N variables denoted by y = (y1, . . . , yN ), which
specify the positions of the ith particle in the ordered set
z1 � · · · � zN . y1, . . . , yM specify the positions of the bosons
and yM+1, . . . , yN the position of the fermions and they sat-
isfy zyi = xi. For example, if we consider the (5,2) sector
(N = 5 and M = 2) with x3 < x1 < x2 < x4 < x5, then z ≡
(z1, z2, z3, z4, z5) = (x3, x1, x2, x4, x5) and y = (2, 3, 1, 4, 5).
Note that the y1, . . . , yM variables are equivalent with the n’s
in the original definition (Sec. II) for the canonical ordering.
In the new parametrization the wave function takes the form

χN,M (z, y| j,λ) = 1

N!NM/2
(−1)y det

M

(
eiyaλb

)
det

N
[φ ja (zb)],

(20)
with (−1)y =∏N�i>k�1 sgn(yi − yk ). It is important to note
that the first determinant depends only on the positions
of the bosons y1, . . . , yM ; the dependence on yM+1, . . . , yN
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appears only in the (−1)y factor. This parametrization has the
advantage of making clear the factorization of the pseudospin
and charge degrees of freedom in the expressions for the
correlators (12) as it is shown in Appendix C.

A. Bose-Bose correlator

The results of Appendix C show that in the new
parametrization the Bose-Bose correlator in the region ξ1 � ξ2

can be written in a factorized form as

gB(ξ1, ξ2) = 1

(N − M )!(M − 1)!NM

×
N∑

d1=1

N∑
d2=d1

SB(d1, d2)I (d1, d2; ξ1, ξ2), (21)

with

I (d1, d2; ξ1, ξ2) =
∫

Zd1 ,d2 (ξ1,ξ2 )

N∏
j=1, j �=d1

dz j det
N

[
φ̄ ja (zb)

]
× det

N

[
φ ja (z′

b)
]

(22)

and

SB(d1, d2) =
∑

y∈Y (y1=d1 )

(−1)y+y′
det
M

(
e−iyaλb

)
det
M

(
eiy′

aλb
)
. (23)

In (22) Zd1,d2 (ξ1, ξ2) is defined as

Zd1,d2 (ξ1, ξ2) = {−∞ � z1 � · · · � zd1−1 � ξ1 � zd1+1

� · · · � zd2 � ξ2 � zd2+1 � · · · � zN � +∞}
(24)

and z′ satisfies the constraint

−∞ � z′
1 = z1 � · · · � z′

d1−1 = zd1−1 � ξ1 � z′
d1

= zd1+1

� · · · · · · � z′
d2−1 = zd2 � ξ2 � z′

d2+1 = zd2+1

� · · · � z′
N = zN � +∞, (25)

while in (23) Y (y1 = d ) = {y ∈ SN | with y1 = d}, and the
connection between y and y′ is given by

y′
1 = d2, y1 = d1,

y′
i = yi for yi < d1,

y′
i = yi − 1 for d1 < yi � d2,

y′
i = yi for d2 < yi. (26)

In the region ξ2 < ξ1 the correlator can be obtained from
the previous expression (21) through complex conjugation
gB(ξ1, ξ2) = gB(ξ2, ξ1). While (21), (22), and (23) describe
the Bose-Bose correlator in any eigenstate of the system be-
low we will be interested in computing gB(ξ1, ξ2) in the LL

ground state, which is characterized by (9). We will start with
the computation of the charge functions.

1. Calculation of the charge functions I(d1, d2; ξ1, ξ2 )

In the LL ground state j = (0, 1, . . . , N − 1). This means
that the determinants appearing in (22) are of Vandermonde
type and we can apply Vandermonde’s formula

det
N

[pa−1(zb)]a,b=1,...,N =
∏

1�a<b�N

(zb − zi), (27)

valid for pa(z) monic polynomials of degree a (a polynomial
in z of degree p is monic if the coefficient of zp is 1). The
harmonic-oscillator wave functions can be written as

φ j (z) = c je
− z2

2l2HO H̃j (z), c j =
(

2 j

π1/2 j!

)1/2 1

l
j+ 1

2
HO

, (28)

with H̃j (z) = l j
HOHj (z/lHO)/2 j monic polynomials. Using

Vandermonde’s formula (27) we find

det
N

[φ ja (zb)] =
(

N−1∏
j=0

c j

)
e
− 1

2l2HO
(z2

1+···+z2
N ) ∏

1�a<b�N

(zb − za),

(29)
with zd1 = ξ1. This expression can be rewritten in a more
computationally friendly way by moving the d1 column (con-
taining zd1 = ξ1) to the first position [this produces a (−1)d1−1

factor] and introducing N − 1 new variables of integration
ti = zi for i < d1 and ti = zi+1 for i > d1. We obtain

det
N

[φ̄ ja (zb)] = CN (−1)d1−1e
− 1

2l2HO
(ξ 2

1 +t2
1 +···+t2

N−1 )
N−1∏
i=1

(ti − ξ1)

×
∏

1�a<b�N−1

(tb − ta),

= CN (−1)d1−1e
− 1

2l2HO
(ξ 2

1 +t2
1 +···+t2

N−1 )
N−1∏
i=1

(ti − ξ1)

× det
N−1

(
t b−1
a

)
a,b=1,...,N−1, (30)

where we have introduced CN =∏N−1
j=0 c j . In a similar fashion

we have

det
N

[φ ja (z′
b)] = CN (−1)d2−1e

− 1
2l2HO

(ξ 2
2 +t2

1 +···+t2
N−1 )

N−1∏
i=1

(ti − ξ2)

× det
N−1

(
t b−1
a

)
a,b=1,...,N−1. (31)

In the new variables the integration subspace Zd1,d2 (ξ1, ξ2) is

{
− ∞ � t1 � · · · � td1−1︸ ︷︷ ︸

d1−1

� ξ1 � td1 � · · · � td2−1︸ ︷︷ ︸
d2−d1

� ξ2 � td2 � · · · � tN−1︸ ︷︷ ︸
N−d2

� +∞
}
. (32)

Remembering that z′ and z satisfy the constraint (25) (this
also applies to t ′ and t after changing the indices) we see

that the product of (30) and (31) is invariant by exchang-
ing ti and t j with −∞ � ti, t j � ξ1 and is zero when ti =
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t j in the same region. The same property holds for the
regions ξ1 � ti, t j � ξ2 and ξ2 � ti, t j � +∞, which means
that the integral over Zd1,d2 (ξ1, ξ2) can be written as an
integral over

Td1,d2 (ξ1, ξ2) = {−∞ � t1, . . . , td1−1 � ξ1 � td1 , . . . , td2−1

� ξ2 � td2 , . . . , tN−1 � +∞}, (33)

multiplied by 1/[(d1 − 1)!(d2 − d1)!(N − d2)!]. Ex-
panding the determinants in (30) and (31) we
obtain

I (d1, d2; ξ1, ξ2) = C2
N (−1)d2−d1 e

− 1
2l2HO

(ξ 2
1 +ξ 2

2 )

(d1 − 1)!(d2 − d1)!(N − d2)!

∫
Td1 ,d2 (ξ1,ξ2 )

×
N−1∏
j=1

dt j

∑
P∈SN−1

∑
P′∈SN−1

(−1)P+P′

×
N−1∏
i=1

[
tPi−1
i tP′

i−1
i e−t2

i /l2
HO (ti − ξ1)(ti − ξ2)

]
.

(34)

Introducing three functions

f 0(ξ1, ξ2, t ) = e−t2/l2
HO (ξ1 − t )(ξ2 − t ) for − ∞ < t < ξ1, 0 otherwise,

f 1(ξ1, ξ2, t ) = e−t2/l2
HO (ξ1 − t )(ξ2 − t ) for ξ1 < t < ξ2, 0 otherwise,

f 2(ξ1, ξ2, t ) = e−t2/l2
HO (ξ1 − t )(ξ2 − t ) for ξ2 < t < +∞, 0 otherwise, (35)

and writing P′ = QP, which can be done for any permutations P and P′, we find

I (d1, d2; ξ1, ξ2) = C2
N (−1)d2−d1 e

− 1
2l2HO

(ξ 2
1 +ξ 2

2 )

(d1 − 1)!(d2 − d1)!(N − d2)!

∑
P∈SN−1

∑
Q∈SN−1

(−1)Q

(
d1−1∏
i=1

∫
tPi+QPi−2
i f 0(ξ1, ξ2, ti ) dti

)

×
(

d2−1∏
i=d1

∫
tPi+QPi−2
i f 1(ξ1, ξ2, ti ) dti

)(
N−1∏
i=d2

∫
tPi+QPi−2
i f 2(ξ1, ξ2, ti ) dti

)
. (36)

Using two “phase” variables ψ and φ (this is a similar trick as the one employed in [50] and [63]) this result can be written as

I (d1, d2; ξ1, ξ2) = C2
N (−1)d2−d1 e

− 1
2l2HO

(ξ 2
1 +ξ 2

2 )
∫ 2π

0

dψ

2π
e−i(d1−1)ψ

∫ 2π

0

dφ

2π
e−i(d2−1)φ

×
( ∑

Q∈SN−1

(−1)Q
N−1∏
i=1

∫
v

i+Qi−2
i

[
eiψ f 0(ξ1, ξ2, vi ) + eiφ f 1(ξ1, ξ2, vi ) + f 2(ξ1, ξ2, vi )

]
dvi

)
. (37)

The equivalence of (36) and (37) can be seen as follows. In
(36) the sum over P ∈ SN−1 can be decomposed as a sum
over CN−1

d1−1C
N−1−(d1−1)
d2−d1 terms which give the same result with

“degeneracy” given by (d1 − 1)!(d2 − d1)!(N − d2)!. This is
because if we choose a permutation with the first d1 − 1
elements given by P1, . . . , Pd1−1 all the permutations of this
set leave the first parenthesis in (36). The second paren-
thesis is invariant by permuting the next d2 − d1 elements

Pd1 , . . . , Pd2−1 and the last parenthesis will also give (N − d2)!
equal terms. The integral in (37) over the product will also
give CN−1

d1−1C
N−1−(d1−1)
d2−d1 terms which are obtained by selecting

d1 − 1 terms containing eiψ out of the N − 1 vi’s and then
selecting d2 − 1 terms containing eiφ out of the remaining
N − 1 − (d1 − 1) vi’s. They are in one-to-one connection with
the similar terms from (36). Equation (37) can also be written
as

I (d1, d2; ξ1, ξ2) = C2
N (−1)d2−d1 e

− 1
2l2HO

(ξ 2
1 +ξ 2

2 )
∫ 2π

0

dψ

2π
e−i(d1−1)ψ

∫ 2π

0

dφ

2π
e−i(d2−1)φ

× det
N−1

∣∣∣∣∣∣∣∣∣

c0(ψ, φ) c1(ψ, φ) c2(ψ, φ) · · · cN−2(ψ, φ)
c1(ψ, φ) c2(ψ, φ) c3(ψ, φ) · · · cN−1(ψ, φ)

...
...

...
. . .

...

cN−2(ψ, φ) cN−1(ψ, φ) cN (ψ, φ) · · · c2N−4(ψ, φ)

∣∣∣∣∣∣∣∣∣
, (38)

with

c j (ψ, φ|ξ1, ξ2) =
∫

t j−2
[
eiψ f 0(ξ1, ξ2, t ) + eiφ f 1(ξ1, ξ2, t ) + f 2(ξ1, ξ2, t )

]
dt, (39)

which is Eq. (14) of Sec. III.
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2. Calculation of the pseudospin functions SB(d1, d2 )

Using the relation (26) between y and y′ and taking into
account that (−1)y measures the number of transpositions
necessary to order the set y, it can be shown that for any y ∈
S(y1 = d1) we have (−1)y+y′ = (−1)d2−d1 . The pseudospin
function SB(d1, d2) depends on yM+1, . . . , yN only through
this sign prefactor so we can write

SB(d1, d2) = (N − M )!
N∑

y2=1

· · ·
N∑

yM=1

det
M

(
e−iyaλb

)
det
M

(
eiy′

aλb
)
,

(40)
where we have used the fact that the determinants are zero
when two of the y’s are equal. In the LL ground state (9) the
λ’s are also equidistant so we can again write the determinants
in a Vandermonde form. We obtain [ψ0 = −(M + 1)/2 +
N/2]

det
M

(
e−iyaλb

) = e− 2π i
N ψ0(d1+y2+···+yM ) det

M

(
e− 2π i

N (l−1)y j
)

l, j=1,...,M

= e− 2π i
N ψ0(d1+y2+···+yM )

×
∏

1� j1< j2�M

(
e− 2π i

N y j2 − e− 2π i
N y j1

)
(41)

and

det
M

(
eiy′

aλb
) = e

2π i
N ψ0(d2+y′

2+···+y′
M ) det

M

(
e

2π i
N (l−1)y′

j
)

l, j=1,...,M

= e
2π i
N ψ0(d2+y′

2+···+y′
M )

∏
1� j1< j2�M

(
e

2π i
N y′

j2 − e
2π i
N y′

j1

)
.

(42)

Like in the previous section we want to extract a determinant
of dimension (M − 1) × (M − 1) multiplied with the contri-
butions of y1 and y′

1. Introducing the new variables ti = yi+1

and t ′
i = y′

i+1 for i ∈ {1, . . . , M − 1} we find

det
M

(
e−iyaλb

) = e− 2π i
N ψ0(d1+t1+···+tM−1 )

M−1∏
i=1

(
e− 2π i

N ti − e− 2π i
N d1
)

det
M−1

(
e− 2π i

N (l−1)t j
)

l, j=1,...,M−1, (43)

det
M

(
eiy′

aλb
) = e

2π i
N ψ0(d2+t ′

1+···+t ′
M−1 )

M−1∏
i=1

(
e

2π i
N t ′

i − e
2π i
N d2
)

det
M−1

(
e

2π i
N (l−1)t ′

j
)

l, j=1,...,M−1. (44)

We break the summation appearing in (40) as follows: we choose r1 − 1 of the ti satisfying ti < d1, r2 − 1 of the ti satisfying
d1 � ti � d2, and the rest of the (M − 1) − (r1 − 1) − (r2 − 1) variables will satisfy d2 < ti. Then, we have

SB(d1, d2) = (N − M )!
M∑

r1=1

M−(r1−1)∑
r2=1

CM−1
r1−1 C(M−1)−(r1−1)

r2−1 SB(d1, d2; r1, r2), (45)

with the domain of summation for SB(d1, d2; r1, r2) being

T (d1, d2; r1, r2) = {1 � t1, . . . , tr1−1 < d1 � tr1 , . . . , tr1+r2−2 � d2 < tr1+r2−1, . . . , tM−1 � N}. (46)

Expanding the determinants in (43) and (44) we find [note that for some values of r1 and r2 the SB(d1, d2; r1, r2) functions will
be zero]

SB(d1, d2; r1, r2) = (−1)d2−d1 e− 2π i
N ψ0(d1−d2+r2−1)

∑
P′∈SM−1

∑
P∈SM−1

(−1)P′+P

×
r1−1∏
i=1

[
d1−1∑
ti=1

e− 2π i
N [(P′

i −1)ti−(Pi−1)ti]
(
e− 2π i

N ti − e− 2π i
N d1
)(

e
2π i
N ti − e

2π i
N d2
)]

×
r1+r2−2∏

i=r1

[
d2∑

ti=d1

e− 2π i
N [(P′

i −1)ti−(Pi−1)(ti−1)]
(
e− 2π i

N ti − e− 2π i
N d1
)(

e
2π i
N (ti−1) − e

2π i
N d2
)]

×
M−1∏

i=r1+r2−1

[
N∑

ti=d2+1

e− 2π i
N [(P′

i −1)ti−(Pi−1)ti]
(
e− 2π i

N ti − e− 2π i
N d1
)(

e
2π i
N ti − e

2π i
N d2
)]

. (47)

Using the functions s0,1,2
B (d1, d2, j, l ) defined in (16) and writing P′ = QP, then (47) can be written as

SB(d1, d2; r1, r2) = (−1)d2−d1 e− 2π i
N ψ0(d1−d2+r2−1)

∑
P∈SM−1

∑
Q∈SM−1

(−1)Q
r1−1∏
i=1

s0
B(d1, d2, QPi, Pi )

×
r1+r2−2∏

i=r1

s1
B(d1, d2, QPi, Pi )

M−1∏
i=r1+r2−1

s2
B(d1, d2, QPi, Pi ) (48)
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and

SB(d1, d2) = (N − M )!
M∑

r1=1

M−(r1−1)∑
r2=1

(M − 1)!

(M − r1 − r2 + 1)!(r1 − 1)!(r2 − 1)!
SB(d1, d2; r1, r2). (49)

Like in the previous section the spin function can be expressed as a double integral over a determinant of dimension (M − 1) ×
(M − 1) by introducing two “phases” with the result

SB(d1, d2) = (N − M )!(M − 1)!(−1)d2−d1

M∑
r1=1

M−(r1−1)∑
r2=1

e− 2π i
N ψ0(d1−d2+r2−1)

∫ 2π

0

dφ

2π
e−(r1−1)φ

∫ 2π

0

dψ

2π
e−(r2−1)ψ

× det
M−1

∣∣∣∣∣∣∣∣
sB(φ,ψ, 1, 1) sB(φ,ψ, 2, 1) · · · sB(φ,ψ, M − 1, 1)
sB(φ,ψ, 1, 2) sB(φ,ψ, 2, 2) · · · sB(φ,ψ, M − 1, 2)

...
...

. . .
...

sB(φ,ψ, 1, M − 1) sB(φ,ψ, 2, M − 1) · · · sB(φ,ψ, M − 1, M − 1)

∣∣∣∣∣∣∣∣, (50)

where

sB(φ,ψ, l, j) = eiφs0
B(d1, d2, j, l ) + eiψs1

B(d1, d2, j, l ) + s2
B(d1, d2, j, l ). (51)

Because the determinant appearing in (50) is of dimension M − 1 we have det[φ,ψ] =∑M−1
m=0

∑M−1
n=0 fm,neimφeinψ . Using this

expression in (50) we obtain our final expression for the bosonic pseudospin functions [Eq. (15) of Sec. III]

SB(d1, d2) = (N − M )!(M − 1)!(−1)d2−d1 e
2π i
N ψ0(d2−d1 )

M∑
r1=1

M−(r1−1)∑
r2=1

e− 2π i
N ψ0(r2−1) fr1−1,r2−1. (52)

B. Fermi-Fermi correlator

From Appendix C the Fermi-Fermi correlator can be writ-
ten in a factorized form as

gF (ξ1, ξ2) = 1

(N − M − 1)!M!NM

N∑
d1=1

N∑
d2=d1

SF (d1, d2)

× I (d1, d2; ξ1, ξ2), (53)

with I (d1, d2; ξ1, ξ2) given by the same expression as in the
case of the Bose-Bose correlators (22) and the pseudospin
function defined as

SF (d1, d2) =
∑

y∈Y (yN =d1 )

(−1)y+y′
det
M

(
e−iyaλb

)
det
M

(
eiy′

aλb
)
,

(54)
with the connection between y and y′ given by

y′
N = d2, yN = d1,

y′
i = yi for yi < d1,

y′
i = yi − 1 for d1 < yi � d2,

y′
i = yi for d2 < yi. (55)

Note that in this case y1, . . . , yM and y′
1, . . . , y′

M cannot take
the values d1 and d2.

1. Calculation of the pseudospin functions SF (d1, d2 )

The I (d1, d2; ξ1, ξ2) function has been calculated in
Sec. IV A 1 so we need to focus only on SF (d1, d2). Like in
the bosonic case we have (−1)y+y′ = (−1)d2−d1 and the spin

function depends on yM+1, . . . , yN−1 only through this sign
prefactor, so we can write

SF (d1, d2) = (N − M − 1)!
N∑

y1=1,y1 �=d1

· · ·
N∑

yM=1,yM �=d1

det
M

(
e−iyaλb

)
det
M

(
eiy′

aλb
)
. (56)

Introducing new variables ti = yi and t ′
i = y′

i for i ∈
{1, . . . , M} (this is superfluous but it is done in order to use
the same notations as in the bosonic case) the determinants
can be written in Vandermonde form

det
M

(
e−iyaλb

) = e− 2π i
N ψ0(t1+···+tM ) det

M

(
e− 2π i

N (l−1)t j
)

l, j=1,...,M,

(57)

det
M

(
eiy′

aλb
) = e

2π i
N ψ0(t ′

1+···+t ′
M ) det

M

(
e

2π i
N (l−1)t ′

j
)

l, j=1,...,M . (58)

The summation appearing in (56) is broken as follows: we
choose r1 − 1 of the ti’s that will satisfy ti < d1, r2 − 1 of
the variables will satisfy d1 < ti � d2, and the rest of the
M − (r1 − 1) − (r2 − 1) variables will satisfy d2 < ti. The
fermionic pseudospin function then can be written as

SF (d1, d2) = (N − M − 1)!
M+1∑
r1=1

M+1−(r1−1)∑
r2=1

CM
r1−1C

M−(r1−1)
r2−1

× SF (d1, d2; r1, r2), (59)

with the domain of summation for SF (d1, d2; r1, r2) being

T (d1, d2; r1, r2) = {1 � t1, . . . , tr1−1 < d1 < tr1 , . . . , tr1+r2−2 � d2 < tr1+r2−1, . . . , tM � N}. (60)
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Using (57) and (58) we find

SB(d1, d2; r1, r2) = (−1)d2−d1 e− 2π i
N ψ0(r2−1)

∑
P′∈SM

∑
P∈SM

(−1)P′+P
r1−1∏
i=1

(
d1−1∑
ti=1

e− 2π i
N [(P′

i −1)ti−(Pi−1)ti]

)

×
r1+r2−2∏

i=r1

(
d2∑

ti=d1+1

e− 2π i
N [(P′

i −1)ti−(Pi−1)(ti−1)]

)
M∏

i=r1+r2−1

(
N∑

ti=d2+1

e− 2π i
N [(P′

i −1)ti−(Pi−1)ti]

)
. (61)

Writing P′ = QP then (61) can be written as

SF (d1, d2; r1, r2) = (−1)d2−d1 e− 2π i
N ψ0(r2−1)

∑
P∈SM

∑
Q∈SM

(−1)Q
r1−1∏
i=1

s0
F (d1, d2, QPi, Pi )

×
r1+r2−2∏

i=r1

s1
F (d1, d2, QPi, Pi )

M∏
i=r1+r2−1

s2
F (d1, d2, QPi, Pi ), (62)

with s0
F (d1, d2, j, l ) defined in (18) and

SF (d1, d2) = (N − M − 1)!
M+1∑
r1=1

M−r1+2∑
r2=1

M!

(M − r1 − r2 + 2)!(r1 − 1)!(r2 − 1)!
SF (d1, d2; r1, r2). (63)

Introduction of two “phases” allows one to express the spin function as a double integral over a determinant of dimension M × M
(compare with the bosonic case)

SF (d1, d2) = (N − M − 1)!M!(−1)d2−d1

M+1∑
r1=1

M−r1+2∑
r2=1

e− 2π i
N ψ0(r2−1)

∫ 2π

0

dφ

2π
e−(r1−1)φ

∫ 2π

0

dψ

2π
e−(r2−1)ψ

× det
M

∣∣∣∣∣∣∣∣
sF (φ,ψ, 1, 1) sF (φ,ψ, 2, 1) · · · sF (φ,ψ, M, 1)
sF (φ,ψ, 1, 2) sF (φ,ψ, 2, 2) · · · sF (φ,ψ, M, 2)

...
...

. . .
...

sF (φ,ψ, 1, M ) sF (φ,ψ, 2, M ) · · · sF (φ,ψ, M, M )

∣∣∣∣∣∣∣∣, (64)

where

sF (φ,ψ, l, j) = eiφs0
F (d1, d2, j, l ) + eiψs1

F (d1, d2, j, l ) + s2
F (d1, d2, j, l ). (65)

Because the determinant appearing in (64) is of dimension M we have det[φ,ψ] =∑M
m=0

∑M
n=0 fm,neimφeinψ . Using this

expression in (64) we obtain our final expression for the fermionic pseudospin function

SF (d1, d2) = (N − M − 1)!M!(−1)d2−d1

M+1∑
r1=1

M−r1+2∑
r2=1

e− 2π i
N ψ0(r2−1) fr1−1,r2−1, (66)

which is Eq. (17) of Sec. III.

V. TIME EVOLUTION OF THE CORRELATORS

We want to investigate the dynamics of the BFM in two ex-
perimentally relevant nonequilibrium situations: release from
the trap and a sudden change of the trap frequency. In both
cases we will deal with the following quench scenario: the
system is prepared in the LL ground state of the Hamiltonian
(1) with ω(t � 0) = ω0 and we suddenly change the trap
frequency to a new value ω(t > 0) = ω1 (when ω1 = 0 we
have free expansion). The time evolution of the system will
be governed by (1) with the new frequency.

If we denote by |	ω0
N,M ( j,λ)〉 the ground state of the

prequench Hamiltonian, a general method of investigating
the dynamics is to expand this state in the eigenstates
of the postquench Hamiltonian, which we will denote by
|	ω1

N,M ( j′,λ′)〉, and then apply the time-evolution operator

(see [17] for the Tonks-Girardeau gas). However, in the case
of multicomponent systems the presence of the pseudospin
degrees of freedom makes the application of this general
method almost impossible. Now, we make two observations
which will allow for the analytical and numerical investigation
of the dynamics. The first observation is that the eigenstates
of both Hamiltonians are described by the same formulas (2),
(3), and (5), the only difference being that the Slater deter-
minants describing the charge degrees of freedom contain
Hermite functions of frequency ω0 (ω1) for the prequench
(postquench) Hamiltonian. The second observation and the
most important is that due to the product form of the wave
functions and completeness of both charge and pseudospin
wave functions the pseudospin structure of the initial state
remains unchanged during time evolution. This can be seen
easily by expanding the prequench state in the eigenstates of
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the postquench Hamiltonian obtaining (see Appendix B)

|	ω0
N,M ( j,λ)〉 =

∑
j′,λ′

|	ω1
N,M ( j′,λ′)〉〈	ω1

N,M ( j′,λ′)|	ω0
N,M ( j,λ)〉

=
∑
j′,λ′

δλ,λ′ B( j, j′)|	ω1
N,M ( j′,λ′)〉

=
∑

j′
B( j, j′)|	ω1

N,M ( j′,λ)〉, (67)

with B( j, j′) defined in (B10) result which shows that the
pseudospin configuration is frozen during the dynamics. Tak-
ing into account this observation and the factorized form of the
wave function (3), this means that the time dependence of the
system is encoded in the charge degrees of freedom. The time
evolution of the harmonic oscillator with variable frequency is
well known [77,78] and is given by the scaling transformation

φ j (x, t ) = 1√
b
φ j

(x

b
, 0
)

exp

[
i
mx2

2h̄

ḃ

b
− iE jτ (t )

]
, (68)

where b(t ) is a solution of the Ermakov-Pinney equation b̈ =
−ω(t )2b + ω2

0/b3 with boundary conditions b(0) = 1, ḃ(0) =
0, and Ej = h̄ω0( j + 1/2) and the rescaled time parameter is
given by τ (t ) = ∫ t

0 dt ′/b2(t ′). From (3) and (12) we see that
the dynamics of the correlators is given by

gσ (ξ1, ξ2; t ) = 1

b
gσ

(
ξ1

b
,
ξ2

b
; 0

)
e
− i

b
ḃ

ω0

ξ2
1 −ξ2

2
2l2HO . (69)

The evolution of the densities is given by ρσ (ξ, t ) ≡
gσ (ξ, ξ ; t ) = ρσ (ξ/b)/b and the momentum distribution sat-
isfies

nσ (p, t ) = b

2π

∫
gσ (ξ1, ξ2; 0)e

−ib
[

ḃ
ω0

ξ2
1 −ξ2

2
2l2HO

− p(ξ1−ξ2 )
h̄

]
dξ1dξ2.

(70)
Formulas (69) and (70) show that in order to investigate

the dynamics of the BFM after a sudden change of the trap
frequency we only need to know the correlation functions
at t = 0 which were presented in Sec. III and the solution
of the Ermakov-Pinney equation. We should point out that
these results remain valid in other quench scenarios like the
case of a sinusoidal modulation of the trap frequency of the
form ω2(t ) = ω2

0(1 − α sin �t ) for t > 0 with α,� arbitrary
parameters.

In Ref. [57] the authors proved the existence of dynamical
fermionization in multicomponent Bose and Fermi gases as-
suming that the spin degrees of freedom remain frozen during
the expansion. The results of this section can be easily ex-
tended to prove this assumption in the case of multicomponent
Bose or Fermi gases, the only necessary ingredients being the
(pseudo)spin-charge factorization of the full wave functions
and the completeness of the (pseudo)spin and charge wave
functions. For example, in the case of the bosonic or fermionic
trapped Gaudin-Yang model [79,80] the eigenstates and wave
functions have the same form as (2) and (3) (we identify the
spin-down particles with bosons and spin-up particles with
fermions) but in this case the spin sector can be described by
the XX0 spin chain [50] (equivalent to hard-core bosons on
the lattice) or the XXX spin chain. Then, the proof that the

spin configuration remains frozen during expansion is similar
with the derivation of (67) and the results of Appendix B.

VI. ANALYTICAL DERIVATION OF DYNAMICAL
FERMIONIZATION

Using the results for the correlators presented in Sec. III
and Eqs. (69) and (70) we can investigate both analytically
and numerically the dynamics of a BFM after release from the
trap along the same lines as the case of the Tonks-Girardeau
gas [38]. Even though the dynamics is encoded in the charge
degrees of freedom the pseudospin structure of the initial
ground state plays an important role influencing the momen-
tum distribution of each component of the mixture during the
time evolution. Compared with the analysis of [57], because
we use an explicit form of the wave functions (3) we will be
able to analytically investigate the densities and momentum
distributions of both types of particles and not only their sums.

When the trap is released and the system evolves freely
we have ω1 = 0 and the solution of the Ermakov-Pinney
equation is b(t ) = (1 + ω2

0t2)1/2. We will derive the three
properties mentioned in the Introduction starting with the
determination of the mixture’s densities at t = 0. When ξ1 =
ξ2 = ξ Eq. (13) takes the form (see Appendix C)

ρσ (ξ ) ≡ gσ (ξ, ξ ) =
N∑

d=1

1

cσ NM
SB(d, d )I (d, d; ξ, ξ ), (71)

and it is shown in Appendix D that SB(d, d ) = (N −
M )!M!NM−1 and SF (d, d ) = (N − M − 1)!M!NM−1(N −
M ). From Appendix C we can see that

∑N
d=1 I (d, d; ξ, ξ ) =

ρFF (ξ ) with ρFF (ξ ) =∑N−1
j=0 φ̄ j (ξ )φ j (ξ ) the density of a sys-

tem of N free fermions in the initial trap. These identities
are independent of λ, which means that the results derived
below are also valid in the SILL regime. From these previous
relations we find (this is the fermionization of the mixture)

ρB(ξ ) = M

N
ρFF (ξ ), ρF (ξ ) = N − M

N
ρFF (ξ ),

ρB(ξ ) + ρF (ξ ) = ρFF (ξ ), (72)

which shows that at t = 0 the densities of the BFM are pro-
portional to the density of spinless free fermions (property
0). In the large t limit the integrals appearing in (70) can be
investigated using the method of stationary phase (Chap. 6 of
[81] or Chap. 2.9 of [82]). For both integrals the points of
stationary phase are ξ0 = pω0l2

HO/(ḃh̄) and we find

nσ (p, t ) ∼
t→∞

∣∣∣∣ω0l2
HO

ḃ

∣∣∣∣gσ

(
pω0l2

HO

ḃh̄
,

pω0l2
HO

ḃh̄
; 0

)
. (73)

Using limt→∞ b(t ) = ω0t , limt→∞ ḃ(t ) = ω0 the last relation
can be rewritten as nσ (p, t ) ∼

t→∞ l2
HOρσ (pl2

HO/h̄, 0), prov-

ing that the asymptotic momentum distribution of each
component has the same shape as its initial real space den-
sity (property 1) [in h̄ = m = ω0 = 1 units this takes the
form nσ (p, t ) ∼

t→∞ ρσ (p, 0)]. Using the results for the ini-

tial densities and the identity nFF (p) = l2
HO ρFF (pl2

HO/h̄) (see
Appendix E) where nFF (p) is the momentum distribution of
spinless noninteracting fermions we find that, in the large t
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limit,

nB(p, t ) ∼ M

N
nFF (p), nF (p, t ) ∼ N − M

N
nFF (p),

nB(p, t ) + nF (p, t ) ∼ nFF (p), (74)

which proves the dynamical fermionization of the mixture
(property 2). The dynamics after release from the trap of
a system of N = 26 particles of which M = 11 are bosons
is shown in Fig. 1. The bosonic momentum distribution in
the LL ground state which can be seen in Fig. 1(e) presents
similar quasicondensate characteristics like in the case of the
Tonks-Girardeau gas but we should point out that, while for
the homogeneous TG gas nT G(p) ∼ |p|−1/2, in the case of the
homogeneous BFM mixture we have nB(p) ∼ |p|−1+1/(2KB )

with KB = 1/[(1 − M/N )2 + 1] [83]. The presence of the
harmonic trap smoothens this singularity significantly. The
initial fermionic distribution [Fig. 1(f)] presents N − M local
maxima (similar to the free fermionic case) but is narrower
than the momentum distribution of a similar number of free
fermions subjected to the same harmonic trapping. At large
momenta both the bosonic and fermionic momentum distri-
butions behave like limp→±∞ nB,F (p) ∼ CB,F /p4 with CB,F

the Tan contacts [74,84–91]. After the harmonic potential
is removed the system undergoes dynamical fermionization
Figs. 1(g)–1(l) with the asymptotic momentum distributions
being described by Eq. (74) (dashed lines in the last three rows
of Fig. 1).

VII. BREATHING OSCILLATIONS

A sudden change of the trap frequency to a nonzero value
ω1 induces in the system the so-called breathing oscillations,
which can have large amplitudes when ω0/ω1 � 1 and were
experimentally investigated in the case of the Lieb-Liniger
model in [28,45,46]. In this case the solution of the Ermakov-
Pinney equation is b(t ) = [1 + (ω2

0 − ω2
1 ) sin2(ω1t )/ω2

1]1/2,
which is periodic with period T = π/ω1 and takes values
between 1 and ω0/ω1 (note that the solution for the expansion
can be obtained in the limit ω1 → 0).

While the dynamics of the real-space density [see Eq. (69)]
consists of self-similar breathing cycles with no damping,
Figs. 2(a) and 2(b), the dynamics in momentum space presents
a richer structure represented by bosonic-fermionic oscilla-
tions as can be seen in Figs. 2(c)–2(h). Let us focus first on the
time evolution of the bosonic momentum distribution. Similar
to the case of the TG gas which was investigated in [22,23] the
bosonic momentum distribution of the Bose-Fermi mixture
presents periodic narrowings which occur at twice the rate of
the density’s oscillations. This phenomenon is absent in the
case of free spinless fermions in the trap and was interpreted
as a quantum many-body bounce effect [22,23]. In order to
get a clearer picture of this phenomenon in Fig. 3 we plot the
time evolution of the momentum distribution’s full width at
half maximum (FWHM) of a system with N = 18 particles
and different number of bosons. The results for the FWHM of
nB(p) are shown in Figs. 3(a), 3(c) and 3(e) (blue continuous
lines) along the similar results for the FWHM of a TG gas
with the same number of bosons undergoing the same quench
(dashed black lines).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

FIG. 1. Expansion and dynamical fermionization of a BFM with
N = 26 and M = 11. Here ω0 = 6 and lHO = 1. (a), (b) Evolution
of the real-space densities ρB,F (x, t )lHO and (c), (d) momentum dis-
tributions nB,F (p, t )/lHO as functions of the dimensionless time ω0t .
(e)–(g) Momentum distributions for ω0t = {0, 0.1, 0.2, 4} × 2π . In
the initial LL ground state the bosonic momentum distribution (e)
presents quasicondensate features [significant fraction of particles
with nB(p) ∼ 0], while nF (p) (f) is narrower than the momentum
distribution of trapped free fermions. In the last three rows the dashed
lines represent the predictions of Eq. (74).

The bosonic FWHM dynamics is very similar with the
case of single-component TG bosons [38] and is charac-
terized by a rapid initial increase which can be understood
as a partial dynamical fermionization due to the fact that
ω0 > ω1. What is not necessarily intuitive is the presence of
local minima at t = mT/2 (m integer) revealing a distribution
which is narrower and taller than the one at t = 0 [for the
TG gas n(p; T/2) = (ω0/ω1)n(ω0 p/ω1; 0)] and the fact that
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. Dynamics of the BFM after a confinement quench with
ω0 = 6 (lHO = 1) and ω1 = 1. (a), (b) Evolution of the real-space
densities ρB,F (x, t )lHO as functions of the dimensionless time ω1t
for N = 18 and M = 9. Different number of bosons do not change
this picture significantly. Evolution of the momentum distributions
nB,F (p, t )/lHO for N = 18 and M = 3 (c), (d), M = 9 (e), (f), and
M = 15 (g), (h). In the bosonic case note the periodic narrowing
of the momentum distribution occurring at twice the rate of the
density oscillations. In the fermionic case the narrowing at t = mT
is strongly influenced by the number of bosons in the system and it
eventually disappears for a purely fermionic system (M = 0).

the FWHM has additional minima at t = mT where the real
space density is the narrowest feature, which is not present
in a noninteracting system. We should also point out that
the periodic narrowing occurring at t = mT takes place on a
relatively short time scale compared with the one occurring at
t = mT/2. The bosonic FWHM of the BFM presents the same
features with two particularities: (a) the FWHM at t = mT is
narrower than the FWHM of a TG gas with the same number
of bosons and (b) the FWHM at all t is almost independent on
the number of bosons and depends only on the total number
of particles N of the mixture.

The dynamics of the fermionic momentum distribution
presents significant changes compared to the case of spin-

(a) (b)

(c) (d)

(e) (f)

FIG. 3. FWHM dynamics of the momentum distributions (blue
continuous lines for bosons and green continuous lines for fermions)
after a confinement quench with the same trap parameters as in Fig. 2
for N = 18 and M = {3, 9, 15}. In (a), (c), and (e) the dashed black
lines represent the FWHM dynamics of the momentum distribution
of M Tonks-Girardeau bosons subjected to the same confinement
quench. In (b), (d), and (f) the dashed black lines represent the
FWHM dynamics of the momentum distribution of N − M free
fermions in the same quench scenario.

less free fermions subjected to the same quench and can
be seen in Figs. 3(b), 3(d) and 3(f) (the continuous green
lines are the momentum distribution’s FWHM of the BFM
fermions, while the dashed black lines represent the momen-
tum distribution’s FWHM of a system of N − M free fermions
undergoing the same quench). As a result of the interaction
between the bosonic and fermionic particles the fermionic
momentum distribution of the BFM at t = mT is narrower
than the momentum distribution of a similar number of free
fermions and this narrowing becomes more pronounced as
the number of bosons in the mixture increases. Therefore,
while in the free fermionic case the FWHM presents maxima
at t = mT and minima at t = mT/2 and is monotonic in
between the fermionic momentum distribution of the mixture
presents features which are similar with the bosonic one and
depends heavily on the bosonic fraction M/N of the system.
Not only the fermionic momentum distribution of the interact-
ing system becomes significantly narrower at t = mT (which
are local minima) but it also presents local maxima at t �= mT
similar to the bosonic case. It is interesting to note that while
after release from the trap the system effectively “fermion-
izes” in the case of the breathing oscillations initiated by a
sudden change of the trap frequency the dynamics (especially
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in the case of the full momentum distribution) is similar to
the one of the TG gas phenomenon, which can be dubbed
“dynamical bosonization.”

VIII. CONCLUSIONS

In this article we have derived an analytical description
for the correlation functions of the Bose-Fermi mixture in
a harmonic trap which can be easily implemented numeri-
cally with a complexity which is polynomial in the number
of particles. Our results represent a substantial improvement
over other numerical approaches of trapped multicomponent
systems which have an exponential complexity in the number
of particles or require hybrid techniques in which the charge
degrees of freedom are examined using analytical methods
while the spin sector is investigated with the infinite time-
evolving block decimation (iTEBD) or the density matrix
renormalization group (DMRG) algorithms. Using the prod-
uct form of the wave functions we have demonstrated that
in various nonequilibrium scenarios the pseudospin sector of
the BFM remains frozen with the dynamics being encoded
in the charge degrees of freedom. Our proof can be easily
generalized to any strongly interacting gas with an arbitrary
number of components and any statistics of the particles. We
have also proved, analytically and numerically, that dynamical
fermionization occurs in the BFM after the release from the
trap and that the asymptotic momentum distribution of each
component approaches the shape of their initial real-space
densities. In the case of a quench of the trap frequency which
induces breathing oscillations we have shown that, contrary
to usual expectations, the system exhibits features which are

similar to a system of single component bosons and not that of
a system of polarized fermion subjected to a similar quench.
In this case we can say that the system effectively exhibits a
sort of “dynamical bosonization” in contrast with the case of
free expansion.

Following the arguments of [57] it can be argued that in
the case of the expansion of the system some of the fea-
tures derived in Sec. VI remain valid in the case of strong
but finite interaction. In this case the full wave functions (to
leading order) are still of product form (see [92]) with the
charge degrees of freedom described by Slater determinants
of Hermite functions but with the spin sector described by
the wave functions of an XXZ spin chain [56] with variable
exchange coefficients Ci. What is remarkable is that in the case
of harmonic trapping the time evolution of these coefficients is
given by Ci(t ) = Ci(0)b−3(t ) [93], which results in an overall
scaling of the spin Hamiltonian. Therefore, an eigenstate of
the spin Hamiltonian at t = 0 remains an eigenstate at t > 0,
resulting in a frozen spin configuration like in the impenetra-
ble case and then the same logic applies like in Sec. VI. The
results obtained in this paper reveal the interesting phenomena
resulting from the interplay between the strong interaction, in-
ternal degrees of freedom, and statistics which can be probed
using current ultracold gases’ experiments.
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APPENDIX A: EXAMPLES OF THE WAVE FUNCTIONS FOR N = 4 AND M = 2

A distinct feature of the BFM wave function compared with the case of the bosonic or fermionic Gaudin-Yang models [50] is
that the ordering of the set of integers n = (n1, . . . , nM ), na ∈ {1, . . . , N}, describing the positions of the bosons in the ordered
set {x1, . . . , xN } is relevant. If we consider N = 4, M = 2, α = (BFBF ), and the wedge θ (x1 < x2 < x3 < x4), then n = (1, 3).
For the permutation P = (3214) the pseudospin wave function in the sector θ (x3 < x2 < x1 < x4) is detM (einaλb ) with n = (3, 1)
because the first boson is in the third position of the ordered set, while the second boson is in the first position. Let us present
the full wave functions for N = 4, M = 2, and two sets of α. The full expressions are rather long so we introduce the notations
( jklm) = θ (x j < xk < xl < xm) and [ jk] = ei( jλ1+kλ2 ) − ei(kλ1+ jλ2 ). First, we consider the case α = (BBFF ), which describes a
system in which the first (second) boson has the coordinate x1(x2). The wave function is

χBBFF (x1, x2, x3, x4| j,λ) = det4 [φ ja (xb)]

4 × 4!
×{ [12](1234) + [12](1243) + [13](1324) + [14](1342) + [13](1423) + [14](1432)

+ [21](2134) + [21](2143) + [31](2314) + [41](2341) + [31](2413) + [41](2431)

+ [23](3124) + [24](3142) + [32](3214) + [42](3241) + [34](3412) + [43](3421)

+ [23](4123) + [24](4132) + [32](4213) + [42](4231) + [34](4312) + [43](4321) }.
When α = (BFBF ) the wave function is

χBFBF (x1, x2, x3, x4| j,λ) = det4 [φ ja (xb)]

4 × 4!
×{ [13](1234) + [14](1243) + [12](1324) + [12](1342) + [14](1423) + [13](1432)

+ [23](2134) + [24](2143) + [32](2314) + [42](2341) + [34](2413) + [43](2431)

+ [21](3124) + [21](3142) + [31](3214) + [41](3241) + [31](3412) + [41](3421)

+ [24](4123) + [23](4132) + [34](4213) + [43](4231) + [32](4312) + [42](4321) }.
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It is now easy to see that χBBFF (x1, x2, x3, x4) = −χBFBF (x1, x3, x2, x4), which is just a particular case of the generalized
symmetry

χα1···αiαi+1···αN (x1, . . . , xi, xi+1, . . . , xN ) = hαiαi+1χ
α1···αi+1αi···αN (x1, . . . , xi+1, xi . . . , xN ), (A1)

satisfied by the wave functions [the exchange of x2 with x3 means for example that (1342) transforms in (1243)].

APPENDIX B: ORTHOGONALITY AND NORMALIZATION OF THE EIGENSTATES

Here we will prove that the eigenstates defined in Sec. II are orthogonal and normalized. The eigenstates of different (N, M )
sectors are obviously orthogonal so we will focus on computing

A(N,M ) ≡〈	N,M ( j′,λ′)|	N,M ( j,λ)〉

=
∫ N∏

j=1

dx jdy j

[N,M]∑
α1,...,αN ={B,F }

[N,M]∑
β1,...,βN ={B,F }

χ̄
α1···αN
N,M (x| j′,λ′)χβ1···βN

N,M (y| j,λ)

× 〈0|�β1 (y1) · · · �βN (yN )�†
αN

(xN ) · · · �†
α1

(x1)|0〉, (B1)

where we have introduced x = (x1, . . . , xN ) and y = (y1, . . . , yN ). This is a rather daunting expression so it is useful to consider
some particular cases. In the case of the (2,1)-sector repeated applications of the commutation relations give for the part involving
the fields

〈0|�β1 (y1)�β2 (y2)�†
α2

(x2)�†
α1

(x1)|0〉 = hα2β2δα1β2δα2β1δ(x1 − y2)δ(x2 − y1) + δα1β1δα2β2δ(x1 − y1)δ(x2 − y2) (B2)

and, therefore,

A(2,1) =
∫

dx1dx2

[2,1]∑
α1,α2={B,F }

[
hα2α1 χ̄

α2α1
2,1 (x2, x1| j′,λ′)χα1α2

2,1 (x1, x2| j,λ) + χ̄
α1α2
1,2 (x1, x2| j′,λ′)χα1α2

2,1 (x1, x2| j,λ)
]

= 2
∫

dx1dx2

[2,1]∑
α1,α2={B,F }

χ̄
α1α2
2,1 (x1, x2| j′,λ′)χα1α2

2,1 (x1, x2| j,λ), (B3)

where in the last line we have used the generalized symmetry (A1). The generalization of (B3) in the (N, M ) sector is

A(N,M ) = N!
∫ N∏

j=1

dx j

[N,M]∑
α1,...,αN ={B,F }

χ̄
α1···αN
N,M (x| j′,λ′)χα1···αN

N,M (x| j,λ). (B4)

Using the expression for the wave functions (3) we get

A(N,M ) = 1

N!NM

∫ N∏
j=1

dx j

[N,M]∑
α1,...,αN ={B,F }

[∑
P∈SN

η̄
αP1 ···αPN
N,M (λ′)θ (Px)

][∑
Q∈SN

η
αQ1 ···αQN
N,M (λ)θ (Qx)

]
det

N

[
φ̄ j′a (xb)

]
det

N
[φ ja (xb)]. (B5)

Now we need to make two important observations. The first observation is that θ (Px)θ (Qx) = θ (Px)δPQ for arbitrary permu-
tations P and Q and the second observation is that for any permutation P the sum

∑
P∈SN

η̄
αP1 ···αPN
N,M (λ′)ηαP1 ···αPN

N,M (λ) is the same
due to the fact that the spin wave functions involve determinants and therefore their product is symmetric in n’s. Using these
observations we obtain

A(N,M ) = 1

N!NM

∫ N∏
j=1

dx j

[
[N,M]∑

α1,...,αN ={B,F }
η̄

αP1 ···αPN
N,M (λ′)ηαP1 ···αPN

N,M (λ)

]∑
P∈SN

θ (Px) det
N

[
φ̄ j′a (xb)

]
det

N
[φ ja (xb)]. (B6)

We focus now on the term in the square parentheses. Because the product η̄η is symmetric in n’s and vanishes when two of them
are equal we have [

[N,M]∑
α1,...,αN ={B,F }

η̄
αP1 ···αPN
N,M (λ′)ηαP1 ···αPN

N,M (λ)

]
= 1

M!

N∑
n1=1

· · ·
N∑

nM=1

det
M

(
e−iλ′

anb
)

det
M

(
eiλanb

)
, (B7)

with the 1/M! factor appearing because for a symmetric function there are M! permutations for a particular n which give the
same result. Expanding the determinants from the right-hand side (RHS) of (B7) we obtain

ERHS = 1

M!

N∑
n1=1

· · ·
N∑

nM=1

(∑
P∈SN

(−1)P
M∏

j=1

e
−in jλ

′
Pj

)(∑
Q∈SN

(−1)P
M∏

j=1

ein jλQ j

)
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= 1

M!

N∑
n1=1

· · ·
N∑

nM=1

(∑
P∈SN

∑
Q∈SN

(−1)P+Q
M∏

j=1

e
−in j (λ′

Pj
−λQ j )

)

= 1

M!

∑
P∈SN

∑
Q∈SN

(−1)P+Q
M∏

j=1

(
N∑

n=1

e
−in(λ′

Pj
−λQ j )

)

= 1

M!

∑
P∈SN

∑
Q∈SN

(−1)P+Q
M∏

j=1

Nδλ′
Pj

λQ j
= NMδλ′λ, (B8)

where in the third line we have summed the geometric series and used the fact that eiλ′
j N = eiλ j N = 1 for all j ∈ {1, . . . , M}.

Using this last relation in (B6) and that
∑

P∈SN
θ (Px) is the identity in RN we have

A(N,M ) = δλ′λ

N!

∫ N∏
j=1

dx j

(∑
P∈SN

(−1)P
N∏

k=1

φ̄ j′Pk
(xk )

)(∑
Q∈SN

(−1)Q
N∏

k=1

φ jQk
(xk )

)

= δλ′λ

N!

∫ N∏
j=1

dx j

∑
P∈SN

∑
Q∈SN

(−1)P+Q
N∏

k=1

[
φ̄ j′Pk

(xk )φ jQk
(xk )
]

= δλ′λ

N!

∑
P∈SN

∑
Q∈SN

(−1)P+Q
N∏

k=1

δ j′Pk
jQk

= δ j′ jδλ′λ, (B9)

by using the orthonormality of the Hermite functions. This concludes the proof.
In the same way it can be shown that 〈	ω1

N,M ( j′,λ′)|	ω0
N,M ( j,λ)〉 = δλ,λ′ B( j, j′) with

B( j, j′) = 1

N!

∫ N∏
j=1

dx j

∑
P∈SN

∑
Q∈SN

(−1)P+Q
N∏

k=1

[
φ̄ j′Pk

(xk; ω1)φ jQk
(xk; ω0)

]
, (B10)

where φ j (xk; ω) is the Hermite function of frequency ω, |	ω0
N,M ( j,λ)〉 is the ground state of the prequench Hamiltonian, and

|	ω1
N,M ( j′,λ′)〉 is an eigenstate of the postquench Hamiltonian. In the case of the free expansion (ω1 = 0) the determinant

detN [φ ja (xb)] in the wave function is replaced by detN [eikaxb] with {ka} satisfying the Bethe ansatz equations of the homogeneous
system [63] but otherwise the same logic applies.

APPENDIX C: SOME RELEVANT INTEGRALS IN THE NEW PARAMETRIZATION

The parametrization introduced in Sec. IV has the advantage of making explicit the factorization of the pseudospin and charge
degrees of freedom in the definition of important physical quantities. In this Appendix we present these factorizations for some
relevant integrals including the expressions for the correlators (12) in an arbitrary state.

Normalization integrals. The simplest case is represented by the integrals that appear when calculating the normalization
of wave functions such as [we drop unnecessary subscripts when there is no risk of confusion and we recall that α =
(B · · · BF · · · F )]

A =
∫ n∏

j=1

dx j χ̄ (x1, . . . , xn)χ (x1, . . . , xn). (C1)

In the new parametrization we have (c = 1/[(N!)2NM])

A = c
∑
y∈SN

∫
Z

n∏
j=1

dz j χ̄ (z1, . . . , zn; y)χ (z1, . . . , zn; y)

= c

[∑
y∈SN

(−1)y+y det
M

(
e−iyaλb

)
det
M

(
eiyaλb

)]
︸ ︷︷ ︸

S

[∫
Z

n∏
j=1

dz j det
N

[φ̄ ja (zb)] det
N

[φ ja (zb)]

]
︸ ︷︷ ︸

I

, (C2)

which shows the factorization of the charge and spin degrees of freedom. In this case I = 1 and S = (N − M )!M!NM .
Densities’ integrals. The following type of integrals appear in the expressions for the densities ρσ (ξ ) = gσ (ξ, ξ ). We have to

treat the bosonic and fermionic cases independently. We start with the bosonic case. Introducing

Zd (ξ ) = {−∞ � z1 � · · · � zd−1 � ξ � zd+1 � · · · � zN � +∞} (C3)
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and

Y (y1 = d ) = {y ∈ SN | with y1 = d}, (C4)

then the relevant integral is

AB(ξ ) =
∫
RN−1

N∏
j=2

dx jχ̄ (ξ, x2, . . . , xN )χ (ξ, x2, . . . , xN )

= c
N∑

d=1

∑
y∈Y (y1=d )

∫
Zd (ξ )

N∏
j=1, j �=d

dz j χ̄

⎛
⎝z1, . . . , ξ

↑
d

, . . . , zN ; y

⎞
⎠χ

⎛
⎝z1, . . . , ξ

↑
d

, . . . , zN ; y

⎞
⎠

= c
N∑

d=1

⎡
⎣ ∑

y∈Y (y1=d )

(−1)y+y det
M

(
e−iyaλb

)
det
M

(
eiyaλb

)⎤⎦
︸ ︷︷ ︸

SB (d )

⎡
⎣∫

Zd (ξ )

N∏
j=1, j �=d

dz j det
N

[φ̄ ja (zb)] det
N

[φ ja (zb)]

⎤
⎦

︸ ︷︷ ︸
I (d;ξ )

= c
N∑

d=1

SB(d )I (d; ξ ). (C5)

In the fermionic case we have

AF (ξ ) =
∫
RN−1

N−1∏
j=1

dx jχ̄ (x1, . . . , xN−1, ξ )χ (x1, . . . , xN−1, ξ )

= c
N∑

d=1

∑
y∈Y (yN =d )

∫
Zd (ξ )

N∏
j=1, j �=d

dz j χ̄

⎛
⎝z1, . . . , ξ

↑
d

, . . . , zN ; y

⎞
⎠χ

⎛
⎝z1, . . . , ξ

↑
d

, . . . , zN ; y

⎞
⎠

= c
N∑

d=1

⎡
⎣ ∑

y∈Y (yN =d )

(−1)y+y det
M

(
e−iyaλb

)
det
M

(
eiyaλb

)⎤⎦
︸ ︷︷ ︸

SF (d )

⎡
⎣∫

Zd (ξ )

N∏
j=1, j �=d

dz j det
N

[φ̄ ja (zb)] det
N

[φ ja (zb)]

⎤
⎦

︸ ︷︷ ︸
I (d;ξ )

= c
N∑

d=1

SF (d )I (d; ξ ), (C6)

where Y (yN = d ) is defined analogously with (C4) but in this case yN = d . From (C5) and (C6) we see again that the relevant
integrals factorize and that while the pseudospin functions are different the charge integral is the same in both cases.

Correlator integrals. These are the integrals that appear in (12a) and (12b). We start with the bosonic integral

AB(ξ1, ξ2) =
∫
RN−1

N∏
j=2

dx j χ̄ (ξ1, x2, . . . , xN )χ (ξ2, x2, . . . , xN ). (C7)

We will consider the case ξ1 � ξ2 and because in general ξ1 �= ξ2 we have to introduce two sets of parameters for the two wave
functions: z, y for χ̄ and z′, y′ for χ . These two sets are not fully independent as we have x′

2 = x2, . . . , x′
N = xN . In order to see

the connection it is useful to consider a particular case. Consider (N, M ) = (7, 3) and d1 = 3 and d2 = 5. Now we consider one
of the wedges in which ξ1 is on the d1th position in the ordered set ξ1, x2, . . . , xN and ξ2 is on the d2th position in the ordered set
ξ2, x2, . . . , xN . If we consider the particular wedges

X = {−∞ � x2 � x3 � ξ1 � x4 � x5 � x6 � x7 � +∞},
X ′ = {−∞ � x2 � x3 � x4 � x5 � ξ2 � x6 � x7 � +∞},

then, in z variables, they correspond to

Zd1 (ξ1) = {−∞ � z1 � z2 � ξ1 � z4 � z5 � z6 � z7 � +∞},
Z ′

d2
(ξ2) = {−∞ � z′

1 � z′
2 � z′

3 � z′
4 � ξ2 � z′

6 � z′
7 � +∞} = {−∞ � z1 � z2 � z4 � z5 � ξ2 � z6 � z7 � +∞}. (C8)

The y parameters are y = (3, 1, 2, 4, 5, 6, 7) and y′ = (5, 1, 2, 3, 4, 6, 7). In the general case the connection between the y
parameters is the following (d1 � d2):

y′
1 = d2, y1 = d1,
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y′
i = yi for yi < d1,

y′
i = yi − 1 for d1 < yi � d2,

y′
i = yi for d2 < yi, (C9)

while for the z parameters we have the constraint

−∞ � z′
1 = z1 � · · · � z′

d1−1 = zd1−1 � ξ1 � z′
d1

= zd1+1 � · · ·
· · · � z′

d2−1 = zd2 � ξ2 � z′
d2+1 = zd2+1 � · · · � z′

N = zN � +∞. (C10)

Introducing

Zd1,d2 (ξ1, ξ2) = Zd1 (ξ1) ∩ Zd2 (ξ2)

= {−∞ � z1 � · · · � zd1−1 � ξ1 � zd1+1 � · · · � zd2 � ξ2 � zd2+1 � · · · � zN � +∞}, (C11)

we find

AB(ξ1, ξ2) = c
N∑

d1=1

N∑
d2=d1

∑
y∈Y (y1=d )

∫
Zd1,d2 (ξ1,ξ2 )

N∏
j=1, j �=d1

dz j χ̄

⎛
⎜⎝z1, . . . , ξ1

↑
d1

, . . . , zN ; y

⎞
⎟⎠χ

⎛
⎜⎝z′

1, . . . , ξ2
↑
d2

, . . . , z′
N ; y′

⎞
⎟⎠

= c
N∑

d1=1

N∑
d2=d1

⎡
⎣ ∑

y∈Y (y1=d1 )

(−1)y+y′
det
M

(
e−iyaλb

)
det
M

(
eiy′

aλb
)⎤⎦

︸ ︷︷ ︸
SB (d1,d2 )

⎡
⎣∫

Zd1 ,d2 (ξ1,ξ2 )

N∏
j=1, j �=d1

dz j det
N

[φ̄ ja (zb)] det
N

[φ ja (z′
b)]

⎤
⎦

︸ ︷︷ ︸
I (d1,d2;ξ1,ξ2 )

= c
N∑

d1=1

N∑
d2=d1

SB(d1, d2)I (d1, d2; ξ1, ξ2), (C12)

where y′ depends on y via (C9) and z′ satisfies the constraint (C10).
The fermionic integral is defined by

AF (ξ1, ξ2) =
∫
RN−1

N−1∏
j=1

dx j χ̄ (x1, . . . , xN−1, ξ1)χ (x1, . . . , xN−1, ξ2). (C13)

A similar analysis as above shows that the z′ variables satisfy the same constraint as in the bosonic case (C10); however, now
the connection between y′ and y′ is given by

y′
N = d2, yN = d1,

y′
i = yi for yi < d1,

y′
i = yi − 1 for d1 < yi � d2,

y′
i = yi for d2 < yi. (C14)

Note that in this case the variables y1, . . . , yM cannot take the value d1. Similar calculations as in the bosonic case give

AF (ξ1, ξ2) = c
N∑

d1=1

N∑
d2=d1

⎡
⎣ ∑

y∈Y (yN =d1 )

(−1)y+y′
det
M

(
e−iyaλb

)
det
M

(
eiy′

aλb
)⎤⎦

︸ ︷︷ ︸
SB (d1,d2 )

⎡
⎣∫

Zd1,d2 (ξ1,ξ2 )

N∏
j=1, j �=d1

dz j det
N

[φ̄ ja (zb)] det
N

[φ ja (z′
b)]

⎤
⎦

︸ ︷︷ ︸
I (d1,d2;ξ1,ξ2 )

= c
N∑

d1=1

N∑
d2=d1

SF (d1, d2)I (d1, d2; ξ1, ξ2), (C15)

with z′ and y′ satisfying the constraints (C10) and (C14). The charge functions are the same in the bosonic and fermionic case
but the pseudospin functions are different.

APPENDIX D: EVALUATION OF SB(d, d ) AND SF (d, d )

When d1 = d2 = d the pseudospin bosonic function (23) is given by

SB(d, d ) =
∑

y∈Y (y1=d )

(−1)y+y′
det
M

(
e−iyaλb

)
det
M

(
eiy′

aλb
)
, (D1)

063309-17
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with y = y′. Because the dependence on yM+1, . . . , yN is encoded in the sign factor we have

SB(d, d ) = (N − M )!
N∑

y2=1

· · ·
N∑

yM=1

(∑
P∈SM

(−1)P
M∏

j=1

e−iy jλPj

)(∑
Q∈SM

(−1)Q
M∏

j=1

eiy jλQ j

)

= (N − M )!
∑
P∈SM

∑
Q∈SM

(−1)P+Qe−iy1(λP1 −λQ1 )
M∏

j=2

(
N∑

y=1

e−iy(λPj −λQ j )

)

=
∑
P∈SM

∑
Q∈SM

(−1)P+Qe−iy1(λP1 −λQ1 )
M∏

j=2

(
NδλPj ,λQ j

)
= (N − M )!M!NM−1, (D2)

where in the second line we have used that eiλPj N = eiλQ j N = 1 after the summation of the geometrical progression.
The pseudospin fermionic function is

SF (d, d ) =
∑

y∈Y (yN =d )

(−1)y+y′
det
M

(
e−iyaλb

)
det
M

(
eiy′

aλb
)
, (D3)

with y = y′ but in this case y1, . . . , yM cannot take the value d . Similar to the bosonic case we have

SF (d, d ) = (N − M − 1)!
∑
P∈SM

∑
Q∈SM

(−1)P+Q
M∏

j=1

⎛
⎝ N∑

y=1,y �=d

e−iy(λPj −λQ j )

⎞
⎠

= (N − M − 1)!
∑
P∈SM

∑
R∈SM

(−1)R
M∏

j=1

⎛
⎝ N∑

y=1,y �=d

e−iy(λPj −λPR j )

⎞
⎠

= (N − M − 1)!
∑
P∈SM

∑
R∈SM

(−1)R
M∏

j=1

F (Pj, PRj ), (D4)

with F (Pj, PRj ) = N[δλPj ,λPR j
− e−id (λPj −λPR j )

/N]. It is easy to see that the N-by-N matrix with elements e−id (λ j−λk )/N where

λ j = 2π i
N j with j ∈ {0, . . . , N − 1} is of rank 1. Then, using von Koch’s formula (valid for any M-by-M matrix S)

detM (1 − γ S) = 1 +
M∑

n=1

(−γ n)

n!

M∑
k1,...,kn=1

det
(
Skp,kq

)n
p,q=1

(D5)

for the determinant
∑

R∈SM
(−1)R

∏M
j=1 F (Pj, PRj ) we obtain NM (1 −∑M

j=1 e−id (λPj −λPj )
/N ) = NM (1 − M/N ) due to the fact

that only the n = 1 terms in (D5) survive (the rest of the minors are zero). Therefore, SF (d, d ) = (N − M − 1)!M!NM (1 −
M/N ).

APPENDIX E: ONE-POINT CORRELATION FUNCTION AND MOMENTUM DISTRIBUTION
OF TRAPPED FREE FERMIONS

For a system of N harmonically trapped free fermions the wave function of the ground state is

χFF (x1, . . . , xN ) = 1√
N!

det
N

[φa−1(xb)]a,b=1,...,N ,

where φn(x) = cne−x2/2l2
HO Hn(x/lHO)/l1/2

HO, cn = 1/(2nn!π1/2)1/2, lHO = (h̄/mω)1/2, and the field-field correlator can be easily
computed as

gFF (ξ1, ξ2) = N
∫

χ̄FF (ξ1, x2, . . . , xN )χFF (ξ2, x2, . . . , xN ) dx2 · · · dxN ,

gFF (ξ1, ξ2) =
N−1∑
i=0

φ̄i(ξ1)φi(ξ2). (E1)

The density of particles in the trap is ρFF (ξ ) ≡ gFF (ξ, ξ ) =∑N−1
i=0 φ̄i(ξ )φi(ξ ). The momentum distribution nFF (p) =∫∫

eip(ξ1−ξ2 )/h̄gFF (ξ1, ξ2) dξ1dξ2/(2π ) can be computed with the help of the following formula, which can be derived using
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Eq. 7.374(8) of [94]:∫ +∞

−∞
eikxe−x2/(2b2 )Hn(ax) dx = inb

√
2π (2a2b2 − 1)n/2Hn

[
ab2k

(2a2b2 − 1)1/2

]
e−k2b2/2, a, b ∈ R. (E2)

We find

nFF (p) = l2
HO

N−1∑
i=0

φ̄i

(
pl2

HO

h̄

)
φi

(
pl2

HO

h̄

)
,

nFF (p) = l2
HO ρFF

(
pl2

HO

h̄

)
, (E3)

which shows that the momentum distribution of a system of trapped free fermions is proportional with its real-space density. In
units of h̄ = m = ω = 1 this relation becomes nFF (p) = ρFF (p).
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