
PHYSICAL REVIEW A 105, 063306 (2022)

Characterizing quantum criticality and steered coherence in the XY -Gamma chain
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In this paper, we show that an effective spin Hamiltonian with various types of couplings can be engineered
using quantum simulators in atomic-molecular-optical laboratories, dubbed the XY -Gamma model. We analyti-
cally solve the one-dimensional short-range interacting case with the Jordan-Wigner transformation and establish
the phase diagram. In the gapless phase, an incommensurate spiral order is manifested by the vector-chiral
correlations. Between distinct gapped phases, a logarithmic scaling behavior of local measures, including
spin correlations and the steered quantum coherence, is identified for the quantum critical points, yielding a
compelling value of the correlation-length critical exponent. We derive explicit scaling forms of the excitation
gap near the quantum critical points. The extracted critical exponents reveal the quantum phase transition on
the boundary of Tomonaga-Luttinger liquid belongs to Lifshitz universality class. Our results may provide
useful insights into the underlying mechanism in quantum criticality for state-of-the-art experiments of quantum
simulation.
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I. INTRODUCTION

The exploration of quantum phenomena is an outstanding
challenge and has been one of the most active arenas in con-
densed matter physics [1]. Novel forms of phases are enriched
by ongoing discoveries in transition metal compounds [2–5],
such as spin-orbit-entangled electronic phases [6,7]. In par-
ticular, the quantum spin liquid (QSL) has recently emerged
as a new paradigm in correlated electron physics, as it holds
promise for the potential application of quantum computing
and quantum information. One avenue towards QSL is the
focus on highly frustrated materials, exemplified by either
the geometrical frustration or the exchange frustration [8–11].
The triangular, kagome, and pyrochlore structures are cat-
egorized into the first type, while the actively sought-after
Kitaev magnets belong to the second type. In this context,
much attention has been recently devoted towards 4d and
5d transition metal compounds, due to the interplay between
spin-orbit couplings and electronic correlations [12–14]. The
playground to search for the QSL was recently extended to 3d
transition metal compounds [15]. Despite these endeavors, the
Kitaev QSL state has not been conclusively identified among
most candidate materials. Certain long-range order (LRO) is
unexpectedly found in a variety of Mott insulators, indicating
the existence of more conventional types of exchanges beyond
a dominant bond-directional Kitaev interaction in these non-
ideal materials.

Since engineering robust QSL states remains challeng-
ing in spin-orbit-entangled candidate materials, an alternative
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route for exploring novel phases of matter and forms of en-
tanglement is the experimental implementation with the help
of other quantum systems in the laboratory. After Feynman’s
proposal in 1982 [16], the field of quantum simulation has
been developing rapidly for decades and nowadays enables
the investigation of quantum systems in a programmable fash-
ion. Especially, recent advances of the laser technology and
the laser manipulation of atomic gases have made it feasible
to implement a wide class of analog quantum simulations in
atomic-molecular-optical (AMO) laboratories. Quantum sim-
ulators have been realized on a few platforms, e.g., ultracold
atoms [17], polar molecules [18], trapped ions [19,20], pho-
tonic systems [21–23], and Rydberg atom arrays [24,25], etc.
These systems can be finely tuned in a sufficiently precise
way and observed in real time. The effective many-body
Hamiltonian can be incorporated from recent developments of
simulating quantum magnetism and related quantum dynam-
ics using atoms interacting with the same quantum modes,
wherein the quantum channel can be the guided modes in the
photonic crystal waveguides [21], the photon of cavity modes
[26,27], and the Rydberg dressing states [28]. With present
architectures of quantum simulators, a generic Hamiltonian
consisting of flexible coupling graphs can be freely realized,
offering the opportunity to implement, simulate, and experi-
mentally test fundamental paradigmatic model Hamiltonians.

This paper is organized as follows. In Sec. II we discuss
the possible engineering of the XY -Gamma model using the
AMO system facilitated by coherent photon-mediated Raman
transitions. In our scenario, the independent control of XX ,
YY , XY , and Y X terms can be achieved by a double � scheme
in neutral atoms. Section III is devoted to exact solutions of
the one-dimensional (1D) short-range interacting Hamiltonian
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using the Jordan-Wigner transformation. Two-site correla-
tions and dimer correlations are then analyzed. Next, the
quantum steered coherence is investigated in Sec. IV. A dis-
cussion and summary follow in Sec. V.

II. EFFECTIVE MODEL WITH PHOTON-MEDIATED
ATOM-ATOM INTERACTIONS

Recently, using photons to mediate controllable atom-
atom interactions has been a well-established paradigm in
AMO quantum simulation [27–30]. The constituents of the
engineered quantum spin models are not restricted to only
Heisenberg-type interactions [31–33]. The complex photon-
mediated interaction graphs, including both their amplitudes
and interaction ranges, can be arbitrarily programed by state-
of-the-art techniques involving more laser beams, posing
envisioned synthetic quantum matter. For instance, it is well
known that the LRO is prohibited by the Mermin-Wagner
theorem for short-range interacting models with a continuous
symmetry in one spatial dimension [34], while the counter-
part on a two-dimensional (2D) bipartite lattice is generally
expected to host the long-range Néel order for any spin mag-
nitude S, although a rigorous proof of the existence of LRO
in a 2D S = 1/2 Heisenberg model is still lacking [35–37].
The long-range XY order is induced in an XXZ chain by
single-mode-cavity-mediated infinite-range interactions [38].
Instead, QSLs are stabilized in a 2D isotropic Heisenberg
model by power-law decaying interactions in multimode cav-
ities [27].

In the following, we consider N atoms that are trapped
tightly in a 1D optical lattice, as depicted in Fig. 1. A dou-
ble � scheme of an atomic-level diagram is assumed, where
two internal atomic states {|s〉, |g〉} in the ground-state mani-
fold represent the pseudospin-1/2 states with energy {0, ωg}
and two auxiliary excited states {|1〉, |2〉} exist with energy
{ω1, ω2}, respectively. A photon mode at frequency ωk with
the field operator âk induces π -transitions between atomic
ground and excited states |s〉 ↔ |1〉 and |g〉 ↔ |2〉, where k
denotes the index of bosonic modes. Gk(r) is the correspond-
ing spatially dependent coupling strength. Two pump lasers,
denoted as (L1, L2) with Rabi strengths (�1,�2) and fre-
quencies (ωL1, ωL2), are implemented to induce σ transitions
between atomic ground and excited states, i.e., |g〉 ↔ |1〉 and
|s〉 ↔ |2〉, respectively.

Under rotating wave approximation, the atom-light hybrid
system is described by the Hamiltonian Ĥ = Ĥ0 + ĤAL, where
Ĥ0 is the free Hamiltonian consisting of photon fields âk and
atomic Zeeman energy levels σ̂ aa

j , and ĤAL is the atom-light
interaction Hamiltonian (h̄ = 1 throughout):

Ĥ0 =
∑

k

ωkâ†
kâk +

∑
j

∑
α

ωασ̂ αα
j , (1)

ĤAL =
∑

j

[
�1(r j )e

−iωL1t σ̂
1g
j + �2(r j )e

−iωL2t σ̂ 2s
j + H.c.

]

+
∑

j

∑
k

[
Gk(r j )âk

(
σ̂ 1s

j + σ̂
2g
j

) + H.c.
]
. (2)

Here the atomic transition operators are defined as σ̂ ab
j ≡

|a〉 j〈b| with four atomic energy levels a, b = {g, s, 1, 2} and
j labels the site. Two-atom interaction is synthesized by two

FIG. 1. Schematic setups. Atoms are trapped in 1D optical lattice
with four-level energy diagram (inset). Two pump lasers with Rabi
frequencies �1 (blue) and �2 (green) induce σ transitions between
atomic ground and excited states |g〉 ↔ |1〉 and |s〉 ↔ |2〉, respec-
tively. A cavity mode (red) induces π transitions between |s〉 ↔ |1〉
and |g〉 ↔ |2〉.

Raman transitions, where the photon field âk provides the
two-body correlation between the two atoms, as depicted in
Fig. 1.

Working in a rotating frame defined by
Û=exp{i[∑ j (ω−σ̂

gg
j + ω+σ̂ 11

j + ωL2σ̂
22
j ) + ∑

k ω+â†
kâk]t}

with ω±=(ωL2 ± ωL1)/2, the transformed Hamiltonian
H̃ = UĤU † + i(∂tU )U † reads

H̃ = −
∑

k

	kâ†
kâk +

∑
j

[
δσ̂

gg
j − 	1σ̂

11
j − 	2σ̂

22
j

]

+
∑

j

[
�1(r j )σ̂

1g
j + �2(r j )σ̂

2s
j + H.c.

]

+
∑

j

∑
k

[
Gk(r j )âk

(
σ̂ 1s

j + σ̂
2g
j

) + H.c.
]
, (3)

where 	k ≡ (ωL1 + ωL2)/2 − ωk, 	1 ≡ (ωL1 + ωL2)/2 −
ω1, 	2 ≡ ωL2 − ω2, and δ = ωg − (ωL2 − ωL1)/2. Supposing
the frequencies of pump lasers and bosonic modes are all far
detuned from the atomic transitions, i.e., 	1 and 	2 are much
larger than the Rabi coupling coefficients |�1|, |�2|, and |Gk|,
we can safely eliminate the excited states |1〉 and |2〉 to obtain
the effective Hamiltonian in the ground-state manifold (see
Appendix A),

Ĥgs =
∑

j

[
(δ + Vg(r j ))σ̂

gg
j + Vs(r j )σ̂

ss
j

]

+
∑

j

[
σ̂

gs
j �̂(r j ) + �̂†(r j )σ̂

sg
j

]
, (4)
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where �̂(r) = �∗
1

∑
k Gk(r)âk/	1 + ∑

k G∗
k(r)â†

k/�2 and
the light shifts for ground states Vg(r) = |�1|2/	1 + ∑

kk′

G∗
kGk′ â†

kâk′/	2, Vs(r) = |�2|2/	2 + ∑
kk′ G∗

kGk′ â†
kâk′/	2.

In the adiabatic limit due to large detuing or large dissipation
κ of modes âk, the photon field can be approximated by its
steady-state value,

âss
k =

∑
j

G∗
k(r j )

(
�1

	1
σ̂−

j + �2

	2
σ̂+

j

)/
	̃k, (5)

with 	̃k = 	k + iκ − ∑
j |Gk(r j )|2(σ̂ ss

j /	1 + σ̂
gg
j /	2).

Note that here we have included the cavity dissipation
κ phenomenologically. By adiabatically eliminating the
photon degree of freedom, in terms of Pauli operators,
σ x

j = σ̂
sg
j + σ̂

gs
j , σ

y
j = i(σ̂ sg

j − σ̂
gs
j ), σ z

j = σ̂
gg
j − σ̂ ss

j , we
obtain the effective spin Hamiltonian in a compact form,

Ĥint =
∑

i j

(
Jx

i jσ
x
i σ x

j + Jy
i jσ

y
i σ

y
j

) + JDM
i j

(
σ x

i σ
y
j − σ

y
i σ x

j

)

+
∑

i j

JSO
i j

(
σ

y
i σ x

j + σ x
i σ

y
j

) +
∑

j

hz
jσ

z
j . (6)

Here hz
j = δ/2 + Vg(r j ) − Vs(r j ), Jx

i j = 2(Re[�0] + Re[�1]),
Jy

i j = 2(Re[�0] − Re[�1]), JDM
i j = 2Im[�0], and JSO

i j =
−2Im[�1], where Re (Im) indicates the real (imaginary) part
of a complex variable, �0,1 ≡ �0,1(ri, r j ) with �0(r, r′) =∑

k[�∗
1 (r)�1(r′ )
	2

1	̃k
Gk(r)G∗

k(r′) + �2(r)�∗
2 (r′ )

	2
2	̃

∗
k

G∗
k(r)Gk(r′)] and �1

(r, r′) = ∑
k[�∗

1 (r)�2(r′ )
	1	2	̃k

Gk(r)G∗
k(r′)+�2(r)�∗

1 (r′ )
	1	2	̃

∗
k

G∗
k(r)Gk(r′)].

The detailed definitions of coefficients in Eq. (6) are derived
in Appendix A.

The first bracketed term of Eq. (6) corresponds to the
conventional XY -type interactions, and the term in the second
brackets denotes the z component of Dzyaloshinskii-Moriya
interactions (DMIs). The cross-couplings in the third brackets
between x and y spin components are referred to as sym-
metric off-diagonal � interactions. Exotic forms like DMIs
originated from spin-orbit couplings [39–42] and were first
devised to account for the weak ferromagnetism in antifer-
romagnetic crystals [2–5], favoring chiral states such as spin
spirals and skyrmions [6,7]. Concurrently, the importance of
pervasive off-diagonal � interactions can be traced back to
the study of the Kitaev-Heisenberg model [8–11]. Further re-
search suggests that the symmetric off-diagonal � interactions
should also be taken into account to explain the possible QSLs
observed in experiments [43–48].

III. EXACT SOLUTION AND CORRELATIONS

Note that the cavity-mediated spin-spin interactions in
Eq. (6) have infinite range if only a single-cavity mode is
involved. The finite-range interactions are achieved by using
a multimode cavity. The photon modes can be the guide
modes in photonic crystal waveguides with quasimomentum
k [21–23] or the near-degenerate transverse cavity modes
[49,50]. In particular, the multifrequency driving also enables
finite-range interactions between intracavity atoms in a single-
mode cavity, which has been recently realized experimentally
[51]. Therefore, an effective Hamiltonian with tunable inter-
action strength and interaction range can be constructed by

using multimodes {âk}. In this case, the interference of cavity
modes may render the beyond-nearest-neighbor couplings to
be negligibly small.

In the following, we concentrate on the spin models for an
ensemble of spin-1/2 interacting particles on a 1D lattice with
nearest-neighbor interactions only. The spin Hamiltonian can
be rewritten as

Ĥ =
N∑

j=1

J

(
1 + γ

2
σ x

j σ
x
j+1 + 1 − γ

2
σ

y
j σ

y
j+1

)

+
N∑

j=1

[
�

(
σ x

j σ
y
j+1 + ασ

y
j σ

x
j+1

) + hσ z
j

]
, (7)

where the antiferromagnetic coupling J ≡ Jx
j, j+1 + Jy

j, j+1 be-
tween the nearest-neighbor atoms is set up as an energy
unit for simplicity unless otherwise stated, i.e., J = 1, γ ≡
(Jx

j, j+1 − Jy
j, j+1)/J serves as the anisotropy parameter, � ≡

JDM
j, j+1 + JSO

j, j+1 characterizes the amplitude of off-diagonal
exchange interactions, α ≡ (JSO

j, j+1 − JDM
j, j+1)/� denotes the

relative coefficient of off-diagonal exchange couplings, and
h represents the strength of the uniform transverse field. The
� term reduces to the DMI for α = −1 and the symmetric off-
diagonal exchange interaction for α = 1. In what follows, we
impose periodic boundary conditions (PBCs) with σ a

N+1 ≡ σ a
1

(a = x, y, z).
The motivations of exploring the quantum criticality in

the XY -Gamma model are twofold. On one hand, the low-
dimensional quantum magnets have been particularly of
concern owing to their evident quantum aspects and sub-
stantial corrections to classical counterparts. The quantum
criticalities have been explored in a few magnetic materials.
The notable examples range from the spin-1/2 Ising ferro-
magnet LiHoF4 [52], SrCo2V2O8 [53], Cs2CoCI4 [54], and
CoNb2O6 [55] to BaCo2V2O8 [56] as well as the spin-1 ferro-
magnetic Heisenberg chain NiNb2O6 [57]. To date, quantum
phase transitions (QPTs) of analog models have been stud-
ied in different contexts, such as the XY model with DMIs
[58]. The simultaneous appearance of off-diagonal exchange
� interactions and XY -type interaction in the presence of
external fields, especially counteracting the disordered state,
is less systematically clear. One the other hand, the merit of
Eq. (6) resides in its exact solvability. The analytical results
render the possibility to calculate accurately the experimental
measurable quantities, in particular various dynamic ones, and
thus serve as a benchmark for more sophisticate models. As
we shall demonstrate, the extracted critical exponents can be
relevant to the experimental measurement of thermodynamic
quantities and information measures.

The Hamiltonian in Eq. (7) is analytically solved by
means of Jordan-Wigner, Fourier, and Bogoliubov transfor-
mations. The detailed diagonalization procedure is shown in
Appendix B 1. Ultimately, the Hamiltonian can be brought
into a diagonal form of a spinless fermion in the momentum
space,

Ĥ =
∑

k

εk

(
b+

k bk − 1

2

)
, (8)
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FIG. 2. The contour map of the excitation gap with respect to α

and h. The white dashed lines correspond to the critical lines sepa-
rating phases I (AFM), II (PM), and III (spiral) of the XY -Gamma
model with J = 1.00, � = 0.60, γ = 0.60.

where the energy spectrum of fermionic quasiparticles is

εk = 2
√

[�2(α + 1)2 + γ 2] sin2 k + (cos k − h)2

−2�(1 − α) sin k. (9)

With the excitation energy at hand, the energy gap 	=mink εk

can be determined. As shown in Fig. 2, the ground-state phase
diagram consists of three phases by varying α and h. The
horizontal segment hc,1 = 1 for α > −γ 2/4�2 separates the
gapped phase I and phase II, while the gapless phase III is
encompassed by the separatrices αc,1 = −γ 2/(4�2) for h � 1
and αc,2 = (1 − h2 − γ 2)/(4�2) for h > 1, or equivalently,
hc,2 =

√
1 − γ 2 − 4�2α for α < −γ 2/(4�2).

Typically, one can define spatial and temporal charac-
teristic lengths that have diverging behavior as the control
parameter λ approaches the threshold value λc. This diverging
property of characteristic lengths with the correlation-length
critical exponent ν and the dynamical critical exponent z en-
ables one to define universality classes. The critical behavior
is determined by those low-energy states near the critical
mode. The dynamical exponent z relates the scaling of en-
ergy to length scales, which can be retrieved by the shape of
the spectra near the gap closing mode 	 ∼ (k − kc)z. As λ

approaches λc, the gap vanishes as 	 ∼ (λ − λc)νz. To this
end, we expand Eq. (9) at the critical line hc,1 around the gap
closing momentum kc = 0,

εk 	 2
√

γ 2 + �2(1 + α)2|k| − 2�(1 − α)k. (10)

The relativistic spectra at the critical line hc,1 imply that z =
1. The gap near hc,1 is approximated as

	 	 2|h − hc,1|, (11)

and one then finds νz = 1. In this case, the quantum critical
point (QCP) between phase I and phase II belongs to 2D Ising
universality class characterized by ν = 1, z = 1. On the verge
between the gapped phase II and the gapless phase III, one
can find the spectra vanish at an incommensurate momentum

kc = arccos(h−1
c,2),

εk 	
[

�(1 − α) cos2 kc

2 sin kc
+ (h−1

c,2 − hc,2)2

2�(1 − α) sin kc

]
(k − kc)2. (12)

The above quadratic dispersion indicates the dynamical expo-
nent z = 2. While expanding the gap around the QCP from
the upper threshold one obtains the excitation as

	 	 2
(
hc,2 − h−1

c,2

)
�(1 − α) sin kc

(h − hc,2). (13)

The critical exponents ν = 1/2 and z = 2 annotate that the
QPT is in the so-called Lifshitz universality class [59], which
corresponds to the universality class of quantum criticality
of free fermions. In the case of the I–III transition αc,1, the
spectra are found to be quadratic in k around the gap closing
mode kc = arccos h as

εk 	
√

1 − h2

�(1 − α)
(k − kc)2, (14)

which yields z=2. Similarly, the gap around the critical point
αc,1 from above obeys a power-law relation as

	 	 4� sin kc

1 − αc,1
(α − αc,1). (15)

The scaling form in Eq. (15) reveals that the transition also
belongs to the Lifshitz universality class with z = 2 and ν =
1/2.

We also calculate the second derivative of the ground-state
energy density e0 = −∑

k |εk|/(2N ) in Fig. 3, which show-
cases extreme values around critical points. With increase
of the system sizes, the peaks of −∂2e0/∂h2 for α = 0.50
become more pronounced. To be concrete, a logarithmic sin-
gularity across the QPT between phase I and phase II is
identified as (

−∂2e0

∂h2

)
max

= aE ln N + c1. (16)

Meanwhile, in the vicinity of the critical point in the thermo-
dynamic limit, one finds(

−∂2e0

∂h2

)
= bE ln |h − hc| + c2. (17)

The numerical fittings in Fig. 3(a) yield aE = 0.2871 ±
0.0058, c1 = 0.1878, bE = −0.2887 ± 0.0009, and c2 =
0.1162. According to the logarithmic scaling ansatz [60], the
ratio |aE/bE | equals the correlation-length exponent ν 	 1,
confirming that the QPT from phase I to phase II coincides
with a second-order transition. The retrieved specific heat
exponent α = 2 − (d + z)ν = 0 validates the scaling relation
for the logarithmic scaling in d = 1 dimension. In contrast,
one observes in Fig. 3(b) that −∂2e0/∂α2 exhibits a size-
independent discontinuity at the critical points for h = 0.50
and h = 1.17, which is a common feature of the transition
between the gapless phase and the gapped phase [61].

The nature of the ground state can be gained from the two-
qubit correlation functions

Ga,b
i, j = 〈

σ a
i σ b

j

〉 − 〈
σ a

i

〉〈
σ b

j

〉
(18)
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(b)

FIG. 3. (a) −∂2e/∂h2 as a function of h with α = 0.50 for vari-
ous system sizes. The left inset shows the scaling behavior between
the maximum value of −∂2e/∂h2 and the system size N . The right
inset shows −∂2e/∂h2 in the vicinity of the critical point. The sym-
bols denote the numerical results, and the solid lines correspond to
the linear fittings. (b) −∂2e/∂α2 vs α with h = 0.50 and h = 1.17.
Other parameters: J = 1.00, γ = 0.60, � = 0.60.

with a, b = x, y, z. In fact, Ga,b
i, j can be abbreviated as Ga,b

r
with r = i − j due to the translational invariance of Eq. (7). A
generic correlation 〈σ a

i σ b
j 〉 can be expressed as a Pfaffian form

in terms of Wick’s theorem [62], which is the determinant
of the 2r × 2r dimensional antisymmetric matrix. The de-
tailed calculation is exhibited in Appendix B 2. One observes
that the nearest-neighbor correlation functions display kinks
across QCPs between the gapless phase and gapped phases.
With increasing α for h = 0.50 in Fig. 4(a), the dominant
nearest-neighbor correlation changes from a positive value
of Gyx

1 to a negative value of Gxx
1 , implying a QPT from the

gapless spiral phase to the gapped antiferromagnetic (AFM)
phase. Instead, the ruling correlations Gzz

1 in Fig. 4(b) for
h = 1.17 suggest that phase II belongs to the paramagnetic
(PM) phase. Similar trends of correlations for α = 0.50 are
displayed in Fig. 5. The dominating nearest-neighbor correla-
tions change from a negative value of Gxx

1 to a positive value

-1.0 -0.5  0.0  0.5  1.0
-1.0

-0.5

 0.0

 0.5

Gxx
1

Gxy
1

Gyx
1

Gzz
1

(a)

-1.0 -0.5  0.0  0.5
-0.5

 0.0

 0.5

 1.0
Gxx

1

Gxy
1

Gyx
1

Gzz
1

(b)

FIG. 4. The nearest-neighbor correlation functions with respect
to α for (a) h = 0.50 and (b) h = 1.17. Other parameters: N=2000,
J = 1.00, � = 0.60, γ = 0.60.

of Gzz
1 across hc,1. Therefore, the first-order derivative of Gxx

1
presents a pronounced peak at hc,1 in Fig. 5(b). We can further
find the first-order derivative of Gxx

1 also follows a logarithmic
divergence across the second-order QPT as(

∂Gxx

∂h

)
max

= aG ln N + c3, (19)(
∂Gxx

∂h

)
= bG ln |h − hc| + c4, (20)

where aG = 0.2789 ± 0.0045, bG = −0.2811 ± 0.0001, c3 =
0.1758, and c4 = 0.0265. In this case, one can speculate that
ν ≈ |aG/bG|=0.9922 ± 0.0209, which is quite close to the
value retrieved from the second derivative of the ground-state
energy density.

It is well known that the AFM phase hosts Néel LRO, while
the LRO is absent in the PM phase, as is unraveled in the
inset of Fig. 5(a). One can further notice that the amplitudes
of Gxy

1 and Gyx
1 coincide in the gapped phases, while become

unbalanced in the gapless phase. Hence, such a feature sug-
gests that |Gxy

1 | − |Gyx
1 | is a well-defined order parameter to
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FIG. 5. (a) The correlation functions Gxx
1 , Gzz

1 , Gxy
1 , Gyx

1 as a
function of h for α = 0.50. The inset shows |Gzz

r | vs r for h = 0.50
and 1.50 with N = 2000. (b) The first-order derivative of Gxx

1 with
N = 200, 400, 600, 800, 1000. The left inset shows the scaling
behavior between the maximum value of ∂Gxx

1 /∂h and the system
size N . The right inset shows ∂Gxx

1 /∂h in the vicinity of the criti-
cal point. The symbols denote the numerical results, and the solid
lines correspond to the linear fittings. Other parameters: J = 1.00,
γ = 0.60, � = 0.60.

identify the spiral phase for the XY -Gamma model. A natural
question arises whether there is LRO in the gapless spiral
phase. To probe this question, we numerically calculate the
vector-chiral correlations |Gxy

r | − |Gyx
r | for different distances

r in Fig. 6(a), in which the absolute value is taken in order
to remove the indeterminate sign of the numerical Pfaffian
calculation. One can find that |Gxy

r | − |Gyx
r | is always zero

in the gapped phase as a consequence of Gxy
r = Gyx

r , while
it remains finite in the gapless spiral phase. Upon increasing
the distance r, the correlation presents an oscillating decline
as r−1/2 shown in Fig. 6(a) [58], suggesting the existence
of a quasi-long-range order of an incommensurate spiral or-
der. Next, to delve more deeply into the spiral order, we
consider four-qubit correlations as exemplified by the dimer
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-0.1

 0.0

 0.1
r=1
r=2
r=3
r=4
r=5
r=6

0 50 100

-0.1

0

0.1

(a)

0.0 0.5 1.0 1.5 2.0
-6
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-2

0

2
10-3

r=2

r=4

r=6

r=8
0 10 20

-0.04

-0.02

 0.00

(b)

FIG. 6. (a) The correlation function |Gxy
i,i+r | − |Gyx

i,i+r | with re-
spect to h for different r. The inset shows |Gxy

i,i+r | − |Gyx
i,i+r | vs r for

h = 0.50. (b) The dimer correlation 〈κiκi+r〉 − 〈κi〉〈κi+r〉 with respect
to h for different r. The inset displays the dimer correlation vs r for
h = 0.50. Other parameters: N=2000, J = 1.00, α = −0.50, γ =
0.60, � = 0.60.

correlation

Dj, j+r = 〈κ jκ j+r〉 − 〈κ j〉〈κ j+r〉, (21)

where the z-component vector chiral order parameter is de-
fined by [63,64]

κ j = (�σ j × �σ j+1)z. (22)

We thus calculate the dimer correlation Dj, j+r as a function
of h for α = 0.50 in Fig. 6(b). One observes that the dimer
correlations oscillate in the spiral phase and tend to decay with
increasing the distance r between the dimers. We further find
that dimer correlations persist only for a few sites, and thus the
four-qubit correlations decay more rapidly than the two-qubit
counterparts.

IV. STEERED QUANTUM COHERENCE

In recent years, a few approaches inherited from quantum
information have been employed to characterize the QPTs,
such as quantum entanglement [65–67], quantum discord
[68,69], quantum coherence [70], and fidelity susceptibility
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[71]. These information measures have played the role of
universal order parameters and deepened understanding of the
quantumness of correlations at quantum criticality. Quantum
coherence, a landmark manifestation of quantum superpo-
sition, has been widely recognized as a common necessary
condition for both entanglement and other types of quantum
correlations. Given that, the precise control over the photon-
mediated interactions between atoms means that any pair of
constituent particles could be ideally coaxed into any de-
sired quantum-mechanical superposition state. In particular,
the neutral atoms couple weakly to the environment, allow-
ing relatively long coherence times. Hence, such an array
of atoms can function as a versatile model for the study
of quantum coherence, which may ultimately help alleviate
the adverse effects of decoherence in quantum computa-
tion and quantum information processing [72]. Based on a
rigorous framework to quantify coherence [73], a few mea-
sures have been proposed, including the relative entropy, l1
norm of coherence, Wigner-Yanase-Dyson skew information,
and Jensen-Shannon divergence. These coherence-based in-
dicators have been applied to identify QPTs in many-body
systems [74–76]. However, their feasibility strongly depends
on a careful choice of the specific basis in advance, so these
conventional quantum coherence measurements may extract
useless information if the reference basis is inappropriate.
To overcome the irrationality, the steered quantum coherence
(SQC) was proposed recently [77–79]. The SQC is based on
the mutually unbiased bases and shows its figure of merit in
characterizing quantum criticality.

For a bipartite state ρAB shared by Alice and Bob, the
SQC was defined by Alice’s local measurements and classi-
cal communication between Alice and Bob. To be explicit,
Alice carries out one of some preagreed measurements
σμ (μ = x, y, z) on qubit A and informs Bob of the chosen
observable σμ and the outcome a ∈ {0, 1}. Bob’s system then
collapses to the ensemble states {pμ,a, ρB|�a

μ
} with pμ,a =

tr(�a
μρAB) being the probability of Alice’s outcome a, and

ρB|�a
μ

= trA(�a
μρAB)/pμ,a being Bob’s conditional state. Bob

can measure the coherence of the ensemble {pμ,a, ρB|�a
μ
}

with respect to the eigenbasis of either one of the remaining
two Pauli operators σ ν (ν �= μ). After all Alice’s possible
measurements {�a

μ}μ=x,y,z with equal probability, the SQC of
qubit B can be defined as the following averaged quantum
coherence:

Cst
re(ρAB) = 1

2�μ �=ν,a pμ,aC
σν

re

(
ρ

B
∣∣�a

μ

)
, (23)

where

Cσν

re (ρ) = S(ρd ) − S(ρ). (24)

Here the relative entropy of coherence is used due to its clear
physical meaning [74], where S(ρ) = −tr(ρ log2 ρ) stands for
the von Neumann entropy of ρ and ρd is obtained from ρ by
removing all its off-diagonal entries.

Regarding Z2 and translation symmetries of Eq. (7), in the
bases spanned by the two-qubit product states of eigenstate
of σ z, i.e., {|0〉i ⊗ |0〉 j , |0〉i ⊗ |1〉 j , |1〉i ⊗ |0〉 j , |1〉i ⊗ |1〉 j},
where |0〉 (|1〉) denotes a spin-up (-down) state, the reduced
density matrix ρi j of two qubits i and j can be cast into an

TABLE I. Fitting parameters {aC, bC} of the slopes in logarithmic
scaling of coherence susceptibility through relations Eqs. (30) and
(31) with ν = |aC/bC|. Other parameters: J = 1.00, γ = 0.60, � =
0.60, α = 0.50.

r aC bC ν

1 0.5084 ± 0.0087 −0.5134 ± 0.0091 0.9903 ± 0.0355
2 0.2065 ± 0.0010 −0.2125 ± 0.0049 0.9718 ± 0.0272
3 0.0889 ± 0.0027 −0.0933 ± 0.0052 0.9528 ± 0.0777

X -state form,

ρi j =

⎛
⎜⎝

u+ 0 0 z1

0 ω+ z2 0
0 z∗

2 ω− 0
z∗

1 0 0 u−

⎞
⎟⎠, (25)

with

u± = 1
4

(
1 ± 2

〈
σ z

i

〉 + 〈
σ z

i σ z
j

〉)
, (26)

z1 = 1
4

(〈
σ x

i σ x
j

〉 − 〈
σ

y
i σ

y
j

〉 − i
〈
σ x

i σ
y
j

〉 − i
〈
σ

y
i σ x

j

〉)
, (27)

z2 = 1
4

(〈
σ x

i σ x
j

〉 + 〈
σ

y
i σ

y
j

〉 + i
〈
σ x

i σ
y
j

〉 − i
〈
σ

y
i σ x

j

〉)
, (28)

ω± = 1
4

(
1 − 〈

σ z
i σ z

j

〉)
. (29)

The SQC of two-qubit states as a function of h for different
α and r is plotted in Fig. 7. Cst

re shows a monotonic increase
with respect to h, which tends towards the maximum value
2.00, in contrast to a monotonically decreasing behavior of
the relative entropy [58]. With increasing h, the SQC of two
adjacent spins shows a smooth transition from the AFM phase
to the PM phase, while Cst

re exhibits a salient point across the
transition from the spiral phase to the PM phase [cf. Fig. 7(a)].
For two qubits farther than the nearest neighbor, Cst

re decreases
with increasing r, but the positions of salient points are un-
changed. As is shown in Fig. 7(b), the nonanalyticity of the
ground state at QCPs can be pinpointed by the discontinuity
of the first-order derivative of the SQC. One can find that
the coherence susceptibility, i.e., χ st

re ≡ ∂Cst
re/∂h [70], almost

superposes onto each other around the QCPs for different r.
Similarly, χ st

re presents a pronounced peak at hc,1 = 1 for α =
0.50 in Fig. 8(a) and the peaks become sharper and sharper as
the system size increases, and it is expected to diverge in the
thermodynamic limit. The singularity of χ st

re is manifested in
the logarithmic scaling as

(
χ st

re

)
max = aC ln N + c5, (30)

χ st
re = bC ln |h − hc| + c6. (31)

One further finds in Fig. 8(b) that the coherence susceptibili-
ties χ st

re for different r also obey the logarithmic scaling. The
fitting parameters are listed in Table I, and the extracted values
of ν agree well with each other, although the deterioration of
the precision with increasing r can be easily noticed.
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FIG. 7. (a) The SQC Cst
re vs the transverse field h. The dash-

dotted, dotted, solid, and dashed lines correspond to α = −0.80,
−0.50, 0.50, and 0.80, respectively. (b) Cst

re vs h for α = −0.50.
The dotted, solid, and dashed lines correspond to different distances
between the two qubits r = 1, 2, and 3. Inset shows the first deriva-
tive of Cst

re with respect to h. Other parameters: N=2000, J = 1.00,
γ = 0.60, � = 0.60.

V. CONCLUSION AND DISCUSSION

In this work, we show that an elaborate scheme in
atom-cavity systems can engineer an effective Hamiltonian
composed of various types of couplings, including XY ,
Dzyaloshinskii-Moriya, and symmetric off-diagonal � inter-
actions. We explore the quantum criticality in the so-called
XY -Gamma model, in which only nearest-neighbor interac-
tions between the particles are allowed. The intricate interplay
of diverse controlled exchange interactions between atoms
in the presence of external fields counteracts a rich vari-
ety of quantum phases at equilibrium. The Hamiltonian can
be rigorously solved through Jordan-Wigner and Bogoliubov
transformation. The exact solutions endow us with precise
knowledge of ground-state properties. For generic values of
the parameters, the phase diagram consists of the antiferro-
magnetic (AFM) phase, the paramagnetic (PM) phase, and the
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4
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N=800
N=1600
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3.8

4.2
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1
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3

4

r=1
r=2
r=3

(b)

FIG. 8. (a) Cst
re vs h for α = 0.50. The left inset shows the scaling

behavior between the maximum value of ∂Cst
re/∂h and the system size

N , and the right inset shows ∂Cst
re/∂h in the vicinity of the critical

point. (b) The first derivative of Cst
re with respect to h for α = 0.50

with r = 1, 2, and r = 3. Other parameters: N=2000, J = 1.00, γ =
0.60, � = 0.60.

gapless spiral phase. The second derivative of the ground-state
energy diverges logarithmically across the AFM-PM transi-
tion, while it displays a discontinuity at the critical point
between the gapless spiral phase and gapped phases. Simi-
lar characteristics can be confirmed by the nearest-neighbor
correlations and steered quantum coherence (SQC). More-
over, we show that the gapless phase is characterized by a
quasi-long-range order of an incommensurate spin spiral. In
a sense, the vector-chiral operator for two qubits is proven to
act as a suitable order parameter for discerning the Tomonaga-
Luttinger liquid. In contrast, the dimer order correlations
vanish rapidly with the distance between the dimers. The find-
ings reveal that the incommensurate phase transitions away
from the Tomonaga-Luttinger-liquid (TLL) phase all belong
to the second-order transitions. As a hallmark of critical phe-
nomena in a continuous quantum phase transitions, critical
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points with the same set of critical exponents are categorized
into a universality class, among which the dynamical expo-
nent z and the correlation-length exponent ν are most crucial.
For the quantum phase transitions between the AFM phase
and the PM phase, one finds the correlation-length exponent
can be obtained from several scaling forms including the gap
and the correlation function as well as the SQC. The critical
exponents ν = 1 and z = 1 clearly indicate the transition be-
long to two-dimensional Ising universality class. As regards
the transitions from the TLL phase driven by either the off-
diagonal exchange coupling ratio α or the magnetic field h,
we obtain explicit forms for the energy gap near the criti-
cal points yielding z = 2 and ν = 1/2, signaling the critical
points on the boundaries of the gapless phase are in the Lif-
shitz universality class. Thus, an experimental measurement
of the correlation-length exponent ν and the dynamical expo-
nent z becomes tractable. The critical exponents z and ν can
be extracted from specific heat exponent α according to the
hyperscaling relation ν + νz = 2 − α or through the Kibble–
Zurek exponent μ = ν/(1 + νz) [80,81]. The finite-size effect
theory developed for the Tomonaga-Luttinger liquid and the
associated Lifshitz universality class speaks to the experimen-
tal verification for a finite number of atoms.

To conclude, the reported results may serve to test other
approximate techniques used to study more realistic mod-
els. This provides an interesting platform to understand the
validity of characterizing tools in identifying unconventional
transitions. The emergent phenomena in quantum many-body
systems [Eq. (6)] with cavity-induced long-range interactions
await further study. In particular, it becomes possible to re-
alize nonequilibrium many-body phenomena in a controlled
way [56], which are inaccessible for conventional solid-state
materials. From both an experimental and a theoretical point
of view, quantum simulations in the AMO systems offer
outstanding possibilities for measuring quantum coherence
encoded in the many-body systems. Thus, the nature of the
ground state and the coherence dynamics of the many-body
systems can be unveiled, providing a hallmark of the TLL
spin dynamics in the one-dimensional AFM chain. However,
controlling atoms and coherence distillations with single-site
resolution in an optical lattice remains a huge challenge.
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APPENDIX A: EFFECTIVE HAMILTONIAN

The time-independent Hamiltonian in the rotating
frame is H̃ = UHU † + i(∂tU )U †, and therefore becomes

Eq. (3). In the second quantization form of field operators
(ψ̂s, ψ̂g, ψ̂1, ψ̂2),

H̃ = −
∑

k

	kâ†
kâk +

∫
dr[δψ̂†

g ψ̂g − 	1ψ̂
†
1 ψ̂1 − 	2ψ̂

†
2 ψ̂2]

+
∫

dr[�1(r)ψ̂†
1 ψ̂g + �2(r)ψ̂†

2 ψ̂s + H.c.]

+
∫

dr
∑

k

[Gk(r)âk(ψ̂†
1 ψ̂s + ψ̂

†
2 ψ̂g) + H.c.], (A1)

in which we use the relation ψ̂†
αψ̂β = ∑

m |α〉m〈β|.

1. Heisenberg picture

Considering the Heisenberg equation for field operators,
we have

i∂t ψ̂1 = [ψ̂1, H̃ ] = −	1ψ̂1 + �1ψ̂g +
∑

k

Gkâkψ̂s, (A2)

i∂t ψ̂2 = [ψ̂2, H̃ ] = −	2ψ̂2 + �2ψ̂s +
∑

k

Gkâkψ̂g, (A3)

i∂t âk = [âk, H̃ ] = −(	k + iκ )âk+
∫

dr G∗
k(ψ̂†

s ψ̂1+ψ̂†
g ψ̂2),

(A4)

wherein we have included the cavity dissipation κ phe-
nomenologically. To this end, the steady-state values of ψ̂1,2

are

ψ̂1,ss = 1

	1

(
�1ψ̂g +

∑
k

Gkâkψ̂s

)
, (A5)

ψ̂2,ss = 1

	2

(
�2ψ̂s +

∑
k

Gkâkψ̂g

)
. (A6)

Then we can obtain the Heisenberg equation of motion for
ψ̂s(g),

i∂t ψ̂g = (δ + Vg)ψ̂g + �̂ψ̂s, (A7)

i∂t ψ̂s = Vsψ̂s + �̂†ψ̂g, (A8)

and the Hamiltonian in the ground-state manifold is

Ĥgs =
∫

dr[(δ + Vg(r))ψ̂†
g (r)ψ̂g(r) + Vs(r)ψ̂†

s (r)ψ̂s(r)]

+
∫

dr[ψ̂†
g (r)�̂ψ̂s(r) + ψ̂†

s (r)�̂†ψ̂g(r)]. (A9)

Here the light-induced potential Vg(s) and Raman coupling
operator �̂ are defined as follows:

Vg(r) = |�1|2
	1

+
∑

kk′ G∗
kGk′ â†

kâk′

	2
, (A10)

Vs(r) = |�2|2
	2

+
∑

kk′ G∗
kGk′ â†

kâk′

	2
, (A11)

�̂(r) = �∗
1

	1

∑
k

Gk(r)âk + �2

	2

∑
k

G∗
k(r)â†

k. (A12)
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Substituting ψ̂1,ss, ψ̂2,ss into Eq. (A4) yields

i∂t âk = −(	k + iκ )âk +
∫

dr G∗
k(ψ̂†

s ψ̂1 + ψ̂†
g ψ̂2). (A13)

We neglect the light shift from different bosonic modes, which
can be negligible small or even zero if we take orthogonal
spatial modes for different bosonic modes. In the adiabatic
limit due to large detuning or large dissipation κ of modes âk,
the photon field can be approximated by its steady-state value,

âss
k ≈ (1/	̃k )

∫
dr G∗

k

(
�1

	1
ψ̂†

s ψ̂g + �2

	2
ψ̂†

g ψ̂s

)
, (A14)

wherein we have defined 	̃k = 	k + iκ − ∫
dr |Gk|2

[(1/	1)ψ̂†
s ψ̂s + (1/	2)ψ̂†

g ψ̂g]. In this case, �̂(r) ≈ ∫
dr′�0

(r, r′)ψ̂†
s (r′)ψ̂g(r′) + ∫

dr′�1(r, r′)ψ̂†
g (r′)ψ̂s(r′), where

�0(r, r′) = η11(r, r′) + η22(r, r′), (A15)

�1(r, r′) = η12(r, r′) + η21(r, r′), (A16)

with coefficients

η11(r, r′) =
∑

k

�∗
1(r)�1(r′)
	2

1	̃k
Gk(r)G∗

k(r′), (A17)

η12(r, r′) =
∑

k

�∗
1(r)�2(r′)
	1	2	̃k

Gk(r)G∗
k(r′), (A18)

η21(r, r′) =
∑

k

�2(r)�∗
1(r′)

	1	2	̃
∗
k

G∗
k(r)Gk(r′), (A19)

η22(r, r′) =
∑

k

�2(r)�∗
2(r′)

	2
2	̃

∗
k

G∗
k(r)Gk(r′). (A20)

Therefore, Ĥgs in Eq. (A9) becomes

Ĥgs = Ĥ0 + Ĥint, (A21)

where

Ĥ0 =
∫

dr[(δ + Vg(r))ψ̂†
g (r)ψ̂g(r)+Vs(r)ψ̂†

s (r)ψ̂s(r)], (A22)

Ĥint =
∫∫

dr′dr[�0(r, r′)ŝ+(r)ŝ−(r′)

+�1(r, r′)ŝ+(r)ŝ+(r′) + H.c.]. (A23)

We use site index to label the trapped atoms, and now the
interaction Hamiltonian can be recast as

Ĥint =
∑
mn

[�0(rm, rn)σ̂+
m σ̂−

n + �1(rm, rn)σ̂+
m σ̂+

n + H.c.]

=
∑
mn

2(Re[�0] + Re[�1])σ̂ x
mσ̂ x

n

+
∑
mn

2(Re[�0] − Re[�1])σ̂ y
mσ̂ y

n

+
∑
mn

2Im[�0]
[
σ̂ x

mσ̂ y
n − σ̂ y

mσ̂ x
n

]
−

∑
mn

2Im[�1]
[
σ̂ y

mσ̂ x
n + σ̂ x

mσ̂ y
n

]
. (A24)

APPENDIX B: EXACT SOLUTION OF XY -GAMMA
MODEL AND CORRELATIONS

1. Energy spectrum and finite-size scaling

Energy spectrum. The Jordan-Winger transformation pro-
vides an efficient nonlocal mapping between spin operators
and spinless fermion operators through the following relation:

σ x
j = −

∏
l< j

(1 − 2c†
l cl )(c j + c+

j ), (B1)

σ z
j = 1 − 2c†

j c j , σ
y
j = iσ x

j σ
z
j , (B2)

in which c j (c†
j ) is the annihilation (creation) operator of spin-

less fermion at site j obeying the standard anticommutation
relations, {ci, c j}={c†

i , c†
j } = 0 and {c†

i , c j} = δi j . Then, the
Hamiltonian (7) can be cast into a quadratic form of spinless
fermions:

Ĥ = Ĥb + Ĥe, (B3)

with

Ĥb =
N−1∑
j=1

[(−c jc
†
j+1 − γ c jc j+1 + γ c†

j c
†
j+1 + c†

j c j+1)

+ i�(−c jc
†
j+1 + c jc j+1 + c†

j c
†
j+1 − c†

j c j+1)

+ i�α(c jc
†
j+1 + c jc j+1 + c†

j c
†
j+1 + c†

j c j+1)]

+ h
N∑

j=1

(1 − 2c†
j c j ) (B4)

and

Ĥe = s[(−cN c†
1 − γ cN c1 + γ c†

N c†
1 + c†

N c1)

+ i�(−cN c†
1 + cN c1 + c†

N c†
1 − c†

N c1)

+ i�α(cN c†
1 + cN c1 + c†

N c†
1 + c†

N c1)]. (B5)

Ĥb and Ĥe represent the contribution from the bulk and the
edges, respectively. One can find that an extra phase fac-
tor s = (−1)Np+1 in Eq. (B5) with total fermion number
Np=

∑N
j=1 c†

j c j makes the Hilbert space decompose into odd
and even parity subspaces, leading to either a periodic bound-
ary condition (cN+1= c1) or antiperiodic boundary condition
(cN+1 = −c1) for the spinless fermionic chain. In the thermo-
dynamic limit, the 1/N correction due to the subtle boundary
term becomes negligible. In this regard, the Hamiltonian (B3)
can be further diagonalized in terms of Fourier transforma-
tions:

c j = 1√
N

∑
k

e−ik jck, c†
j = 1√

N

∑
k

eik jc†
k , (B6)

where the “half-integer” momenta in the antiperiodic bound-
ary condition channel are employed, i.e., k = nπ/N , n =
−(N − 1),−(N − 3), . . . , (N − 1). The bilinear Hamiltonian
can thereby be rewritten as

Ĥ =
∑

k

[(2 cos k + 2�(α − 1) sin k − 2h)]c†
kck + Nh

+
∑

k

{[�(α + 1) + iγ ] sin k c−kck + H.c.}. (B7)
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Equation (B7) is an extended mean-field model for a 1D triplet
superconductor, which can then be arranged straightforwardly
in the Bogoliubov–de Gennes (BdG) representation:

Ĥ =
∑

k

(c†
k c−k )Hk

(
ck

c†
−k

)
, (B8)

where

Hk =
(

Ak Bk

B∗
k −A−k

)
, (B9)

with Ak = cos k + �(α − 1) sin k − h, Bk = −iγ sin k +
(α + 1) sin k. Next, it can be diagonalized by using the
Bogoliubov transformation

bk = ukck + vkeiϕk c†
−k, b−k = ukc−k − vkeiϕk c†

k ,

b†
k = ukc†

k + vke−iϕk c−k, b†
−k = ukc†

−k − vke−iϕk ck, (B10)

where uk = u−k , v−k = −vk , ϕk = ϕ−k are real numbers. Fi-
nally, the Hamiltonian in the diagonal form is given by

Ĥ =
∑

k

εk

(
b+

k bk − 1

2

)
, (B11)

with the energy spectrum being

εk = 2
√

�2(α + 1)2 sin2 k + (cos k − h)2 + γ 2 sin2 k

−2�(1 − α) sin k. (B12)

In the thermodynamic limit (N → ∞), the ground state of the
system corresponds to the configuration where all the states
with εk < 0 are filled and εk � 0 are vacant. The ground state
|GS〉 is defined by

bk|GS〉 = 0 if εk � 0,

b†
k|GS〉 = 0 if εk < 0. (B13)

The ground-state energy is given by

E0 = −1

2

∑
k

|εk|. (B14)

Critical lines. In terms of Eq. (B12), the critical points can
be identified by the fact that the gap is vanishing, i.e., εk = 0.
The critical lines are given by (1) CP-1: 4α�2 + γ 2 > 0, the
critical mode kc = 0, and the critical field hc,1 = 1; (2) CP-2:
4α�2 + γ 2 = 0 and h � 1, the critical mode kc = arccos h,
and the critical line αc,1 = − γ 2

4�2 ; and (3) CP-3: 4α�2 + γ 2 <

0, αc,2 = 1−h2−γ 2

4�2 , or equivalently, hc,2 =
√

1 − γ 2 − 4�2α

with the critical mode kc = arccos h−1
c,2. In the gapless phase,

which is encompassed by CP-2 and CP-3, the excitation spec-
trum εk consist of two fermion points kL, kR, given by

kL,R = arccos
h ±

√
(h2 − 1)X + X 2

1 − X
, X = 4α�2 + γ 2.

(B15)

When h approaches hc,2, kL, and kR merge together into
arccos h−1

c,2.
Critical exponents. Now we show how to extract the crit-

ical exponent z and ν through the ansatz 	 ∼ (λ − λc)zν and

	(λc) ∼ (k − kc)z. First, we consider the dispersion on CP-
3, where h = hc,2, cos kc = h−1

c,2, ε(kc) = 0. In this case, we
expand εk around kc to the second order of δk = k − kc,

ε(kc + δk) =
[

�(1 − α) cos2 kc

2 sin kc
+

(
hc,2

−1 − hc,2
)2

2� sin kc(1 − α)

]
δ2

k ,

(B16)

which implies z = 2. Similarly, we expand 	 around hc with
δh = h − hc,2,

	 ≈ ε(kc) = 2
(
hc,2 − h−1

c,2

)
�(1 − α) sin kc

(h − hc,2), (B17)

which suggests νz = 1, showing ν = 1/2, z = 2. Then we
focus on εk around hc,1 = 1 with kc = 0,

εk ≈ 2
√

[�2(1 + α)2 + γ 2]|k| − 2�(1 − α)k, (B18)

suggesting z = 1. Using

	 = ε(kc = 0) = 2|h − 1| = 2(h − hc,1)νz. (B19)

In this respect, the critical exponents ν = 1 and z = 1. Finally
we expand εk around αc,1 = −γ 2/(4�2) with respect to δk =
k − kc with kc = arccos h,

εk =
√

1 − h2

�(1 − αc,1)
(k − kc)2. (B20)

Thus we can get z = 2. We also expand the gap around αc,1

with δα = α − αc,1 as

	 = 4� sin kc

1 − αc,1
(α − αc,1). (B21)

In this regard, νz = 1.

2. Correlation function

To calculate the two-qubit correlation, we define

Ai = c†
i + ci, Bi = c†

i − ci, (B22)

and it can be easily verified that the following relationships
hold:

{Ai, Aj} = 2δi j, {Bi, Bj} = −2δi j, {Ai, Bj} = 0.

In this case, the Pauli matrices can be rewritten as

σ x
i = Ai

i−1∏
j=1

AjBj, σ
y
i = iBi

i−1∏
j=1

AjBj, σ
z
i = AiBi.

Accordingly, the two-qubit correlation of the x component
can be written into fermion form using the Jordan-Wigner
transformation:

Gxx
i, j = 〈

σ x
i σ x

j

〉 = 〈(σ+
i + σ−

i )(σ+
j + σ−

j )〉
= 〈

(eiπ
∑i−1

n=1 c+
n cn ci + e−iπ

∑i−1
n=1 c+

n cn c+
i )

×(eiπ
∑ j−1

n=1 c+
n cn c j + e−iπ

∑ j−1
n=1 c+

n cn c+
j )

〉
=

〈
Bi

(
j−1∏

n=i+1

AnBn

)
Aj

〉

= 〈BiAi+1Bi+1Ai+2Bi+2 · · · Aj−1Bj−1Aj〉. (B23)
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FIG. 9. The contour map of correlation functions (a) Gxx
1 , (b) Gyy

1 ,
(c) Gxy

1 and (d) Gzz
1 with respect to α and h with N = 2000, J = 1.00,

� = 0.60, γ = 0.60. The white dashed lines correspond to the criti-
cal lines.

Similarly, the y- and z-component correlations

Gyy
i, j = (−1) j−i〈AiBi+1Ai+1 · · · Bj−1Aj−1Bj〉, (B24)

Gzz
i, j = 〈AiBiA jB j〉. (B25)

In addition, the cross-correlations Gxy
i, j can also be obtained

through

Gxy
i, j = i〈BiAi+1Bi+1 · · · Aj−1Bj−1Bj〉, (B26)

Gyx
i, j = i〈AiAi+1Bi+1 · · · Aj−1Bj−1Aj〉. (B27)

Using Wick’s theorem [62], these correlations can be ex-
panded by the contractions 〈AkAl〉, 〈BkBl〉, and 〈BkAl〉. To this
end, their expansion formulas can be expressed as a Pfaffian,
which can be cast into a 2r × 2r (r ≡ | j − i|) antisymmetric
determinant. In the case of preserving reflection symmetry
with � = 0 in Hamiltonian (7), it is easy to verify 〈AkAl〉
=δkl , 〈BkBl〉=-δkl , which are vanishing for k �= l . Therefore,
the Pfaffian can be simplified as a r × r Toeplitz determinant.
Be aware that the reflection symmetry is broken owing to the
introduction of off-diagonal exchange � interactions and the
excitation spectrum in Eq. (9) is not always positive. In this
case, 〈AkAl〉 and 〈BkBl〉 are otherwise finite for k �= l in gap-
less phase, implying that 〈σ x

i σ
y
j 〉=〈σ y

i σ x
j 〉 are not necessarily

vanishing. Simultaneously, we can rewrite the z-component
correlation as

Gzz
i, j = 〈BiAi〉〈BjAj〉 − 〈BjAi〉〈BiAj〉 − 〈AiAj〉〈BiBj〉. (B28)

FIG. 10. The contour map of steered quantum coherence Cst
re with

respect to α and h with N = 2000, J = 1.00, � = 0.60, γ = 0.60.
The white dashed lines correspond to the critical lines.

The last term in Eq. (B28) is usually wrongly discarded in
literatures. To be concrete, it is easy to calculate the nearest-
neighbor correlations (i.e., r = 1); we have

Gxx
i,i+1 = 〈BiAi+1〉, Gyy

i,i+1 = −〈AiBi+1〉,
Gxy

i,i+1 = i〈BiBi+1〉, Gyx
i,i+1 = i〈AiAi+1〉,

Gzz
i,i+1 = 〈AiBiAi+1Bi+1〉

= 〈
σ z

i

〉〈
σ z

i+1

〉 − 〈
σ x

i σ x
i+1

〉〈
σ

y
i σ

y
i+1

〉 + 〈
σ x

i σ
y
i+1

〉〈
σ

y
i σ x

i+1

〉
.

(B29)

The contour plots of nearest-neighbor correlation functions
are shown in Fig. 9 and provide a full scope of Figs. 4 and 5.
Similarly, the contour plot of the steered quantum coherence
in Fig. 10 complements the slice plot in Fig. 7. The four-qubit
correlation is described by the z component vector chiral order
parameter [63,64]

κi = (σi × σi+1)z. (B30)

As for the consecutive four qubits, it yields

〈κiκi+1〉 = 〈BiBi+2〉. (B31)

When the dimers are farther than the nearest neighbor, we
have for r ≡ j − i > 1

〈κiκ j〉 = 〈BiBj〉〈Bi+1Bj+1〉 − 〈BiBi+1〉〈BjBj+1〉
− 〈BiBj+1〉〈Bi+1Bj〉. (B32)

It is recognized that the nonvanishing cross-correlations
arouse nontrivial effect in reflection-symmetry-broken sys-
tems and lead to the gapless phase with quasi-long-range
order.
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torization in the Heisenberg chain with Dzyaloshinskii-Moriya
interaction, Phys. Rev. B 100, 024423 (2019).

[77] M.-L. Hu and H. Fan, Nonlocal advantage of quantum co-
herence in high-dimensional states, Phys. Rev. A 98, 022312
(2018).

063306-14

https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRev.115.2
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRevLett.4.228
https://doi.org/10.1103/PhysRevB.103.144423
https://doi.org/10.1103/PhysRevResearch.3.033048
https://doi.org/10.1103/PhysRevE.102.032127
https://doi.org/10.1103/PhysRevLett.124.147205
https://doi.org/10.1103/PhysRevX.11.011013
https://doi.org/10.1103/PhysRevResearch.2.033268
https://doi.org/10.1103/PhysRevX.8.011002
https://doi.org/10.1038/s41586-021-03945-x
https://doi.org/10.1038/s41586-021-04156-0
https://doi.org/10.1103/PhysRevLett.77.940
https://doi.org/10.1103/PhysRevLett.123.067203
https://doi.org/10.1103/PhysRevB.65.144432
https://doi.org/10.1126/science.1180085
https://doi.org/10.1103/PhysRevLett.123.027204
https://doi.org/10.1103/PhysRevLett.124.037203
https://doi.org/10.7498/aps.67.20172755
https://doi.org/10.1103/PhysRevB.100.195432
https://doi.org/10.1103/PhysRevA.74.032308
https://doi.org/10.1016/j.physa.2021.126122
https://doi.org/10.1103/PhysRevA.3.786
https://doi.org/10.1103/PhysRevB.77.094404
https://doi.org/10.1103/PhysRevB.89.024407
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1038/416608a
https://doi.org/10.1103/PhysRevA.68.042330
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1103/RevModPhys.84.1655
https://doi.org/10.1103/PhysRevA.94.022112
https://doi.org/10.1103/PhysRevE.76.022101
https://doi.org/10.1038/nature07126
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevB.95.224404
https://doi.org/10.1103/PhysRevB.97.224420
https://doi.org/10.1103/PhysRevB.100.024423
https://doi.org/10.1103/PhysRevA.98.022312


CHARACTERIZING QUANTUM CRITICALITY AND … PHYSICAL REVIEW A 105, 063306 (2022)

[78] M.-L. Hu, Y.-Y. Gao, and H. Fan, Steered quantum coherence
as a signature of quantum phase transitions in spin chains, Phys.
Rev. A 101, 032305 (2020).

[79] M.-L. Hu, F. Fang, and H. Fan, Finite-size scaling
of coherence and steered coherence in the Lipkin-
Meshkov-Glick model, Phys. Rev. A 104, 062416
(2021).

[80] A. Sinha, M. M. Rams, and J. Dziarmaga, Kibble-Zurek
mechanism with a single particle: Dynamics of the localization-
delocalization transition in the Aubry-André model, Phys. Rev.
B 99, 094203 (2019).

[81] N. Chepiga and F. Mila, Kibble-Zurek exponent and chiral tran-
sition of the period-4 phase of Rydberg chains, Nat. Commun.
12, 414 (2021).

063306-15

https://doi.org/10.1103/PhysRevA.101.032305
https://doi.org/10.1103/PhysRevA.104.062416
https://doi.org/10.1103/PhysRevB.99.094203
https://doi.org/10.1038/s41467-020-20641-y

